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In this study, event-related potentials (ERPs) collected from normally hearing subjects and 
elicited by a multi-feature paradigm were investigated, and mismatch negativity (MMN) was 
detected. Standard stimuli and five types of deviant stimuli were presented in a specified 
sequence, while EEG data were recorded digitally at a 1024 sec–1 sampling rate. Two wavelet 
analyses were compared with a traditional difference-wave (DW) method. The Reverse 
biorthogonal wavelet with an order of 6.8 and the quadratic B-Spline wavelet were applied 
for seven-level decomposition. The sixth-level approximation coefficients were appropriate 
for extracting the MMN from the averaged trace. The results obtained showed that wavelet 
decomposition (WLD) methods extract MMN as well as a band-pass digital filter (DF). The 
differences of the MMN peak latency between deviant types elicited by B-Spline WLD were 
more significant than those extracted by the DW, DF, or Reverse biorthogonal WLD. Also, 
wavelet coefficients of the delta-theta range indicated good discrimination between some 
combinations of the deviant types.
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INTRODUCTION

Evoked potentials (EPs) or, more generally, event-
related potentials (ERPs) are defined as changes in the 
electroencephalogram (EEG) related to certain events 
(external stimulation or internal processes in the CNS). 
Recently, mismatch negativity (MMN) studies of the 
central auditory function have become very popular [1]. 
The MMN detection opened an unprecedented window 
to the central auditory processing. The MMN, a change-
specific component of the auditory ERP, is elicited by 
any discriminable change in auditory stimulation [2]. 
The MMN response is seen as a negative displacement 
recorded, in particular from frontocentral and central 
scalp sites relative to a mastoid or nose reference [3].

The new multi-feature paradigm was proposed by 
Näätänen et al. [4] allowing one to obtain MMNs for 

several auditory attributes within a short time. During 
the experiment, standard stimuli and five different 
types of deviant stimuli were presented. Figure 2 
displays features of each stimulus in summary.
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F i g. 2. Specifications of the standard and five types of deviant 
stimuli in summary.
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Data extraction is crucially important in MMN 
studies. Prevalently, after artifact rejection, recordings 
belonging to each type of stimulus are averaged to 
obtain the ERP waveform. Responses to standard 
stimuli are typically subtracted from the ERPs 
elicited by infrequently presented deviant stimuli. The 
resulting wave is called the difference wave (DW), 
which indicates the MMN [5]. The peak amplitude and 
peak latency of MMN are usually measured from the 
DW. This is the most typical processing used for MMN 
detection.

Generally, the signal processing techniques to extract 
MMN are divided into two categories, single-channel 
and multi-channel procedures. Some methods, such as 
difference-wave (DW), digital filters (DFs) [6, 7], and 
wavelet decomposition (WLD [8] can be applied to one 
channel, and these are the single-channel procedures. 
Other methods, such as component analysis [9, 10] and 
matrix factorization [11], need more than one channel 
and are categorized as multi-channel procedures.

The idea of using the adaptive filtering technique for 
the analyzing of EPs was first proposed by Orfanidis [12] 
and Thakor [13] and, later on, was investigated by other 
authors [14-16]. Researchers employed time-frequency 
analysis to gain understanding of mass electrical activity 
of the brain. The wavelet transform has been applied to a 
few bioelectric signals. Thakor et al. [17] used a wavelet-
based method for the analysis of ECG data, and Schiff et 
al. [18] used this approach for EEG.

Wavelet filters were especially designed for non-
stationary signals; they utilize both time and frequency 
information related to a signal. WLD techniques 
factorize the signal into several levels with a particular 
wavelet at first, and then coefficients of the selected 
levels can be used for reconstruction or comparison 
[19]. Each level of decomposition matches to a 
certain frequency band, although frequency bands of 
neighboring levels may overlap each other around the 
cut-off frequencies. Since the selected wavelet for 
decomposition and reconstruction may be correlated 
with the desired signal, overlapping signals can be 
separated by a DF.

In our study, five types of MMN were obtained 
using five different types of deviant stimuli presented 
in a special sequence. EEG signals of young people 
were recorded, and MMNs were analyzed with 
quadratic B-Spline WLD. To validate the effectiveness 
of the proposed methods, the results were compared 
with the average-based DW (calculated by subtracting 
the standard response from the deviant response), a DF 
technique, and a Reverse biorthogonal WLD with an 

order of 6.8 [20].

METHODS

Subjects. The group of participants consisted of  
43 healthy normally hearing volunteers, 21 men and 
22 women. They were between 20 to 24 years old, 
with no history of auditory disorders, and most of 
them were university students. 

Stimuli. In this study, MMNs were obtained using 
the new paradigm proposed by Näätänen et al. [4], 
with a little change in the number of stimuli to shrink 
the time of recording. This paradigm makes it possible 
to obtain five types of MMN in a considerably shorter 
recording time compared with the traditional oddball 
conditions. In the new paradigm, each deviant is 
presented after a standard stimulus, meaning that the 
deviants occur with the probability of 0.5 relative 
to the standards (P

Std
=0.5, PDev=0.5/5=0.1). Standard 

stimuli were composed of three sinusoidal tones 
of 500, 1000, and 1500 Hz with a total duration of  
75 msec including 5-msec rise and 5-msec fall time. 
The intensity of the second and third tones sequentially 
was 3 and 6 dB lower than the first tone, respectively. 
The stimuli were presented binaurally via ER-3A 
insert earphones with an intensity level of 65 dB SPL 
and equal phase in both ears.

The deviant stimuli were generated differently from 
the standards in five categories. These differences were 
in the frequency, intensity, duration, perceived sound-
source location, and a gap in the middle of the tone sig-
nal. Frequency, intensity, and location deviants were in 
two modes. A half of the frequency deviant tones were 
10% higher (550, 1100, 1650 Hz), while another half 
were 10% lower (450, 900, 1350 Hz) than the standard. 
A half of the intensity deviants were 10 dB lower and 
another half were 10 dB higher than the standard. De-
viants of location were generated based on a change 
in the location of a perceived sound source. An inter-
aural time difference of 800 µsec was applied for half 
of the deviants to the right channel and another half to 
the left channel. The duration deviant was shorter than 
in duration (5-msec rise, 15-msec flat, and 5-msec fall 
times). The silent gap deviant consisted of a 7-msec si-
lent gap (including 1-msec rise and 1-msec fall times) 
in the middle of the standard stimulus. Fig. 1 shows the 
waveforms of a standard stimulus, duration deviant, and 
silent gap deviant. Each deviant differed from the stan-
dard only in one feature. Features of the standard and 
deviants stimuli are shown in Fig. 2 in summary.
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back were supported with pillows to reduce muscle 
contractions. They, after setting an EEG cap on the 
scalp, were instructed to be relaxed, ignore the 
auditory stimuli, and stay awake. A subtitled silent 
movie was played on a front monitor, to maintain 
alertness and to help participants to pay no attention to 
the stimuli during the experiment. The EEG recording 
session, including preparation and recording per se, 
lasted about 30 min. 

EEG Recording. Sixty-four-channel BRAIN 
QUICK LTM (Micromed, Italy) was used for 
recording electrical brain activities. Twenty-seven 
EEG channels were used. Ag-AgCl electrodes were 
filled with Electro-Gel and placed on 27 selected 
scalp sites (FP1, FPz, FP2, F7, F3, Fz, F4, F8, FT7, 
FC3, FCz, FC4, FT8, T7, C3, Cz, C4, T8, TP7, 
CP3, CPz, CP4, TP8, P3, Pz, P4, and POz) and 
mastoids (M1 and M2), according to the international  
10-20 system. The potentials were referred to the nose 
tip. Electrooculogram activity (EOG) was recorded by 
placing electrodes below the left eye and at its outer 
canthus. Impedances during recording did not exceed 
5 kΩ. EEG signals were digitized with the sampling 
rate of 1024 sec–1 and filtered by an online band-pass 
filter in the 0.001-100 Hz range. In addition, a custom-
designed microcontroller device received digital 
events from Neurobehavioral presentation software 
and reformed it to compatible trigger signals to mark 
events on the computerized EEG record.

EEG Data Preprocessing. The EEG data were 
analyzed off-line using MATLAB® 7.1. At first, these 
data were filtered by an off-line band-pass digital filter 
in the 0.5-40 Hz range. Then, epochs were extracted 
from the continuous data according to a trigger signal 
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F i g. 1. Waveforms of a standard stimulus (A), duration deviant (B), 
and silent-gap deviant (C) generated by MATLAB software®.

Р и с. 1. Форми стандартного стимулу (А), девіанта щодо три-
ва лості (В) та девіанта з „вікном мовчання” (С), генерованих з 
використанням MATLAB. 

The stimuli were presented in two 5-min-long 
blocks with a 500 msec onset asynchrony. In each 
block, the first 15 stimulus were standards, and the 
deviants were presented pseudo-randomly within the 
stimuli. So in an array of five deviants, each deviant 
was presented once, and two similar types of deviants 
never followed each other (Fig. 3). A total of 1,230 
stimuli was presented within the total recording time 
(about 10 min) for the five types of deviants. Stimuli 
were presented via Presentation® software (version 
0.71, Neurobehavioral Systems©, USA). This software 
is a specialized stimulus delivery and experimental 
control program for neuroscientific research purposes.

Procedure. EEG was recorded in electromagnetic- 
and sound-proof chamber. Participants were seated 
on a comfortable chair, and their head, neck, and 
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F i g. 3. Sequence of presentation of the stimuli. S indicates a 
standard stimulus, and Dx indicates different deviant types.

Р и с. 3. Послідовність пред’явлення стимулів.
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that was generated by microcontroller device. All data 
were baseline-corrected by 100 msec pre-stimulus. 
The EEG data were checked for blink, ECG, and other 
muscular artifacts by visual inspection. Epochs with 
artifacts were rejected from subsequent processing. 
In addition, epochs where the amplitude exceed  
80 µV were automatically rejected. The mean number 
of trials (after artifact rejection) per subject was 1027. 
Finally, epochs of the standards and all type of deviants 
were averaged within 100 msec pre- stimulus to 380 msec  
post-stimulus segments separately. The first 15 
standards of each block were rejected from averaging. 

EEG data analysis. In several researches, various 
frequency bands were used to filter out interference from 
an averaged MMN trace. Kalyakin et al. [21] reported 
that the optimum frequency band of MMN of children 
was 2.0–8.8 Hz for the uninterrupted sound paradigm; 
Stefanics et al. [7] used two frequency bands (2.5–16 and 
1.5–16 Hz) to obtain the MMN of neonates. Picton et al. 
[22] reported that most MMN energy was concentrated 
within the 2–5 Hz frequency range. Tervaniemi et al. [23] 
used a 2–12 Hz band-pass digital filter for analyzing the 
peak amplitude and latency of MMN. 

The wavelet transform gives a time frequency 
representation of a signal that is defined as the 
convolution between the signal x(t) and the wavelet 
function ѱa,b(t)

,
where ѱa,b(t) are dilated and shifted versions of a 

unique wavelet function ѱ(t)

.
Here, a  and b are the scale and translation 

parameters, respectively [24]. Discrete wavelet 
transform (DWT) applies to discrete time signals x[n]. 
It achieves a multiresolution decomposition of x[n] on 
I octaves labeled by i = 1, ... , I and given by

.
The DWT calculates the wavelet coefficients a

i,k
 for 

i = 1, ... , I  and the scaling coefficients b
i,k

. The latter 
are given by

and

,

where g
i
[n – 2 ik]s are the discrete wavelets, and 

h
I
[n – 2Ik]s are the scaling sequences [25].
A basic wavelet function to be compared with the 

signal should be chosen. There are many different 
functions suitable as wavelet, each one having 
different characteristics. One hundred ten wavelets 
consisting of different orders of Daubechies, Coiflets, 
Symlets, discrete Meyer, biorthogonal, and reverse 
biorthogoanl wavelets were compared by Cong et al. 
[20]. Finally, the Reverse biorthogonal wavelet with an 
order of 6.8 was chosen for wavelet decomposition of 
MMN. The Spline wavelet was used to study the P300 
of young people by Demiralp et al. [26]. Ademoglu et 
al. also used quadratic spline wavelet to characterize 
the N70-P100-N130 EP complex [27].

Four data processing methods, DW, DF, and WLD 
with two different-type wavelet methods were used 
for comparison of the results. The MMN response is 
typically obtained in frontocentral sites better than in 
others [28]; so, the following processes were applied 
in site FCz. In each method, MMN properties (peak 
amplitude and latency) were extracted.

For DW, traces were calculated by subtracting the 
responses to the standard stimuli from each type of 
deviants. The peak amplitude and latency were calculated 
in FCz for each subject. These properties were obtained 
based on the highest negativity of averaged MMN within 
a time window of 100–230 msec post-stimulus. 

The DF was applied in three steps. Fourier transform 
of the signals was performed on average traces; then, 
Fourier confidents outside the 1–8 Hz range were set 
to zero, and, finally, inverse Fourier transform was 
used to obtain the filtered traces.

For WLD, two different wavelets were used 
to decompose the signal into seven levels, and 
approximation coefficients of the sixth level were 
selected for reconstruction. Filter coefficients 
corresponding to quadratic B-Spline wavelet were 
computed as was described by Ademoglu et al. [27]. 
Filter coefficients for Reverse biorthogonal were 
obtained by MATLAB. WLD with quadratic B-Spline 
wavelet is denoted below as WLD-BS, and WLD by 
Reverse biorthogonal with an order of 6.8 is denoted 
as WLD-RB.

In WLD, if the number of the decomposition levels 
is L, the number of samples of the signal per one 
second is N under conditions of N = 2L [6].

In our study, the sampling frequency for EEG 
data recording was set to 1024 sec–1, so, the signal 
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could be composed of ten levels. The bandwidths at 
each decomposition level are shown in Table 1. The 
frequencies are estimates of the bandwidth of each 
level, and these frequencies are not related to the 
properties of any wavelet.

Because the off-line digital band-pass filter was 
applied in 0.5-40 Hz, there is no useful data within 
the frequency band for D1 to D4. For WLD, the data 
were decomposed into seven levels. As is indicated 
in Table 1, the frequency range for A6 matched best 
the optimum frequency range of MMN. This frequency 
band corresponds to a delta-theta range of EEG 
signals.

The DW, DF, and wavelet filters have the linear 
additive property. Hence, first averaged traces were 
calculated; then WLD and DF were applied to reduce 
the computation loading. 

RESULTS

Analysis of the efficacy of main effect of MMN 
measurements based on different methods was the 
main purpose of our study. The first MMN peak 
amplitude and latency were detected in each MMN for 
each subject, and then these data were examined using 
repeated-measures analysis of variance (ANOVA) to 
determine whether a difference of MMN properties 
(peak amplitude and latency) between five deviants 
was evident under each method used, respectively. 
Also, we wanted to determine whether the differences 
of MMN properties between WLD-BS and the DW, 
DF, or WLD-RB are significant.

Figure 4 shows grand averaged waveforms obtained 
using DW, DF, and WLD procedures for each type of 
MMN. The thick solid, thin solid, dashed, and dotted 
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F i g. 4. Grand-averaged traces recorded from site FCz for 
difference-wave (DW, 1), digital filter (DF, 2), B-Spline wavelet 
(WLD-BS, 3), and Reverse biorthogonal wavelet (WLD-RB, 4) of 
all deviant responses (A-E).

Р и с. 4. Усереднені записи негативності розузгодження, 
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lines represent the WLD-BS, WLD-RB, DF, and DW 
traces, respectively. A gray field designates the time 
window where the MMN peak amplitude was detected. 
As is shown, MMN did not appear for the intensity 
deviant in a same wave as some other researchers 
reported [29]; this is why we excluded it from the 
subsequent analysis.

The MMN peak latencies detected by different 
methods were found to be very similar (F

4,42
 = 0.96, 

P = 0.41), although this was not true for the MMN 
peak amplitudes (F

4,42
 = 38.02, P < 0.000). The peak 

amplitudes obtained by DW differed considerably 
from those obtained by WLDs or DF.

To investigate which MMN extraction method is 
better, the abilities of these methods to discriminate 
between different MMN types were compared. Hence, 
the MMN properties (peak latency and amplitude) 
extracted by the above processing methods were 
examined in all combinations.

The results of MMN extraction between each type 
of deviants using different methods are shown in 
Fig. 5. All statistical tests of the differences between 
the MMN peak amplitudes and latencies elicited by 
four deviants using four methods are collected in 
this Figure. Two horizontal lines indicate 0.05 and 
0.01 borders for the P value to determine whether a 
result is statistically significant. For all methods, the 
differences of the peak magnitude or latency between 
location and silent-gap deviants were not significant. 
The peak latency differences between frequency and 
duration deviants were also not significant for all 
methods, and the difference of the peak amplitude 
between these two deviants was significant for DW. 
Main effects of all methods for the peak latency in all 
combinations of deviants were similar to each other, as 

F i g. 5. Statistical tests of the differences between four types of the 
MMN amplitude and latency extracted by WLD-BS (1), WLD-RB 
(2), DF (3), and DW (4).

Р и с. 5. Статистичні тести щодо різниць між негативностями 
розузгодження за амплітудою (А) та латентним періодом (В), 
виділених з використанням WLD-BS (1), WLD-RB (2), DF (3) 
та DW (4).
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it was expected from averaged traces in Fig. 4. Totally, 
the peak latency in WLD-BS for all combinations of 
deviants was significantly greater than that in other 
methods.

In wavelet-based MMN extraction methods, 
coefficients of various decomposition levels consist 
of time-frequency information, in contrast to DW or 
DF that only have data of either time or frequency 
domains. According to the frequency band for 
MMN (about 1 to 10 Hz), the coefficients of sixth-
level decomposition were compared together. Figure 
6 shows statistical comparison of the test results of 
different types of responses for WLD methods. The 
WLD coefficients of averaged traces were compared 
by WLD-BS and WLD-RB; in column A, this is 
performed for standard and four deviants and in 
column B, this is performed for different waves. As it 
shown, discriminations are similar to each other and 
independent of the standard, i.e., whether a standard 
sweep was subtracted from the deviant sweeps or 
not. It should be noted that critical values from the t 
distribution were used after Bonferroni adjustment, to 
compensate multiple comparisons.

The WLD coefficients of delta-theta range for the 
standards were significantly greater than those for the 
deviants. There are main effects with respect to the 
deviant pairs, frequency/location, frequency/silent 
gap, duration/location, and duration/silent gap. These 
results are obvious in Fig .5 if the latency was the 
comparison factor. There was no main effect between 
the location and silent-gap deviants for each method, 

either for the peak latency and amplitude, or for the 
WLD coefficients.

DISCUSSION

In our study, the criteria used for evaluating the 
performance of the data processing methods were 
based on the MMN properties, i.e., it was believed 
that different types elicit different MMNs [30]. The 
experiment included five deviants differing in the 
frequency, intensity, duration, perceived location, 
and silent gap. The WLDs gave the actual MMN peak 
magnitude and latency, as was confirmed by analyzing 
the MMN properties between deviants (see Fig. 5).

Table 2 shows statistical test results on the MMN 
peak amplitude and latency between WLD-BS and 
the DF, DW, or WLD-RB. For ANOVA, the method 
was the factor. The respective results show that the 
proposed WLD-BS performed differently with the DW 
in extracting MMN. However, there is a main effect 
between these two methods in extracting the MMN 
peak amplitude; they provided similar discriminations 
between different deviants (see Fig. 5). 

WLD can be regarded as a special bandpass filter. 
The frequency responses of quadratic B-Spline WLD 
and Reverse biorthogonal WLD with the order of  
6.8 are shown in Fig. 7, and their filter coefficients are 
shown in Fig. 8. The wavelet morphologies are similar, 
while the frequency responses are different. Reverse 
boirthogonal 6.8 is alike to be an ideal bandpass 

Frequency

Deviant

Duration

Deviant

Location

Deviant

Silent Gap

Deviant

Standard

Frequency

Deviant

Duration

Deviant

Location

Deviant

Silent Gap

Deviant

Standard

–1.3

–10 –8 –6 –4 –2 0 2 4 6 8 –10 –8 –6 –4 –2 0 2 4 6 8

–1.0 –0.5 0.5 1.01.20 –1.3–1.0 –0.5 0.5 1.01.20
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adjustment) between MMN delta-theta-range 
coefficients extracted by WLD-BS and WLD-
RB. The WLD coefficients for averaged deviant 
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A); WLD coefficients for difference waves are 
shown in column B. 

Р и с. 6. Тести порівняння (з наближен ням 
Бонферроні) між дельта-тета-коефіцієнтами 
негативності розузгодження, виділеними з 
використанням WLD-BS та WLD-RB. 
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filter in contrast to quadratic B-Spline that amplifies 
frequencies close to the cut-off frequency.

Considering frequency information of MMN, we 
need the filter having a better frequency match with 
the MMN frequency range to extract pure MMN. 
It seems that the WLD-BS is a good method for 
extracting MMN with better properties.

In our study, the compared results showed that 
there is no disparity between the WLD coefficients of 
deviants and WLD coefficients of DW (see Fig. 6). 
Hence, we can apply WLD to deviants directly instead 
of DW.

The WLD approach was applied for investigation 
of the differences between types of MMN obtained by 
the multi-feature paradigm in a sampling of normally 
hearing people. From this point of view, the WLD 
method and WLD coefficients can be used with 
respect to other subjects, e.g., complainers of hearing 
disorders; these also can be used to specify some brain 
pathologies.

Ideally, only MMN activity should remain in the 
data for detecting properties or feature extraction after 

data processing. However, the DW only removes the 
common variance in standard and deviants traces; 
other types of activity that overlap MMN are not 
segregated just in the time or frequency domain. Thus, 
time-frequency processing can be used to obtain pure 
MMNs; time and frequency information should be 
applied together for analyzing. This matter motivated 
us to use time-frequency analyzing based on WLD and 
to compare types of MMN elicited by the specified 
new paradigm. With this approach, we have found 
that the WLD coefficients are better tools to compare 
MMNs than estimation of traditional MMN properties 
(peak latency and amplitude).

The Ethics Committee of ENT and Head and Neck Research 
Center, Tehran University of Medical Sciences, acknowledged 
the study design (code number: MT.8829/90-12-25) as 
corresponding to the internationally accepted ethic standards. 
All participants of the tests were informed in detail on the 
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Table 2. Statistical Tests of the Differences Between WLD-BS and Other Methods in the Analysis of the Peak Amplitude and Latency

Т а б л и ц я 2. Статистичні тести щодо різниць між WLD-BS та іншими методами при аналізі пікових амплітуд та латентних 
періодів

Parameter Value
Methods

WLD-BS vs DW WLD-BS vs DF WLD-BS vs WLD-RB

Amplitude
F(1,42) 83.79 3.85 0.83

P <0.0000 0.0504 0.3621

Latency
F(1,42) 3.64 0.43 0.52

P 0.0574 0.5141 0.4693

1

2
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Р е з ю м е

У суб’єктів із нормальним слухом реєстрували пов’язані 
з подією потенціали, викликані з використанням множин-
ної парадигми. Стандартні слухові стимули  та девіантні 
стимули п’яти типів пред’являли в специфічній послідов-
ності; ЕЕГ-потенціали відводили з частотою дискретизації  
1024 c–1. Результати двох видів вейвлет-аналізу порівнювали 
з даними, отриманими із застосуванням традиційного мето-
ду диференціації хвиль (DW). Зворотний біортогональний 
вейвлет порядку 6.8 і квадратичний B-сплайновий вейвлет 
використовували для декомпозиції сьомого порядку. Коефі-
цієнти наближення шостого порядку виявилися застосов-
ними для виділення негативності розузгодження (MMN) із 
усереднених записів. Як показали результати, методи вейв-
лет-декомпозиції (WLD) дозволяють виділити негативність 
розузгодження так само успішно, як і цифрові фільтри. Від-
мінності латентних періодів піків негативності розузго-
дження для девіантних варіантів стимуляції, виявлені в разі 
застосування В-сплайнової WLD, були більш вірогідними, 
ніж аналогічні відмінності при використанні методу дифе-
ренціації хвиль, цифрової фільтрації або зворотної біорто-
гональної WLD. Вейвлет-коефіцієнти для дельта-тета-діа-
пазону також дозволяли отримати найкращу дискримінацію 
деяких комбінацій девіантних типів.
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