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Abstract—A mathematical model of Parkinsonian tremor is
presented in this research. This model contains structures
involved in tremor genesis from brain to muscle. The result of
this study is compared with physiological parkinsonian tremor
by using the correlation dimension, the largest Lyapunov
exponent and the Kolmogorov entropy. The correlation
dimension represents the complexity and the largest Lyapunov
exponent and the Kolmogorov entropy indicates the chaoticity of
the system. This comparison shows that the obtained result based
on the purposed model is close to experimental data, so the
presented model is an accurate and applicable model.
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L INTRODUCTION

The Parkinson disease (PD) was described by James
Parkinson in 1817 for the first time [1]. PD is characterized by
loss of dopaminergic cells of the substantia nigra pars
compacta (SNc), which is a part of the basal ganglia (BG) [2].
PD causes different changes in the basal ganglia-
thalamocortical system (BGTCS) discharge rates. The disease
increases the mean firing rates in subthalamic nucleus (STN)
and internal globus pallidus (GPi). On the other hand, the
disease decreases the mean firing rates of external globus
pallidus (GPe), thalamic reticular nucleus and the relay
nucleus of thalamus [3]. Tremor is the most common
symptom of PD with a frequency of 4-6 HZ. The system
complexity can be estimated by correlation dimension and the
Lyapunov exponent.

There are many computational and mathematical studies
which investigate PD. A mathematical and pathological model
of BG is presented by Haeri et al [2]. In that study each
component of BG is modeled by a first-order system.
Connection strength is used for modeling the variation of
neurotransmitters quantity. In this research we applied these
approaches to model the BG and thalamus. The relationship
between rigidity and tremor is investigated by MashhadiMalek
et al [4]. They considered the central and peripheral nervous
system and muscle model. The peripheral system (spinal and
long-loop reflex) begins from muscle, passes spinal cord and
CNS and finally returns to muscle. The central system consists
of cortex, basal ganglia and supplementary motor area (SMA).
Cortex inputs are from BG and SMA. A gain is used for
modeling the amount of cortex command to muscle. The SMA
is modeled by an absolute function, a gain and a saturation
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function. When the antagonist muscle is active, the agonist is
in rest and vice versa. This behavior is simulated by two gains
in the spinal cord. Parent et al [5] presented a model of BG
and determined the inter-relation of its components. They
specified the excitatory and inhibitory characteristic of
neurotransmitters.

Merrikh-Bayat [6] studied the (clinical) time-series data of
Parkinson’s disease, Amyotrophic Lateral Sclerosis and
Huntington’s disease. In that research, the time series data are
embedded in a vector space and the correlation dimension of
the diseases is estimated. The 0-1 test is used for studying the
existence of chaos in these diseases. The simulations show
that none of them are chaotic. Stam et al [7] investigated the
EEG nonlinearity in dementia and Parkinson’s disease. They
investigated that, using different embedding method and the
largest Lyapunov exponent and the Kolmogorov entropy in
addition to the correlation dimension, can distinguish the EEG
form linearly filtered noise.

A computational and mathematical model of BGTCS is
presented in this paper. The model of peripheral system,
antagonist and agonist muscles are considered too. This
research is based on clinical and physiological information.
Also the purposed model contains a path from brain to muscle.
We used the correlation dimension, the largest Lyapunov
exponent and the Kolmogorov entropy to compare the results
of this study with physiological parkinsonian tremor. This
comparison shows that the results of the presented model is
close to experimental data, so the purposed model is an almost
accurate and applicable model which can be useful for
simulating the PD.

II.  PHYSIOLOGICAL BACKGROUND

A first-order system is considered for BG and thalamus
components. Each neuron has three features: longitudinal
resistance at axons and dendrites, membrane capacitance and
membrane resistance. When the input of membrane is a step
function, an exponential output will occur. So it can be found
that the resistance and capacitance of neuron are joined in
parallel, in fact membrane resistance and membrane
capacitance are parallel. The signal would pass along axons
without any changes; it shows that the longitudinal resistance at
axons and dendrites is in series with them. So each neuron
would be presented by a first-order system [2].
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The quantity of components firing rate in Parkinson disease is
related to the components activity. The firing rate of each
component is used to estimate the parameters of BGTCS
blocks in PD state. These firing rates are in physiologically
realistic ranges detected from monkeys [3]. These rates are
presented for illness and healthy states in table 1. The
excitatory and inhibitory connections, hypo activity and the
hyperactivity of blocks are shown in Fig. 1.
TABLE I. FIRING RATES OF BGTCS BLOCKS IN ILLNESS AND HEALTHY

STATES [3].
component illness healthy

Cortex 12 12
Dl 2.2 7.4
D2 12 3.5
Gpi/SNr 110 69
GPe 47 48
STN 36 28
Relay nuclei 10 14

III. MATHEMATICAL MODEL

A. BG and thalamus model

In this section the first-order system of each block is
presented. P(s) is the transfer function of the striatum. This
block has two outputs and one input. The input has an
excitatory affect on outputs. These outputs are nominated as
Sol and So2.

B, : Sol(s) = gx 22 SNco(s),
s+30 (l)
So2(s) = 1 X 1 X @SNCO(S)
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Figure 1. The inter-relation of BGTCS in PD state. The thick lines show
hyperactivity and dashed lines show hypo activity.

P,(s) represents the dynamics of SNc. So2 is the input of

this block and has an inhibitory affect on SNc. A nonlinear
function (sign function) is at continuation of this block [3].
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P,(s) : sgn( A(s)), (2)
-50
A(s) = So2(s
() s+ 40 )
This block has an inhibitory input and an excitatory input.
P,(s5):GPeo(s) = i x (— 3500 Sol(s)+ 20 STNo (s)) G)
: g s+10 s+10

P4(s) represents the behavior of STN. The input of this
component has an inhibitory affect on the output.

4
P4(s):STN0(s):g><sj5§f) “)

GPeo(s)
Ps(s) represents the dynamics of GPi (and SNr) which has

an excitatory and an inhibitory input.
-1
s+1

11
s+1

)

P.(s):GPio(s) =g x( 0S02(s)+ 0STNo(s))

The transfer function of P¢(s) represents the thalamus Relay
neurons dynamics. This component has three inhibitory inputs.

(6)

-40 -40 -40
P.(s):RENo(s)=gx GPio(s)+ LISo(s)+ TRNo(s
5 () ds)=g 7730 ols) 7730 ofs) <730 os)

P+(s) models the thalamic reticular nucleus (TRN) which
has one excitatory input.

P,(s):TRNo(s) = 135 RENo(s)
s+10

(7
Finally, Pg(s) represents the dynamics of local interneuron
(LIS). It has one excitatory and one inhibitory input.

1 20 (3
P(s): LISo(s) = —— RENo(s) +
(5): LiSots) = =0 RENo(s) + = 5

TRNo(s)

The neurotransmitters behavior is modeled by connection
strength (gain). A direct relation is assumed for the quantity of
neurotransmitters and the amount of the gain. So the decrement
of neurotransmitters is modeled as gain of ‘I/g’ and the
increase is supposed as ‘g’. It is notable that the signal from
cortex is not considered, because it is assumed that the
malfunction of BG is the origin of PD.

B. Cortex model

The input of cortex comes from BG and SMA and the
output goes to alpha motor neurons and the muscles. There are
two gains nominated as g, and g,, which control the amount of
cortex command on muscles. g, is related to agonist muscle
and is 0 when this muscle is inactivated and equals 1 when it is
activated. g,, is for antagonist muscle which is -1 and 0 when it
is activated and inactivated, respectively [4].

C. SMA model

The SMA input comes from thalamus and spinal cord and
the output goes to cortex. In normal state, SMA has an
inhibitory affect on cortex and it has an excitatory affect in PD
state. SMA is modeled by a saturation function and a gain. The
quantity of saturation function is assumed to be 1-2 in PD and
0.5-1 in normal state [4]. Changing the amount of the gain will
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change the output of SMA. The model of cortex and SMA is
represented in Fig. 2.

D. Muscle and peripheral system model

The muscle model which is used in this paper is based on
Hill model. The input of muscle is from cortex and the output
is hand movement velocity. The peripheral system is modeled
by a long loop. This loop begins from muscle, passes BGTCS
and alpha motor neurons and finally returns to the muscle.
When the agonist muscle is activated the antagonist muscle is
in rest and vice versa. This behavior is modeled by two gains
(8o and g.,). gy equals 0 when the agonist muscle is
inactivated and is 1 when it is activated. g, is 0 when the
antagonist muscle is inactivated and is 1 when it is activated
[4]. The complete model which is simulated in SIMULINK is
shown in Fig. 3.
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Figure2. The model of cortex and SMA [4].
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Figure 3. The complete model simulated in SIMULINK.

Fig. 4 represents clinical data of hand movement obtained
from www.physionet.org.

Fig. 5 represents the output of presented model. The output
of our model is the velocity of hand movement.
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IV. COMPARISON BETWEEN CLINICAL DATA AND MODEL
RESULT
To investigate the accuracy of model result, we compared
the correlation dimension, the largest Lyapunov exponent and
the Kolmogorov entropy of clinical data and the result obtained
from this study.

A. Correlation dimension
3 steps are needed to calculate the correlation dimension:
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Figure 4. The clinical data obtained from www.Physionet.org.
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Figure 5. The output of presented model.
(1) Estimation of the Euclidian distance between pairs of
points.

(2) Estimating the correlation integral C(R) for different
distances of R. C(R) is determined as follow:

Y 2 N NN e )
C(R) =lim,_, oD Z[:lzfzi+10(R |x,—x,])

N is the number of points, x; and x; are points and 6 is the
Heaviside step function which is defined as follow:

0(8):{1) ife<=0

ife>0
(3) Determining the slop of the linear region of the
logC(R)/log(R) curve.
log C(R)
log R

(10)

CD =lim, ,, an
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Fig. 6 and Fig. 7 show the plot of log C(R)/log (R) for
clinical data and model result respectively. The slope of the
following curves indicates that the correlation dimension of
clinical data and model result are close to each other.

B. The largest Lyapunov exponent

Positive Lyapunov exponent and positive Kolmogorov
entropy are expected to be in chaos. The first step to calculate
the largest Lyapunov exponent is the election of one point as
the original point. The second step is estimating the distance
between this point and other points, this distance is nominated
as d;. 1 shows the number of original point.
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Figure 6. The logC(R)/log(R) plot for clinical data.
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Figure 7. The logC(R)/log(R) plot for model result.

This procedure should be repeated for some other original
points. The slope of /n(d;)/N would be measured in each stage
and finally the mean of these slopes results the largest
Lyapunov exponent.

1 1w, d (12)

LE=—x-Y" In=t
N * n zi:‘ ! N

N is the number of points and # is the number of iterations. In

this study # is equal to 10. The largest Lyapunov exponent for

clinical data and model result is obtained as -0.087 and -0.072,

respectively. According to Merrikh-Bayat [6] Parkinsonian
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tremor is not chaotic. The result obtained from this study also
shows that none of the clinical data and model result is chaotic.

C. Kolmogorov entropy

To estimate the order 2 Kolmogorov entropy, we should
calculate Cy(R) and Cy.;(R) which are correlation integral of
two consecutive embedding dimensions. The relation between
C(R) and Kolmogorov entropy is given by:

1
KE = ilogic" (R) (13)
At Cd+1 (R)

At is the time between successive samples and is equal to 1.
Kolmogorov entropy is calculated for &=5 and d+7/=6. The
quantity of Cy4(R), Cy:;(R) and Kolmogorov entropy for model
result and clinical data are represented in table 2. As it is
shown, the Kolmogorov entropy for both model result and
clinical data is negative and also their quantity is very close to
each other.

TABLE II. The quantity of C4(R), C4+1(R) and Kolmogorov entropy.
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Clinical data Model result
Cu(R) 0.46 0.26
Cur1(R) 0.6 0.33
Kolmogorov -0.109 -0.096
entropy

V. CONCLUSION

In this study a computational model of PD tremor is
presented which includes BGTCS, peripheral system and the
muscles model. To investigate the accuracy of model result, the
correlation dimension, the largest Lyapunov exponent and the
Kolmogorov entropy of clinical data and the result obtained
from this study are compared. The comparison shows that the
correlation dimension of the real system and the model
presented in this study is very close to each other which
indicate that the complexity of the model and the real system is
similar. The largest Lyapunov exponents and the Kolmogorov
entropy which obtained from presented model and clinical data
are both negative which shows that none of them are chaotic.
These results demonstrate that our model is close to real system
and can be used for simulating the PD tremor in an accurate
way.
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