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Abstract—In real-life application of DEA models, data 

maybe imprecise such as ordinal or bounded data. Also in 

this model considering weight restrictions are necessary to 

prevent overestimate or underestimate some inputs or 

outputs in performance evaluation process. Existing works 

in this area considered only assurance region type 1 with 

imprecise data. This paper considers DEA model in 

presence of both imprecise data and general weight 

restrictions includes assurance region type 1, type 2 and 

absolute weight restrictions. The model is nonlinear and 

non-convex, so in most cases the professional solvers are 

unable to find the global optimum solution. We developed a 

genetic algorithm (GA) for solving the model. To obtain the 

best configuration of GA parameters, we applied the 

Taguchi experimental design methodology. Two numerical 

examples are given to demonstrate the effectiveness of 

developed GA. Also, the sensitivity analysis of the model in 

presence of ordinal data is discussed. 

Keywords- Data envelopment analysis (DEA); Imprecise 

data; Weight restrictions; Genetic algorithm 

I. INTRODUCTION 

Data envelopment analysis (DEA), introduced by 
Charnes, Cooper, and Rhodes [1], is a mathematical 
programming to calculate the relative efficiency of a set of 
decision making units (DMUs). In the standard DEA 
models, DMUs are free in choosing the weights in order 

to maximize their relative efficiency. Consequently, some 
inputs and outputs can be overestimated or ignored in 
performance evaluation process. Also the viewpoint of 
decision maker about the importance of criteria is not 
considered. It should be noted that the complete flexibility 
in the selection of weights is significant in the 
identification of inefficient DMUs. In addition, the 
traditional DEA models make an assumption that input 
and output data are precise. But in some real-life 
applications the data maybe imprecise such as bounded, 
ordinal and so on.  

In some applications of DEA, data are imprecise and 
we need to consider weight restrictions. Cooper et al. [2] 
were the first to consider simultaneously imprecise data 
and weight restrictions in DEA.  

To the best of our knowledge, there is not any 
reference to consider DEA model in presence of both 
imprecise data and generalized form of weight restrictions 
includes assurance region type 1, type 2 and absolute 
weight restrictions. In this paper, we consider DEA model 
in presence of both imprecise data and general weight 
restrictions. The model is nonlinear and non-convex. 
Hence, the optimum solution may not be a global 
optimum solution of the model. So, to solve the problem 
we developed a genetic algorithm (GA). 
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The reminder of the paper is organized as follows: 
section 2 briefly reviews weight restrictions and imprecise 
data in DEA. In section 3, a genetic algorithm is 
developed to estimate the relative efficiency in presence 
of both generalized form of weight restrictions and 
imprecise data. Numerical examples and conclusions are 
given in section 4 and 5, respectively. 

 

II. LITERATURE REVIEW 

A. DEA models in presence of weight restrictions 

The Maximin model to calculate the relative efficiency 
is as follows (DMUp is under evaluation) [3]:  

)1(
0,













































i

iji

r

rjr

j

i

ipi

r

rpr

vu xv

yu

Max
xv

yu

Max   

Model (1) can be converted to the following model 
(2): 
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As mentioned in section 1, the weights in model (1) 
and (2) are free. Weight restrictions are proposed to 
prevent overestimate or underestimate some inputs or 
outputs as well as to consider the viewpoint of decision 
maker about the weights of criteria (inputs and outputs). 
The most popular type of weight restrictions is linear 
constraints, which can be categorized into assurance 
regions type 1 (ARI), type 2 (ARII) and absolute weight 
restrictions. These types of weight restrictions are given in 
table 1.  

Table 1: Linear weight restrictions 

Assurance region type 1 

(ARI) rrrriiii uuvv    11 ,  

Assurance region type 2 

(ARII) rii uv   

Absolute weight restrictions rrriii uv   ,  

where rrriiiiir  ,,,,,,,,  are scalars. Tracy 

and Chen [4] proposed a generalized expression that could 
represent linear weight restrictions as follows: 

   )3(:,   vbuavu TT
 

In (3), 
Ta  and 

Tb  are vectors of proper dimensions 

of   and  . By choosing appropriate values for the 

Ta,,  and Tb , we could obtain ARI, ARII and the 

absolute weight restrictions.  

Model (2) in presence of ARI is always feasible and 
can calculate the relative efficiency correctly. But, by 
using the absolute weight restrictions and ARII some 
problems such as infeasibility and underestimation of the 
efficiency may be occurs. The interest readers can refer to 
[5, 6] for more study about the weight restrictions in DEA.  

In 2010, Khalili et al. [6] proposed the nonlinear and 
non-convex model (4) to calculate the relative efficiency 
in presence of generalized weight restrictions (3). The 
model eliminated the mentioned drawbacks. 
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B. DEA models with imprecise data 

As mentioned in section 1, in some real-life 
applications the data maybe imprecise such as bounded, 
weak ordinal and ratio bound data. Cooper et al. [2] 
considered weak ordinal and bounded data in DEA. The 
model was nonlinear and non-convex. They converted the 
model into an equivalent linear programming through 
scale transformations and variable alterations. Zhu [7] 
showed that the scale transformations in [2] are redundant. 
He proposed a simpler method to calculate the relative 
efficiency in presence of imprecise data. To deal with 
ordinal data, he used the unit invariant property of DEA 
model and convert ordinal data into interval data format. 
Wang et al. [8] proposed a new pair of interval DEA 
models to deal with bounded data. They convert ordinal 
data into bounded data. Kao [9] and Park [10] proposed 
other method to deal with imprecise data. The interest 
reader can find a brief review on imprecise data in [11, 12, 
13]. 

 

C. DEA models in presence of both imprecise data and 

weight restrictions 

To the best of our knowledge, the only papers that 
discussed DEA model in presence of both imprecise data 
and weight restrictions are [2, 14, 15, and 16]. Cooper et 
al. [2] showed that model (2) in presence of both 
imprecise data (ordinal data and bounded data) and ARI is 
nonlinear and non-convex. They used the following two 
steps to convert the model into an equivalent linear 
programming. 

Step 1: Scale transformations (normalizations). 

Step 2: Variable alterations. 
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In bounded data format the first step needs an exact 
data with the maximum value. Cooper et al. [15] 
introduced some dummy variables to remove the 
limitation. Park [16] showed that step 1 and using dummy 
variables are redundant. He converted the model into an 
equivalent linear programming by variable alterations. 

 

 

D. Application of heuristics in solving DEA models 

Heuristic methods are the best way to solving complex 
problems. Heuristics such as tabu search, simulated 
annealing, GA and particle swarm optimization (PSO) 
increase the chance of finding global optimal solution.  
Some researchers have been used these methods to 
estimate the relative efficiency scores in DEA models. 
Wen & Li [17] and Wen et al. [18] used credibility 
measure approach for using fuzzy numbers in DEA. They 
used GA in solving Fuzzy DEA (FDEA) model. Meng 
[19] proposed a new satisficing data envelopment analysis 
(DEA) model in presence of fuzzy inputs and outputs. He 
developed a PSO algorithm to solve the model. 

Literature review shows that existing references only 
considered ARI with imprecise data. By using ARI we 
could only set weight restrictions among the weights of 
inputs or outputs and we cannot set an upper bound or 
lower bound for weights. Also, we cannot create any link 
between the weights of inputs and outputs. Based on this 
lack, in the next section we discuss DEA model in 
presence of both imprecise data and generalized form of 
weight restrictions to fill this gap. 

 

III. DEA IN PRESENCE OF BOTH IMPRECISE DATA AND 

GENERALIZED WEIGHT RESTRICTIONS 

Consider model (4) with imprecise data: 
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Where 
 iijx )(  and 

 rrjy )(  represent any or all 

of the following imprecise data (Equations 6 – 8). 

Bounded data 
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where 
rj

y  and rjy  are the lower and the upper bounds 

for outputs, ijx  and ijx  are the lower and the upper 

bounds for inputs, and BO and BI represent the associated 
sets containing bounded outputs and inputs, respectively. 

Weak ordinal data 
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where DO and DI represent the associated sets 
containing weak ordinal outputs and inputs, respectively. 

Ratio bounded data 
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where rjL  and ijG  represent the lower bounds, rjU  and 

ijH  represent the upper bounds, and RO and RI represent 

the associated sets containing ratio bounded outputs and 
inputs, respectively.  

As mentioned in previous section, model (4) 
successfully calculates the relative efficiency. So, model 
(5) can be used to calculate the relative efficiency in 
presence of both imprecise data and generalized form of 
weight restrictions. The next theorem shows a special 
property of the model in presence of ordinal data. 

Theorem 1: in model (5), suppose the rth output of 
DMUs is in ordinal data format and DMUp has the best 

rank. In the other words, suppose jyy rjrp  , . In this 

case, DMUp is efficient. 

Proof: In calculation of the relative efficiency score of 

DMUp, model (5) could selects rpy  enough large positive 

number and set pjyrj , very small numbers such that 

DMUp dominates all of the other DMUs. It should be 
noted that, we cannot set an upper bound for ordinal data 
in model (5) (the basic idea has been used in many 
references such as: [2, 7, 8, 9, 14 and 15]). Since, DEA 
models in presence of generalized form of weight 
restrictions are not unit invariant. 

Note that a similar theorem can be presented for 
ordinal data in inputs. 

 

A. Developing a genetic algorithm to solve model (5) 

Since GA has been used effectively in solving many 
complex problems (see [17, 18, 20]), here we use it to 
estimate the relative efficiency in model (5). In special 
cases, for example when data are crisp, nonlinear solvers 
(eg, PATHNLP or MINOS) existing in professional 
optimizations softwares such as GAMS can be used to 
solve the model [6]. It should be noted that the model is 
nonlinear and non-convex. Hence, the optimum solution 
may not be a global optimum solution of the model. Also, 
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we believed that when some inputs and outputs are in 
bounded and ordinal data format, the mentioned nonlinear 
solvers are unable to obtain the global optimum of the 
model (see example 2). So, to estimate the efficiency 
scores we developed a genetic algorithm (GA). 

Model (5) has a lot of variables and constraints, so it is 
hard to generate feasible solutions in GA. Here we use the 
basic form of DEA model (1) to estimate the relative 
efficiency in presence of both imprecise data and 
generalized form of weight restrictions. So, to calculate 
the relative efficiency of DMUp the following model is 
used: 
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This model has less variables and constraint 
comparing with model (5). Consequently, model (9) is 
easier than model (5) to generate feasible solutions.  It is 
not too hard to show that model (5) and model (9) are 
equivalent (a proof is given in [6] when data are crisp). 
The main steps of developed GA to solve model (9) is as 
follows. 

Chromosome representation: We use a nonnegative 

vector ),,,( yxvu  to say a solution. xvu ,,  and y  are 

vector. ru  is the weight of rth output, iv  is the weight of 

ith input, jixij ,,  are the inputs and jryrj ,,  are the 

outputs. 

Initialization process: We randomly generate  . The 

feasibility of   can be checked by the constraints of 

model (9). If it is feasible, we accept it as a solution. If 
not, then we regenerate randomly another solution until a 
feasible one is obtained. Repeating the process Pop_size 
times, we could make Pop_size initial feasible solutions. 
Pop_size is one of GA parameters which is size of 
population. 

Evaluation process: the objective function of model 
(9) is used to calculate the fitness for all chromosomes. 

Selection and crossover operations: we use the ranking 
selection method for selecting two parents for producing a 
child. We generate a random variable 10  r  and make 

a child as follows: 

2*)1(1* parentrparentrChild   

The feasibility of any child can be checked by the 
constraints of model (9). We repeat this process until a 
feasible child obtained. This process are repeated 
Number_of_Children times. 

Mutation operations: suppose k , in this case we 

randomly generate an integer number }...,,2,1{1 kn  . 

Then we select the thn1  element of vector   to make a 

mutation as follows: 

Suppose 
1n  be the thn1  element of vector  .we 

randomly generate 10
1
 nr  and set 

 )12(
111
 nnn r  in which   is a small positive 

number. The feasibility of new   can be checked by 

using the constraints of model (9). We repeat this process 
until a feasible solution obtained. This process are 
repeated Number_of_Mutations times. 

Population update: we add the best chromosomes 
from the past population to the population of children and 
mutations to achieve the new population. 

The algorithm will be stopped after the appropriate 
predetermined number of generations.  

 

IV. NUMERICAL EXAMPLES 

In this section two numerical examples are presented 
to illustrate the content of the paper. First example is 
presented for testing the solution quality of developed 
GA. In the example we use the Taguchi methodology for 
tuning the parameter in the developed GA. Second 
example is given to demonstrate that in some cases the 
professional solvers are unable to solve model (5). Also, 
in this example a sensitivity analysis on ordinal data is 
performed. 

Example 1: the data for this example are taken from 
[6]. The data and the corresponding absolute weight 
restrictions are shown in table 3 and 4, respectively. The 
exact efficiency scores are given in the seventh column of 
table 3. To estimate the efficiency scores by the developed 
GA, first, we use the design of experiments methodology 
to obtain the best configuration of GA parameters. We 
consider 4 levels for each parameter as follows: 

Table 2: levels of GA parameters for experimental design 

Levels Crossover Mutation Pop_size 

1 0.25 0.15 20 

2 0.3 0.2 25 

3 0.4 0.25 30 

4 0.5 0.3 35 

We used the Taguchi method and performed 16 
experiments for DMU1. The result of MINITAB is shown 
in figure 1. 
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Figure 1: the result of MINITAB for parameter tuning of example 1 

According to the figure 1, the best configurations of 
GA parameters are highlighted in table 2. So, we set the 
crossover rate to 0.5, the mutation rate to 0.25 and the 
population size to 35. We set the number of generations to 
200 and run the developed GA 5 times for each DMU. 
The mean of objective functions are shown in last column 
of table 3. As it can be seen, the efficiency scores 
estimated by the developed GA are very near to the exact 
values. Figure 2, shows the convergence of developed GA 
for DMU3. The runtime is less than one second for each 
DMU. 

Table 3: data and efficiency scores for 10 DMUs in example 1 

DMU

s 

Inputs Outputs Model 

(4) 

Efficiency 

score by GA 1 2 3 1 2 
1 1 0.8 5.4 0.9 7 0.8358 0.8330 

2 1.5 1 4.8 1 9.5 0.8748 0.8728 

3 1.2 2.1 5.1 0.8 7.5 0.6398 0.6394 

4 1 0.6 4.2 0.9 9 1.0000 1.0000 

5 1.8 0.5 6 0.7 8 0.6819 0.6816 

6 0.7 0.9 5.2 1 5 1.0000 0.9952 

7 1 0.3 5 0.8 7 1.0000 0.9948 

8 1.2 1.5 5.5 0.75 7.5 0.6176 0.6175 

9 1.4 1.8 5.7 0.65 5.5 0.4699 0.4680 

10 0.8 0.9 4.5 0.85 9 1.0000 1.0000 
 

Table 4: weight bounds for example 1 

 Inputs Outputs 

1 2 3 1 2 

Upper bound 0.7 0.8 0.2 0.9 0.1 

Lower bound 0.2 0.2 0.1 0.7 0.02 

 

Figure 2: The trend of genetic algorithm convergence for DMU3 

Example 2: Consider 3 DMUs each uses two inputs to 
produce two outputs. The data are presented in table 5. 

Table 5: Data for 3 DMUs 

DMU No. Input 1 (*) Input 2 Output 1 (*) Output 2 

1 11x  ]5,4[  11y  ]2,1[  

2 12x  ]3,1[  12y  ]4,3[  

3 13x  ]2,1[  13y  ]5,4[  

*Ranking such that: 111312121311 & yyyxxx  . 

Input 2 and output 2 are in bounded data format and 
Input 1 and output 1 are in weak ordinal data format. 
Suppose we have the following weight restrictions: 

100,0&& 111212  uvuvvu
 

We found that GAMS NLP solvers such as MINOS 
and PATHNLP are unable to solve model (5) for the data. 

As explained in theorem 1, in this example we cannot 
set upper bounds for ordinal data and converted them into 
bounded data format. Indeed, as it will be shown, the 
efficiency scores are very sensitive to upper bound of 
ordinal data. 

The efficiency scores are estimated by using the 
developed GA by considering the different values for the 

upper bounds to 11x  and 12y . We set the generations to 

2000 and run the developed GA five times for each DMU 
and selected the maximum fitness. The result showed that 
the efficiency scores of DMU2 and DMU3 are equal to 

one in any condition for upper bounds of 11x  and 12y . In 

the other words, these DMUs are efficient. The result for 
DMU2 is completely consistent with theorem 1. Table 6 
summarized the result of developed GA for DMU1. 

Table 6: the efficiency score of DMU1 with different upper bounds 

for ordinal data 

Upper bounds 
Eff. 

Scores 

Upper bounds 
Eff. 

Scores 

Upper bounds 

Eff. 

Scores 11x

 
12y  11x

 
12y  X11 12y  

1 1 0.4988 1 1 0.4988 1 1 0.4988 

10 10 0.6886 10 1 0.5024 1 10 0.5372 

20 20 0.8033 20 1 0.5488 1 20 0.5733 

40 40 0.8991 40 1 0.6184 1 40 0.6335 

80 80 0.9251 80 1 0.7 1 80 0.6422 

100 100 0.949 100 1 0.7225 1 100 0.7376 

200 200 0.9762 200 1 0.7974 1 200 0.7919 

 

As it can be seen from table 6, the efficiency score of 

DMU1 increase when the upper bounds of 11x  and 12y  

are increase. In the other words, the efficiency score of 
DMU1 has a positive direct relationship with the upper 

bounds of  11x  and 12y . It is not hard to show that DMU1 

will be efficient if we do not consider any upper bound for 
the ordinal data. The result is unacceptable, because 
DMU1 is dominated by DMU2 and DMU3. To prevent 
such results, in real applications, we need to ask the 
decision maker to specify appropriate upper bounds for 
ordinal data. 
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V. CONCLUSIONS 

In this paper DEA model in presence of both 
imprecise data and generalized form of weight restrictions 
is discussed. We show that if a DMU had the best rank in 
an input or output in ordinal data format, then it will be 
efficient. Due to the complexity of the model a genetic 
algorithm (GA) developed to solve it. To illustrate the 
content of the paper two numerical examples are 
presented. Four levels are considered for each parameters 
of developed GA and the Taguchi method has been used 
for tuning the parameters. The results show that the best 
configuration of developed GA parameters is crossover = 
03 or 0.5, mutation = 0.25 and Pop_size=35. The first 
example shows that the solution quality of developed GA 
is very good. The second example shows that model (5) 
cannot be solved in some cases with professional NLP 
solvers. To solve the problem the proposed GA is used. 
Our sensitivity analysis showed that the efficiency score 
in presence of ordinal data has a direct relationship with 
the upper bound of this data. 

This study is initial stage of investigation DEA model 
in presence of both generalized weight restrictions and 
imprecise data. Other research can be done in presence of 
both generalized weight restrictions and fuzzy/stochastic 
data. Also, other heuristics methods can be developed to 
solve these models. 
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