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Abstract

Let G be a graph of order n with vertices labeled as v1, v2, . . . , vn. Let di be
the degree of the vertex vi, for i = 1, 2, . . . , n. The (first) Zagreb matrix of G is the
square matrix of order n whose (i, j)-entry is equal to di + dj if vi is adjacent to vj ,
and zero otherwise. We introduce and investigate the Zagreb energy and Zagreb
Estrada index of a graph, both base on the eigenvalues of the Zagreb matrix. In
addition, we establish upper and lower bounds for these new graph invariants, and
relations between them.

1 Introduction

All graphs considered in this paper are assumed to be simple. Let G be a (molecular)

graph with vertex setV(G) = {v1, v2, . . . , vn} and edge set E(G). If vi and vj are adjacent

vertices of G, then the edge connecting them is denoted by vivj. By di we denote the

degree of the vertex vi ∈ V(G).

In mathematical chemistry, there is a large number of topological indices of the form

TI = TI(G) =
∑

vivj∈E(G)

F(di, dj)

where F is a pertinently chosen function with the property F(x, y) = F(y, x). The most

popular topological indices of this kind are the:
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• first Zagreb index, F = x+ y,

• second Zagreb index, F = x · y,
• Randić connectivity index, F = 1/

√
xy,

• harmonic index, F = 2/(x+ y),

• atom–bond connectivity (ABC) index, F =
√

(x+ y − 2)/(xy),

• geometric–arithmetic index, F = 2
√
xy/(x+ y).

Note that there are several more indices, see [11]. To each of such topological indices, a

matrix TI can be associated, defined as

(TI)ij =

⎧

⎨

⎩

F(di, dj) if vivj ∈ E(G)

0 otherwise .

If f1, f2, . . . , fn are the eigenvalues of the matrix TI, then an “energy” can be defined

as

ETI = ETI(G) =
n
∑

i=1

|fi| .

The most extensively studied such graph energy is the Randić energy [4, 5, 8], based

on the eigenvalues of the Randić matrix R, where

(R)ij =

⎧

⎨

⎩

1
√

di dj
if vivj ∈ E(G)

0 otherwise .

Recently, the analogous concepts of harmonic energy [16], ABC energy [10], and

geometric–arithmetic energy [23] were put forward.

Bearing this in mind, it seems to be purposeful to consider also the graph energies

pertaining to the first and second Zagreb indices, especially in view of the fact that these

are the oldest [13–15,20] and most thoroughly examined vertex–degree–based topological

indices, see the recent reviews [2, 3] and the references cited therein. If so, then we

would have to introduce the first Zagreb matrix Z(1) and the second Zagreb matrix Z(2),

respectively, defined as:

(

Z(1)
)

ij
=

⎧

⎨

⎩

di + dj if vivj ∈ E(G)

0 otherwise

and
(

Z(2)
)

ij
=

⎧

⎨

⎩

di · dj if vivj ∈ E(G)

0 otherwise .
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If the eigenvalues of Z(1) are ζ
(1)
1 , ζ

(1)
2 , . . . , ζ

(1)
n , then the first Zagreb energy would be

ZE1 = ZE1(G) =
n
∑

i=1

|ζ(1)i | .

If the eigenvalues of Z(2) are ζ
(2)
1 , ζ

(2)
2 , . . . , ζ

(2)
n , then the second Zagreb energy would be

ZE2 = ZE2(G) =
n
∑

i=1

|ζ(2)i | .

Remark. At this point it is worth noting that a quantity somewhat similar to the first

Zagreb index was earlier examined under the name “vertex sum energy” [16,17,22]. It is

defined as the sum of absolute values of the eigenvalues of the matrix whose (i, j)-element

is equal to di+ dj if i �= j, and zero if i = j. Thus, the first Zagreb energy and the vertex

sum energy coincide if and only if G ∼= Kn or G ∼= Kn.

2 First Zagreb index and first Zagreb energy

The first and second Zagreb index, usually denoted by M1 and M2, are defined as [14,15]

M1 = M1(G) =
∑

vi∈V(G)

d2i and M2 = M2(G) =
∑

vivj∈E(G)

di dj

whereas the first Zagreb index satisfies the identity

M1 =
∑

vivj∈E(G)

(di + dj) .

In what follows, we shall be also concerned with the closely related quantity

HM = HM(G) =
∑

vivj∈E(G)

(di + dj)
2 (1)

which is the so-called hyper–Zagreb index , recently introduced in [24], see also [1,12,21].

In this paper, we are concerned only with the first Zagreb index and the corresponding

first Zagreb matrix and first Zagreb energy. The study of the analogous second–Zagreb

quantities will be communicated in a forthcoming paper [18]. In view of this, in what

follows, for the sake of simplicity, the indicator first will be omitted and we denote the

(first) Zagreb matrix by Z, its (i, j)-element by zij, its eigenvalues by ζ1, ζ2, . . . , ζn, and

its energy by ZE. Thus,

zij =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

di + dj if the vertices vi and vj are adjacent

0 if the vertices vi and vj are not adjacent

0 if i = j
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and

ZE = ZE(G) =
n
∑

i=1

|ζi| .

This paper is organized as follows. In Section 3, we state some previously known

results. In Section 4, we introduce and investigate the Zagreb energy and obtain lower

and upper bounds for it. In Section 5, we put forward the concept of Zagreb Estrada

index, and obtain lower and upper bounds for it. In Section 6, we investigate relations

between Zagreb Estrada index and Zagreb energy.

3 Preliminaries and known results

In this section, we present previously known results that will be needed in the forthcoming

sections. We first calculate tr(Z2), tr(Z3), and tr(Z4), where tr denotes the trace of the

respective matrix.

Denote by Nk the k-th spectral moment of the Zagreb matrix Z, i. e.,

Nk =
n
∑

i=1

(ζi)
k (2)

and recall that Nk = tr(Zk).

Lemma 1. Let G be a graph with n vertices and Zagreb matrix Z. Then

(1) N1 = tr(Z) = 0 (3)

(2) N2 = tr(Z2) = 2HM (4)

(3) N3 = tr(Z3) = 2HM
∑

i,j,k∈{1,2,...,n}

i∼j∼k , i∼k

d2k (5)

(4) N4 = tr(Z4) = n(HM)2 +
∑

i,j∈{1,2,...,n}

i∼j

(di + dj)
2

⎛

⎜

⎜

⎝

∑

k∈{1,2,...,n}

i∼k∼j

d2k

⎞

⎟

⎟

⎠

2

, (6)

where i ∼ j indicates pairs of adjacent vertices vi and vj.

Proof. (1) By definition, the diagonal elements of Z are equal to zero. Therefore the

trace of Z is zero.

(2) The diagonal elements of Z2 are

(Z2)ii =
n
∑

j=1

zij zji =
n
∑

j=1

(zij)
2 =

∑

j∈{1,2,...,n}

i∼j

(zij)
2 =

∑

j∈{1,2,...,n}

i∼j

(di + dj)
2
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and therefore

tr(Z2) =
n
∑

i=1

∑

j∈{1,2,...,n}

i∼j

(di + dj)
2 = 2

∑

i,j∈{1,2,...,n}

i∼j

(di + dj)
2 = 2HM .

In addition, for i �= j

(Z2)ij =
n
∑

j=1

zij zji = zii zij + zij zjj +
∑

k∈{1,2,...,n}

i∼k∼j

zik zkj = (di + dj)
∑

k∈{1,2,...,n}

i∼k∼j

(dk)
2 .

(3) Since the diagonal elements of Z3 are

(Z3)ii =
n
∑

j=1

zij (Z
2)ji =

∑

j∈{1,2,...,n}

j∼i

(di + dj)(Z
2)ij =

∑

j∈{1,2,...,n}

j∼i

(di + dj)
2

∑

k∈{1,2,...,n}

i∼k∼j

(dk)
2

we obtain

tr(Z3) =
n
∑

i=1

∑

j∈{1,2,...,n}

j∼i

(di + dj)
2

∑

k∈{1,2,...,n}

i∼k∼j

(dk)
2

= 2
∑

i,j∈{1,2,...,n}

i∼j

(di + dj)
2

∑

k∈{1,2,...,n}

i∼k∼j

(dk)
2 = 2HM

∑

i,j,k∈{1,2,...,n}

i∼j∼k , i∼k

(dk)
2.

(4) The proof of formula (6) is analogous.

Lemma 2. For any non-negative real x, ex ≥ 1+ x+ x2

2
+ x3

3
+ x4

4
. Equality holds if and

only if x = 0.

Lemma 3. Let x1, x2, . . . , xn be positive numbers. Then

n
1
x1

+ · · ·+ 1
xn

≤ n
√
x1x2 · · · xn .

Proof. By the arithmetic–geometric mean inequality, we have

1

n

(

1

x1

+ · · ·+ 1

xn

)

≥ n

√

1

x1

1

x2

· · · 1

xn

.

Lemma 4. (Chebishev’s inequality [7]) Let a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn be

real numbers. Then
( n
∑

i=1

ai

)( n
∑

i=1

bi

)

≤ n

n
∑

i=1

aibi .

Equality occurs if and only if a1 = a2 = · · · = an or b1 = b2 = · · · = bn.
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Lemma 5. For non-negative x1, x2, . . . , xn and k ≥ 2,

n
∑

i=1

(xi)
k ≤

(

n
∑

i=1

xi
2

)k/2

. (7)

Denote by Mk the number of closed walks of length k, equal to the k-th spectral

moment of the adjacency matrix [6].

Lemma 6. [25] Let G be a graph with m edges. Then for k ≥ 4, Mk+2 ≥ Mk with

equality for all even k ≥ 4 if and only if G consists of m copies of the complete graph on

two vertices and possibly isolated vertices, and with equality for all odd k ≥ 5 if and only

if G is a bipartite graph.

4 Bounds for Zagreb energy

Let n and m denote the number of vertices and edges of the graph under consideration.

Recall that E , the (ordinary) energy of a graph, is equal to the sum of absolute values of

the eigenvalues of its adjacency matrix [19]. There exist several bounds on E , depending
on the parameters n and m [19].

Now, 2m is equal to the sum of the squares of the elements of the adjacency matrix.

This implies that in the theory of Zagreb graph energy, the quantity 2HM will play

the same role as 2m plays in the theory of ordinary graph energy, where HM is the

hyper–Zagreb index, Eq. (1).

Bearing this in mind, we immediately arrive at the following estimates:

Theorem 1. Let G be a graph with n vertices and hyper–Zagreb index HM . Then

√
2HM ≤ ZE(G) ≤

√
2nHM,

ZE(G) ≥
√

2HM + n(n− 1) | detZ(G)|2/n,

ZE(G) ≥ n n
√

| detZ(G)| .

Theorem 2. Let G be a graph with hyper–Zagreb index HM . Then

e−
√
2HM ≤ ZE(G) ≤ e

√
2HM . (8)
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Proof. For the sake of simplicity, we write ξi = |ζi|.
Lower bound. By definition of the Zagreb energy and by the arithmetic–geometric

mean inequality,

ZE(G) =
n
∑

i=1

ξi = n

(

1

n

n
∑

i=1

ξi

)

≥ n
(

n
√

ξ1ξ2 · · · ξn
)

.

By Lemma 3, we have

n n
√

ξ1ξ2 · · · ξn ≥ n

⎛

⎜

⎜

⎝

n
n
∑

i=1

1
ξi

⎞

⎟

⎟

⎠

≥ n

⎛

⎜

⎜

⎝

n
n
∑

i=1

1
ξi

n
∑

i=1

ξi

⎞

⎟

⎟

⎠

≥ n

⎛

⎜

⎜

⎝

n

n
n
∑

i=1

1
ξi
ξi

⎞

⎟

⎟

⎠

(by Lemma 4)

≥ n

⎛

⎜

⎜

⎝

n

n2
n
∑

i=1

ξi

⎞

⎟

⎟

⎠

> n

⎛

⎜

⎜

⎝

n

n2
n
∑

i=1

eξi

⎞

⎟

⎟

⎠

=
1

n
∑

i=1

∑

k≥0

(ξi)k

k!

=
1

∑

k≥0

1
k!

(

n
∑

i=1

(ξi)k
) ≥ 1

∑

k≥0

1
k!

(

n
∑

i=1

(ξi)2
)k/2

(by inequality (7))

=
1

∑

k≥0

1
k!

(

n
∑

i=1

(ξi)2
)k/2

=
1

∑

k≥0

1
k!

(√
2HM

)k
(by Eq. (4)).

Therefore, we have ZE(G) ≥ e−
√
2HM .

Upper bound. Starting with the definition of Zagreb energy, we get

ZE(G) =
n
∑

i=1

ξi <
n
∑

i=1

eξi =
n
∑

i=1

∑

k≥0

(ξi)
k

k!
=
∑

k≥0

1

k!

n
∑

i=1

(ξi)
k ≤

∑

k≥0

1

k!

(

n
∑

i=1

(ξi)
2

)k/2

by inequality (7), and

∑

k≥0

1

k!

(

n
∑

i=1

(ξi)
2

)k/2

=
∑

k≥0

1

k!

(

n
∑

i=1

(ξi)
2

)k/2

=
∑

k≥0

1

k!

(

2HM

)k/2

, (by Eq. (4))

=
∑

k≥0

1

k!

(√
2HM

)k

= e
√
2HM .

Theorem 3. Let G be a non-empty graph with hyper–Zagreb index HM . Then

ZE(G) ≥ 1

2HM
. (9)
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Proof. By definition of the Zagreb energy and by the arithmetic–geometric mean inequal-

ity, we have

ZE(G) =
n
∑

i=1

ξi = n

(

1

n

n
∑

i=1

ξi

)

≥ n n
√

ξ1ξ2 · · · ξn .

By Lemma 3,

n n
√

ξ1ξ2 · · · ξn ≥ n

⎛

⎜

⎜

⎝

n
n
∑

i=1

1
ξi

⎞

⎟

⎟

⎠

≥ n

⎛

⎜

⎜

⎝

n
n
∑

i=1

1
ξi

n
∑

i=1

ξi

⎞

⎟

⎟

⎠

≥ n

(

n

n
∑n

i=1
1
ξi
ξi

)

by Lemma 4, and

≥ n

⎛

⎜

⎜

⎝

n

n2
n
∑

i=1

ξi

⎞

⎟

⎟

⎠

≥ 1
n
∑

i=1

(ξi)k
≥ 1
(

n
∑

i=1

(ξi)2
)k/2

by inequality (7), and

=
1

(

n
∑

i=1

(ξi)2
)k/2

=
1

(2HM)k/2

by Eq. (4). Hence, for k = 2, we arrive at (9).

5 Bounds on the Zagreb Estrada index

In this section, we consider the Zagreb Estrada index of a graph G, and give lower and

upper bounds for it. We first recall that the Estrada index of a graph G is defined in [9]

as

EE = EE(G) =
n
∑

i=1

eλi ,

where λ1, λ2, . . . , λn are the eigenvalues of the adjacency matrix of the graph G, forming

its spectrum [6]. Denoting by Mk = Mk(G) the k-th spectral moment of the graph G,

Mk = Mk(G) =
n
∑

i=1

(λi)
k,

we have

EE =
∞
∑

i=1

Mk(G)

k!
.
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Let thus G be a graph of order n whose Zagreb eigenvalues are ζ1, ζ2, . . . , ζn. Then

the Zagreb Estrada index of G, denoted by ZEE(G), is defined to be

ZEE = ZEE(G) =
n
∑

i=1

eζi .

Recalling Eq. (2), it follows that

ZEE(G) =
∞
∑

i=1

Nk

k!
.

Theorem 4. Let G be a graph with n vertices. Then

ZEE(G) ≥ n+ 2HM + 2HM
(

sinh(1)− 1
)

∑

i,j,k∈{1,2,...,n}

i∼k∼j,i∼j

(dk)
2

+
(

cosh(1)− 1
)

⎡

⎢

⎢

⎣

n(HM)2 +
∑

i,j∈{1,2,...,n}

i∼j

(di + dj)
2

(

∑

k∈{1,2,...,n}

i∼k∼j

(dk)
2

)2

⎤

⎥

⎥

⎦

.

Proof. Note that N2 = 2HM . By Lemma 6,

ZEE(G) = n+ 2HM +
∑

k≥1

N2k+1

(2k + 1)!
+
∑

k≥1

N2k+2

(2k + 2)!

≥ n+ 2HM +
∑

k≥1

N3

(2k + 1)!
+
∑

k≥1

N4

(2k + 2)!

= n+ 2HM + 2HM
(

sinh(1)− 1
)

∑

i,j,k∈{1,2,...,n}

i∼k∼j,i∼j

(dk)
2

+
(

cosh(1)− 1
)

⎡

⎢

⎢

⎣

n(HM)2 +
∑

i,j∈{1,2,...,n}

i∼j

(di + dj)
2

(

∑

k∈{1,2,...,n}

i∼k∼j

(dk)
2

)2

⎤

⎥

⎥

⎦

.

Theorem 5. Let G be a non-empty graph with hyper–Zagreb index HM . Then

ZEE(G) ≤ n− 1 + e
√
2HM−1 .

Proof. Let n+ be the number of positive Zagreb eigenvalues of G. Since f(x) = ex

monotonically increases in the interval (∞,+∞) and m �= 0, we get

ZEE =
n
∑

i=1

eζi < (n− n+) +

n+
∑

i=1

eζi = (n− n+) +

n+
∑

i=1

∑

k≥0

(ζi)
k

k!
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= n+
∑

k≥1

1

k!

n+
∑

i=1

(ζi)
k (10)

≤ n+
∑

k≥1

1

k!

(

n+
∑

i=1

ζ2i

)k/2

= n+
∑

k≥1

1

k!

(

n+
∑

i=1

ζ2i

)k/2

.

Since every (n,m)-graph with m �= 0 has K2 as its induced subgraph and the spectrum

of K2 is 1,−1, it follows from the interlacing inequalities that ζn ≤ −1, which implies

that
∑n

i=n++1(ζi)
2 ≥ 1. Consequently,

ZEE ≥ n+
∑

k≥1

1

k!
(2HM − 1)k/2 = n− 1 + e

√
2HM−1.

Theorem 6. Let G be a graph with n vertices and hyper–Zagreb index HM . Then

ZEE(G) ≥
√

√

√

√

n2(1 +HM) + 2nHM +
2

3
HM

∑

i,j,k∈{1,2,...,n}

i∼k∼j,i∼j

(dk)2 +
1

12
nN4.

Proof. Suppose that ζ1, ζ2, . . . , ζn is the Zagreb spectrum of G. Using Lemma 2, we have

ZEE(G)2 =
n
∑

i=1

n
∑

j=1

eζi+ζj

≥
n
∑

i=1

n
∑

j=1

(

1 + ζi + ζj +
(ζi + ζj)

2

2
+

(ζi + ζj)
3

6
+

(ζi + ζj)
4

24

)

=
n
∑

i=1

n
∑

j=1

(

1 + ζi + ζj +
ζ2i
2

+
ζ2j
2

+ ζiζj +
ζ3i
6

+
ζ3j
6

+
ζ2i ζj
2

+
ζiζ

2
j

2

+
ζ4i
24

+
ζ4j
24

+
ζ2i ζ

2
j

4
+

ζ3i ζj
6

+
ζiζ

3
j

6

)

.

From Eqs. (3)–(6) it follows,

n
∑

i=1

n
∑

j=1

(ζi + ζj) = n

n
∑

i=1

ζi + n

n
∑

j=1

ζj = 0

n
∑

i=1

n
∑

j=1

ζiζj =

(

n
∑

i=1

ζi

)2

= 0

n
∑

i=1

n
∑

j=1

(

ζ2i
2

+
ζ2j
2

)

=
n

2

n
∑

i=1

ζ2i +
n

2

n
∑

j=1

ζ2j = 2nHM

n
∑

i=1

n
∑

j=1

(

ζ3i
6

+
ζ3j
6

)

=
n

6

n
∑

i=1

ζ3i +
n

6

n
∑

j=1

ζ3j =
2

3
HM

∑

i,j,k∈{1,2,...,n}

i∼k∼j,i∼j

(dk)
2

-380-



n
∑

i=1

n
∑

j=1

(

ζ4i
24

+
ζ4j
24

)

=
n

24

n
∑

i=1

ζ4i +
n

24

n
∑

j=1

ζ4j =
1

12
nN4

n
∑

i=1

n
∑

j=1

ζ2i ζ
2
j

4
= n2HM

n
∑

i=1

n
∑

j=1

ζiζ
3
j

6
=

1

6

n
∑

i=1

ζi

n
∑

j=1

ζ3j = 0

n
∑

i=1

n
∑

j=1

ζ3i ζj
6

=
1

6

n
∑

i=1

ζ3i

n
∑

j=1

ζj = 0

n
∑

i=1

n
∑

j=1

ζiζ
2
j

2
=

1

2

n
∑

i=1

ζi

n
∑

j=1

ζ3j = 0

n
∑

i=1

n
∑

j=1

ζ2i ζj
2

=
1

2

n
∑

i=1

ζ2i

n
∑

j=1

ζj = 0 .

Combining the above relations, we get the inequality stated in Theorem 6.

Theorem 7. Let G be a graph with n vertices and hyper–Zagreb index HM . Then

√
n2 + 4HM ≤ ZEE(G) ≤ n− 1 + e

√
2HM . (11)

Proof. Lower bound. Directly from the definition of the Zagreb Estrada index, we get

ZEE(G)2 =
n
∑

i=1

e2ζi + 2
∑

i<j

eζieζj . (12)

In view of the inequality between the arithmetic and geometric means,

2
∑

i<j

eζieζj ≥ n(n− 1)

(

∏

i<j

eζieζj
)2/[n(n−1)]

= n(n− 1)

[

( n
∏

i=1

eζi
)n−1

]2/[n(n−1)]

= n(n− 1)

(

e
∑n

i=1 ζi

)2/n

= n(n− 1) . (13)

By means of a power-series expansion, and bearing in mind the properties of N0, N1, and

N2, we get
n
∑

i=1

e2ζi =
n
∑

i=1

∑

k≥0

(2ζi)
k

k!
= n+ 4HM +

n
∑

i=1

∑

k≥3

(2ζi)
k

k!
.

Because we are aiming at an (as good as possible) lower bound, it may look plausible to

replace
∑

k≥3
(2ζi)

k

k!
by 8

∑

k≥3
(ζi)

k

k!
. However, instead of 8 = 23 we shall use a multiplier

ω ∈ [0, 8], so as to arrive at
n
∑

i=1

e2ζi ≥ n+ 4HM + ω

n
∑

i=1

∑

k≥3

(ζi)
k

k!
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= n+ 4HM − ωn− ωHM + ω

n
∑

i=1

∑

k≥0

(ζi)
k

k!

i.e.,
n
∑

i=1

e2ζi ≥ (1− ω)n+ (4− ω)HM + ωZEE(G) . (14)

By substituting (13) and (14) back into (12), and solving for ZEE, we obtain

ZEE ≥ ω

2
+

√

(

n− ω

2

)2

+ (4− ω)HM . (15)

It is elementary to show that for n ≥ 2 and HM ≥ 1, the function

f(x) :=
x

2
+

√

(

n− x

2

)2

+ (4− x)HM

monotonically decreases in the interval [0, 8]. Consequently, the best lower bound for

ZEE is attained not for ω = 8, but for ω = 0. Setting ω = 0 into (15) we arrive at the

first half of Theorem 7.

Upper bound. By the definition of the Zagreb Estrada index,

ZEE = n+
n
∑

i=1

∑

k≥1

(ζi)
k

k!
≤ n+

n
∑

i=1

∑

k≥1

(ζi)
k

k!

= n+
∑

k≥1

1

k!

n
∑

i=1

[

(ζi)
2
]k/2 ≤ n+

∑

k≥1

1

k!

[

n
∑

i=1

(ζi)
2

]k/2

= n+
∑

k≥1

1

k!

(

2HM

)k/2

= n− 1 +
∑

k≥0

1

k!

(√
2HM

)k

= n− 1 + e
√
2HM ,

which directly leads to the right–hand side inequality in (11). Thus, the proof of Theorem

7 is completed.

Theorem 8. Let G be a graph with n vertices. Then

ZEE(G) ≤ n− 1 + e
4√N4 .

Proof. By definition of the Zagreb Estrada index, we have

ZEE(G) =
n
∑

i=1

eζi =
n
∑

i=1

∞
∑

k=0

ζki
k!

≤ n+
n
∑

i=1

∞
∑

k=1

ζki
k!

= n+
∞
∑

k=1

1

k!

n
∑

i=1

(ζ4i )
k/4 ≤ n+

∞
∑

k=1

1

k!

( n
∑

i=1

ζ4i

)k/4

= n+
∞
∑

k=1

1

k!
(N4)

k/4

= n− 1 +
∞
∑

k=0

4
√

Nk
4

k!
= n− 1 + e

4√N4 .
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Theorem 9. Let G be a graph with hyper–Zagreb index HM . Then

ZEE(G) ≤ e
√
2MH . (16)

Proof.

ZEE(G) =
∑

k≥0

1

k!

n
∑

i=1

(ζi)
k ≤

∑

k≥0

1

k!

(

n
∑

i=1

(ζi)
2

)k/2

(by inequality (7))

=
∑

k≥0

1

k!

(

n
∑

i=1

(ζi)
2

)k/2

=
∑

k≥0

1

k!
(2MH)k/2 (by Eq. (4))

=
∑

k≥0

1

k!
(
√
2MH)k = e

√
2MH .

6 Bounds for Zagreb Estrada index involving Zagreb

energy

Theorem 10. Let G be a graph on n vertices, with n+ positive Zagreb eigenvalues.

Then the Zagreb Estrada index ZEE(G) and the graph Zagreb energy ZE(G) satisfy the

following inequalities:

1

2
(e− 1)ZE(G) + n− n+ ≤ ZEE(G) ≤ n− 1 + eZE(G)/2 .

Proof. Lower bound. Note that ex ≥ 1 + x, with equality if and only if x = 0. Also,

ex ≥ ex, with equality if and only if x = 1. Thus,

ZEE(G) =
n
∑

i=1

eζi =
∑

ζi>0

eζi +
∑

ζi≤0

eζi

≥
∑

ζi>0

eζi +
∑

ζi≤0

(1 + ζi)

= e(ζ1 + ζ2 + · · ·+ ζn+) + (n− n+) + (ζn++1 + · · ·+ ζn)

= (e− 1)(ζ1 + ζ2 + · · ·+ ζn+) + (n− n+) +
n
∑

i=1

ζi

=
1

2
ZE(G)(e− 1) + n− n+ .
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Upper bound. From (10),

ZEE(G) ≤ n+
∑

k≥1

1

k!

n+
∑

i=1

(ζi)
k ≤ n+

∑

k≥1

1

k!

( n+
∑

i=1

ζi

)k

= n− 1 + eZE(G)/2.

Theorem 11. Let G be a graph with largest Zagreb eigenvalue ζ1 and let p, τ and q be,

respectively, the number of its positive, zero and negative Zagreb eigenvalues. Then

ZEE(G) ≥ eζ1 + τ + (p− 1)e
ZE(G)−2ζ1

2(p−1) + qe−
ZE(G)

2q . (17)

Proof. Let ζ1, . . . , ζp be the positive, and ζn−q+1, . . . , ζn the negative eigenvalues of Z. As

the sum of eigenvalues is zero, one has

ZE(G) = 2

p
∑

i=1

ζi = −2
n
∑

i=n−q+1

ζi .

By the arithmetic–geometric mean inequality,

p
∑

i=2

eζi ≥ (p− 1)e
(ζ2+···+ζp)

(p−1) = (p− 1)e
ZE(G)−2ζ1

2(p−1) .

Similarly,
n
∑

i=n−q+1

eζi ≥ qe−
ZE(G)

2q .

For the zero eigenvalues, we also have

n−q
∑

i=p+1

eζi = τ .

Thus, inequality (17) follows.

Theorem 12. Let G be a graph with n vertices and hyper–Zagreb index HM . Then

ZEE(G)− ZE(G) ≤ n− 1−
√
2HM + e

√
2HM .

Proof. By the definitions of the Zagreb energy and Zagreb Estrada index, we have

ZEE(G) = n+
n
∑

i=1

∑

k≥1

(ζi)
k

k!
≤ n+

n
∑

i=1

∑

k≥1

ζki
k!
,

ZEE(G) ≤ n+ ZE(G) +
n
∑

i=1

∑

k≥2

ζki
k!

implying

ZEE(G)− ZE(G) ≤ n+
n
∑

i=1

∑

k≥2

ζki
k!

≤ n− 1−
√
2HM + e

√
2HM .
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Theorem 13. Let G be a graph with n vertices. Then

ZEE(G) ≤ n− 1 + eZE(G).

Proof.

ZEE(G) = n+
n
∑

i=1

∑

k≥1

ζki
k!

= n+
∑

k≥1

1

k!

( n
∑

i=1

ζki

)

≤ n+
∑

k≥1

(ZE(G))k

k!
.

7 Concluding Remarks

For a graph of order n, the first Zagreb matrix is defined as the square matrix whose (i, j)-

element is equal to the sum of degrees of adjacent vertices vi and vj, and zero otherwise.

The new concepts of first Zagreb energy and first Zagreb Estrada index are introduced.

These graph invariants depend on the eigenvalues of the first Zagreb matrix in the same

manner as the ordinary graph energy and Estrada index depend on the eigenvalues of

the adjacency matrix. Their basic properties are determined. In particular, bounds for

the Zagreb energy and for the Zagreb Estrada index are established, as well as relations

between them.

The analogous second Zagreb energy and second Zagreb Estrada index, based on the

eigenvalues of the second Zagreb matrix, are planned to be studied in a forthcoming

paper [18].
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