Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Note A new lower bound on the double domination number of a graph

Majid Hajian^{a,*}, Nader Jafari Rad^b

^a Department of Mathematics, Shahrood University of Technology, Shahrood, Iran^b Department of Mathematics, Shahed University, Tehran, Iran

ARTICLE INFO

Article history: Received 23 November 2017 Received in revised form 8 June 2018 Accepted 9 June 2018 Available online 30 June 2018

Keywords: Domination number Double domination number

ABSTRACT

A subset *S* of vertices of a graph *G* is a double dominating set of *G* if every vertex in V(G) - S has at least two neighbors in *S* and every vertex of *S* has a neighbor in *S*. The double domination number $\gamma_{\times 2}(G)$ is the minimum cardinality of a double dominating set of *G*. Chellali (2006) showed that if *T* is a nontrivial tree of order *n*, with ℓ leaves and *s* support vertices, then $\gamma_{\times 2}(T) \ge (2n + \ell - s + 2)/3$. In this paper we generalize the above lower bound for any connected graph. We show that if *G* is a connected graph of order $n \ge 2$ with $k \ge 0$ cycles, ℓ leaves and *s* support vertices, then $\gamma_{\times 2}(G) \ge (2n + \ell - s + 2)/3 - 2k/3$. We also characterize all graphs achieving equality for this new bound.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

For notation and terminology not given here we refer to [5]. Let G = (V, E) be a graph with vertex set V of order n and edge set E. The *open neighborhood* of a vertex $v \in V$ is $N(v) = \{u \in V : uv \in E\}$ and the *closed neighborhood* of v is $N[v] = N(v) \cup \{v\}$. The *degree* of v is deg(v) = |N(v)|. A vertex of degree one is referred as a *leaf* and its unique neighbor is called a *support vertex*. The set of all leaves of a graph G is denoted by L(G), and the set of all support vertices of a graph G is denoted by S(G). A *strong support vertex* is a support vertex adjacent to at least two leaves, while a *weak support vertex* is a support vertex adjacent to precisely one leaf. A *cactus graph* is a graph such that no pair of cycles have a common edge. A subset $S \subseteq V$ is a *dominating set* of G if every vertex not in S is adjacent to a vertex in S. The *domination number* of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G.

A subset *S* of vertices of a graph *G* is a *double dominating set*, abbreviated DDS, of *G* if every vertex in V(G) - S has at least two neighbors in *S* and every vertex of *S* has a neighbor in *S*, that is, $|N[v] \cap S| \ge 2$ for any vertex $v \in V(G)$. The *double domination number* $\gamma_{\times 2}(G)$ is the minimum cardinality of a double dominating set of *G*. A double dominating set of *G* with minimum cardinality is called a $\gamma_{\times 2}(G)$ -set. Double domination was introduced by Harary and Haynes [4] and further studied in, for example, [1–3,6].

Observation 1 (Chellali [2]). Every DDS of a graph contains all its leaves and support vertices.

Chellali [2] showed that if *T* is a tree of order *n* with ℓ leaves and *s* support vertices, then $\gamma_{\times 2}(G)$ is bounded below by $(2n + \ell - s + 2)/3$. He then characterized trees achieving equality for the above bound. For this purpose he introduced a family of trees as follows. Let \mathcal{G}_0 be the class of all trees $T = T_k$ that can be obtained as follows. Let $T_1 = P_2 = uv$ and $A(T_1) = \{u, v\}$. If $k \ge 2$, then T_{i+1} can be obtained recursively from T_i by one of the following operations.

* Corresponding author.

https://doi.org/10.1016/j.dam.2018.06.009 0166-218X/© 2018 Elsevier B.V. All rights reserved.

E-mail addresses: majid_hajian2000@yahoo.com (M. Hajian), n.jafarirad@gmail.com (N.J. Rad).

Operation \mathcal{O}_1 : Attach a vertex *z* by joining it to any support of T_i . Let $A(T_{i+1}) = A(T_i) \cup \{z\}$.

Operation \mathcal{O}_2 : Attach a path $P_3 = abc$ by joining c to any vertex d of $A(T_i)$ with the condition that if d is a leaf of T_i then its support vertex is not strong in T_i . Let $A(T_{i+1}) = A(T_i) \cup \{a, b\}$.

Theorem 2 (*Chellali* [2]). If T is a nontrivial tree of order n, with ℓ leaves and s support vertices, then $\gamma_{\times 2}(T) \ge (2n + \ell - s + 2)/3$, with equality if and only if $T \in \mathcal{G}_0$.

In this paper we generalize the above result. We present a lower bound for the double domination number of any connected graph *G*. We show that if *G* is a connected graph of order $n \ge 2$ with $k \ge 0$ cycles, ℓ leaves and *s* support vertices, then $\gamma_{\times 2}(G) \ge (2n + \ell - s + 2)/3 - 2k/3$, and we characterize all graphs achieving equality for this new bound.

For a graph *G*, we denote by n(G), s(G), $\ell(G)$ and k(G), the order, the number of support vertices, the number of leaves and the number of cycles of *G*, respectively.

2. Families of graphs

For a graph *G*, a $\gamma_{\times 2}(G)$ -set *S* is called a *special* $\gamma_{\times 2}(G)$ -set if *S* contains at least two vertices *x* and *y* namely *special vertices* of *S* such that *x* and *y* are joined by a unique path of *G*, and if *x* or *y* is a leaf of *G* then its support vertex is not a strong vertex in *G*.

For any positive integer k, we define a sequence H_0, H_1, \ldots, H_k of graphs as a *special sequence* as follows. Let H_0 be a tree obtained from a path $P_2 : xy$ and k 3-path $P^i : a^i b^i c^i, i = 1, 2, \ldots, k$, by joining x to each $a^i, i = 1, 2, \ldots, k$. For $i = 1, 2, \ldots, k$, we build the graph H_i , recursively, from H_{i-1} as follows. Let H_i be obtained from a H_{i-1} by adding a new vertex and joining it to both b^i and c^i .

Remark 3. It is easy to see that $H_0 \in \mathcal{G}_0$, and $S_0 = V(H_0) - \bigcup_{j=1}^k \{a^j\}$ is a $\gamma_{\times 2}(H_i)$ -set for each $0 \le i \le k$. Moreover, for $i = 1, 2, ..., k, b^i$ and c^i are two special vertices of H_{i-1} , and thus S_0 is a special $\gamma_{\times 2}(H_{i-1})$ -set.

We now introduce some families of graphs. Let \mathcal{G}_0 be the families of trees described in Section 1. For i = 1, ..., k, we construct a family \mathcal{G}_i from \mathcal{G}_{i-1} , recursively, by the following Procedure.

• **Procedure A**: For each *i* with $1 \le i \le k$, let \mathcal{G}_i be the family of all graphs G_i such that G_i can be obtained from a graph $G_{i-1} \in \mathcal{G}_{i-1}$ with a special $\gamma_{\times 2}(G_{i-1})$ -set S_{i-1} by adding a new vertex and joining it to precisely two special vertices of S_{i-1} . Note that the existence of a graph $G_{i-1} \in \mathcal{G}_{i-1}$ with a special $\gamma_{\times 2}(G_{i-1})$ -set S_{i-1} is guaranteed, since the graph H_{i-1} described in Remark 3 is one of such graphs.

The following observation follows from the definitions.

Observation 4. For $k \ge 0$, every graph $G \in \mathcal{G}_k$ contains exactly k cycles.

It is also worth noting that any graph $G \in \mathcal{G}_k$ for $k \ge 0$ is a cactus graph.

3. New lower bound

In this section we present our main result. We give a lower bound for the double domination number of a connected graph *G* in terms of the number of cycles of *G*, and then characterize all connected graphs achieving equality for the proposed bound.

Theorem 5. If G is a connected graph of order $n \ge 2$ with $k \ge 0$ cycles, ℓ leaves and s support vertices, then $\gamma_{\times 2}(G) \ge (2n + \ell - s + 2)/3 - 2k/3$, with equality if and only if $G \in \mathcal{G}_k$.

Proof. Let *G* be a connected graph of order *n*, with $k \ge 0$ cycles, ℓ leaves and *s* support vertices. We use an induction on *k* to show that $\gamma_{\times 2}(G) \ge (2n + \ell - s + 2)/3 - 2k/3$ with equality if and only if $G \in \mathcal{G}_k$. For the base step of the induction let k = 0. Then *G* is a tree, and the result follows by Theorem 2. Assume the result holds for all connected graphs *G'* of order *n'* with 0 < k' < k cycles *l'* leaves and *s'* support vertices (that is, $\gamma_{\times 2}(G') \ge (2n' + \ell' - s' + 2)/3 - 2k'/3$, with equality if and only if $G' \in \mathcal{G}_{k'}$). Now consider the connected graph *G* of order *n* with $k \ge 1$ cycles.

We first show that $\gamma_{\times 2}(G) \ge (2n + \ell - s + 2)/3 - 2k/3$. Let *S* be a $\gamma_{\times 2}(G)$ -set, and $C = u_1u_2...u_ru_1$ be a cycle of *G*. If $\{u_1, u_2, ..., u_r\} \subseteq S$, then *S* is a double dominating set of the graph $G' = G - u_1u_2$, and thus by the inductive hypothesis, $|S| \ge \gamma_{\times 2}(G') \ge (2n + \ell(G') - s(G') + 2)/3 - 2k(G')/3$. Clearly $l - s \le \ell(G') - s(G')$ and $k(G') \le k - 1$. Thus $\gamma_{\times 2}(G) \ge (2n + \ell - s + 2)/3 - 2(k - 1)/3 > (2n + \ell - s + 2)/3 - 2k/3$. Next assume that $u_j \notin S$ for some $1 \le j \le r$. By Observation 1, u_j is not a support vertex of *G*. Let $G'_1, G'_2, ..., G'_w$ be the components of $G - u_j$. Clearly $S \cap V(G'_i)$ is a double dominating set for G'_i , for each $1 \le i \le w$. Furthermore, $n(G'_i) \ge 2$, for each $1 \le i \le w$, since u_j is not a support vertex of *G*. Thus, by the inductive hypothesis, $|S| \ge \sum_{i=1}^w ((2n(G'_i) + \ell(G'_i) - s(G'_i) + 2)/3 - 2k(G'_i)/3)$. Observe that $\ell - s \le \sum_{i=1}^w \ell(G'_i) - s(G'_i)$ and $k - 1 \ge \sum_{i=1}^w k(G'_i)$. Thus $|S| \ge (2(n - 1) + \ell - s + 2w)/3 - 2(k - 1)/3 \ge (2n + \ell - s + 2)/3 - 2k/3$, and consequently $\gamma_{\times 2}(G) \ge (2n + \ell - s + 2)/3 - 2k/3$. (Note that it is easy to see that if $w \ge 2$, then we have $\gamma_{\times 2}(G) > (2n + \ell - s + 2)/3 - 2k/3$.)

We next show that $\gamma_{\times 2}(G) = (2n+\ell-s+2)/3-2k/3$ if and only if $G \in \mathcal{G}_k$. Assume that $\gamma_{\times 2}(G) = (2n+\ell-s+2)/3-2k/3$. Let S be a $\gamma_{\times 2}(G)$ -set, and $C = u_1 u_2 \dots u_r u_1$ be a cycle of G. According to the first part of the proof, we have $\{u_1, u_2, \dots, u_r\} \not\subseteq S$. Thus there is an integer j with $1 \le j \le r$ such that $u_i \notin S$. Suppose that $\deg_G(u_i) \ge 3$. Clearly u_i is not a support vertex in G by Observation 1. Let $G' = G - u_i$. According to the first part of the proof G' contains only one connected component. Notice that $S \cap G'$ is a double dominating set of the graph G'. By the inductive hypothesis, $|S| > (2n(G') + \ell(G') - s(G') + 2)/3 - 2k(G')/3$. Clearly l-s < l(G') - s(G') and k-2 > k(G'). Thus $|S| > (2(n-1)+\ell-s+2)/3 - 2(k-2)/3 > (2n+\ell-s)/3 - 2(k-2)/3$ and so $\gamma_{\times 2}(G) \ge (2n+\ell-s+2)/3-2k/3+2/3$, a contradiction. Thus deg_G(u_i) = 2. Evidently, $\{u_{i-1}, u_{i+1}\} \subseteq S$, since S is double dominating set of G and $u_i \notin S$. Let $G' = G - u_i$. Clearly S is a double dominating set of the graph G'. Then by the inductive hypothesis, $|S| \ge (2n(G') + \ell(G') - s(G') + 2)/3 - 2k(G')/3$. Suppose that $|S| > (2n(G') + \ell(G') - s(G') + 2)/3 - 2k(G')/3$. Clearly $\ell - s \le (\ell(G') - s(G'))$ and $k(G') \le k - 1$. Then $|S| > (2(n-1) + \ell - s + 2)/3 - 2(k-1)/3 \ge (2n + \ell - s + 2)/3 - 2k/3$ and so $\gamma_{\times 2}(G) > (2n + \ell - s + 2)/3 - 2k/3$, a contradiction. Thus $|S| = (2n(G') + \ell(G') - s(G') + 2)/3 - 2k(G')/3$. By the inductive hypothesis, $G' \in \mathcal{G}_{k(G')}$. Suppose that u_{i-1} and u_{i+1} are joined by at least two paths of G'. Then clearly $k(G') \leq k-2$. Now $|S| \ge (2n(G') + \ell(G') - s(G') + 2)/3 - 2(k-2)/3$ and so $\gamma_{\times 2}(G) \ge (2n + \ell - s + 2)/3 - 2k/3 + 2/3$, a contradiction. Thus u_{i-1} and u_{i+1} are joined by a unique path of G'. Thus clearly k(G') = k - 1, and so $G' \in \mathcal{G}_{k-1}$. If $\{u_{i-1}, u_{i+1}\} \cap L(G') = \emptyset$, then u_{i-1} and u_{i+1} are two special vertices of S and so S is a special $\gamma_{\times 2}(G')$ -set. Thus G is obtained from G' and u_i by Procedure A, and consequently $G \in \mathcal{G}_k$, as desired. Thus assume that $\{u_{i-1}, u_{i+1}\} \cap L(G') \neq \emptyset$. Assume that $u_{i+1} \in L(G')$. Then clearly u_{i+2} is a support vertex of G'. Suppose that u_{i+2} is a strong support vertex of G'. Then clearly $\ell - s < \ell(G') - s(G')$ and so $|S| = (2n(G') + \ell(G') - s(G') + 2)/3 - 2(k-1)/3 > (2(n-1) + \ell - s + 2)/3 - 2(k-1)/3 = (2n + \ell - s + 2)/3 - 2k/3.$ Thus $\gamma_{\times 2}(G) > (2n + \ell - s + 2)/3 - 2k/3$, a contradiction. We deduce that u_{i+2} is not a strong support vertex of G'. Similarly u_{i-2} is not a strong support vertex of G' if $u_{i-1} \in L(G')$. Thus u_{i-1} and u_{i+1} are two special vertices of S and so S is a special $\gamma_{\times 2}(G')$ -set. Consequently, G is obtained from G' by adding the vertex u_i according to the Procedure A. Consequently, $G \in \mathcal{G}_k$. For the converse let $G \in \mathcal{G}_k$. Thus G is obtained from a graph $G' \in \mathcal{G}_{k-1}$, by the Procedure A. Let S' be the special $\gamma_{\times 2}(G')$ -set that used to produce G. Notice that G' contains exactly k-1 cycles by Observation 4. By the inductive hypothesis $|S'| = (2n(G') + \ell(G') - s(G') + 2)/3 - 2(k-1)/3$. Clearly $\ell - s = \ell(G') - s(G')$ and thus $|S'| = (2n + \ell - s + 2)/3 - 2k/3$.

Evidently, S' is a double dominating set of G. Since by Observation 4, G contains exactly k cycles, by the first part of the proof, $\gamma_{\times 2}(G) = (2n + \ell - s + 2)/3 - 2k/3.$

Acknowledgments

We would like to thank both referees for their helpful comments.

References

- [1] M. Blidia, M. Chellali, T.W. Haynes, M.A. Henning, Independent and double domination in trees, Util. Math. 70 (2006) 159–173.
- [2] M. Chellali, A note on the double domination number in trees, AKCE Int. J. Graphs Comb. 3 (2) (2006) 147–150.
- [3] J. Harant, M.A. Henning, On double domination in graphs, Discuss. Math. Graph Theory 25 (2005) 29–34.
- [4] F. Harary, T.W. Haynes, Double domination in graphs, Ars Combin. 55 (2000) 201–213.
- [5] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
- [6] C. Sivagnanam, Double domination number and connectivity of graphs, Int. J. Digit. Inf. Wirel. Commun. 2 (1) (2012) 40–45.