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a b s t r a c t

A subset S of vertices of a graph G is a double dominating set of G if every vertex in V (G)−S

has at least two neighbors in S and every vertex of S has a neighbor in S. The double

domination number γ×2(G) is the minimum cardinality of a double dominating set of G.

Chellali (2006) showed that if T is a nontrivial tree of order n, with ℓ leaves and s support

vertices, then γ×2(T ) ≥ (2n + ℓ − s + 2)/3. In this paper we generalize the above lower

bound for any connected graph.We show that if G is a connected graph of order n ≥ 2with

k ≥ 0 cycles, ℓ leaves and s support vertices, then γ×2(G) ≥ (2n+ ℓ − s+ 2)/3− 2k/3. We

also characterize all graphs achieving equality for this new bound.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

For notation and terminology not given here we refer to [5]. Let G = (V , E) be a graph with vertex set V of order n and

edge set E. The open neighborhood of a vertex v ∈ V is N(v) = {u ∈ V : uv ∈ E} and the closed neighborhood of v is

N[v] = N(v) ∪ {v}. The degree of v is deg(v) = |N(v)|. A vertex of degree one is referred as a leaf and its unique neighbor

is called a support vertex. The set of all leaves of a graph G is denoted by L(G), and the set of all support vertices of a graph G

is denoted by S(G). A strong support vertex is a support vertex adjacent to at least two leaves, while a weak support vertex is

a support vertex adjacent to precisely one leaf. A cactus graph is a graph such that no pair of cycles have a common edge. A

subset S ⊆ V is a dominating set of G if every vertex not in S is adjacent to a vertex in S. The domination number of G, denoted

by γ (G), is the minimum cardinality of a dominating set of G.

A subset S of vertices of a graph G is a double dominating set, abbreviated DDS, of G if every vertex in V (G) − S has at

least two neighbors in S and every vertex of S has a neighbor in S, that is, |N[v] ∩ S| ≥ 2 for any vertex v ∈ V (G). The

double domination number γ×2(G) is the minimum cardinality of a double dominating set of G. A double dominating set of G

with minimum cardinality is called a γ×2(G)-set. Double domination was introduced by Harary and Haynes [4] and further

studied in, for example, [1–3,6].

Observation 1 (Chellali [2]). Every DDS of a graph contains all its leaves and support vertices.

Chellali [2] showed that if T is a tree of order n with ℓ leaves and s support vertices, then γ×2(G) is bounded below by

(2n + ℓ − s + 2)/3. He then characterized trees achieving equality for the above bound. For this purpose he introduced a

family of trees as follows. Let G0 be the class of all trees T = Tk that can be obtained as follows. Let T1 = P2 = uv and

A(T1) = {u, v}. If k ≥ 2, then Ti+1 can be obtained recursively from Ti by one of the following operations.
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Operation O1: Attach a vertex z by joining it to any support of Ti. Let A(Ti+1) = A(Ti) ∪ {z}.

Operation O2: Attach a path P3 = abc by joining c to any vertex d of A(Ti) with the condition that if d is a leaf of Ti then

its support vertex is not strong in Ti. Let A(Ti+1) = A(Ti) ∪ {a, b}.

Theorem2 (Chellali [2]). If T is a nontrivial tree of order n, with ℓ leaves and s support vertices, then γ×2(T ) ≥ (2n+ℓ−s+2)/3,

with equality if and only if T ∈ G0.

In this paper we generalize the above result. We present a lower bound for the double domination number of any

connected graph G. We show that if G is a connected graph of order n ≥ 2 with k ≥ 0 cycles, ℓ leaves and s support

vertices, then γ×2(G) ≥ (2n + ℓ − s + 2)/3 − 2k/3, and we characterize all graphs achieving equality for this new bound.

For a graph G, we denote by n(G), s(G), ℓ(G) and k(G), the order, the number of support vertices, the number of leaves and

the number of cycles of G, respectively.

2. Families of graphs

For a graph G, a γ×2(G)-set S is called a special γ×2(G)-set if S contains at least two vertices x and y namely special vertices

of S such that x and y are joined by a unique path of G, and if x or y is a leaf of G then its support vertex is not a strong vertex

in G.

For any positive integer k, we define a sequence H0,H1, . . . ,Hk of graphs as a special sequence as follows. Let H0 be a tree

obtained from a path P2 : xy and k 3-path P i : aibic i, i = 1, 2, . . . , k, by joining x to each ai, i = 1, 2, . . . , k. For i = 1, 2, . . . , k,

we build the graph Hi, recursively, from Hi−1 as follows. Let Hi be obtained from a Hi−1 by adding a new vertex and joining

it to both bi and c i.

Remark 3. It is easy to see that H0 ∈ G0, and S0 = V (H0) −
⋃k

j=1{a
j} is a γ×2(Hi)-set for each 0 ≤ i ≤ k. Moreover, for

i = 1, 2, . . . , k, bi and c i are two special vertices of Hi−1, and thus S0 is a special γ×2(Hi−1)-set.

We now introduce some families of graphs. Let G0 be the families of trees described in Section 1. For i = 1, . . . , k, we

construct a family Gi from Gi−1, recursively, by the following Procedure.

• Procedure A: For each i with 1 ≤ i ≤ k, let Gi be the family of all graphs Gi such that Gi can be obtained from a graph

Gi−1 ∈ Gi−1 with a special γ×2(Gi−1)-set Si−1 by adding a new vertex and joining it to precisely two special vertices

of Si−1. Note that the existence of a graph Gi−1 ∈ Gi−1 with a special γ×2(Gi−1)-set Si−1 is guaranteed, since the graph

Hi−1 described in Remark 3 is one of such graphs.

The following observation follows from the definitions.

Observation 4. For k ≥ 0, every graph G ∈ Gk contains exactly k cycles.

It is also worth noting that any graph G ∈ Gk for k ≥ 0 is a cactus graph.

3. New lower bound

In this sectionwe present ourmain result.We give a lower bound for the double domination number of a connected graph

G in terms of the number of cycles ofG, and then characterize all connected graphs achieving equality for the proposed bound.

Theorem 5. If G is a connected graph of order n ≥ 2 with k ≥ 0 cycles, ℓ leaves and s support vertices, then γ×2(G) ≥

(2n + ℓ − s + 2)/3 − 2k/3, with equality if and only if G ∈ Gk.

Proof. Let G be a connected graph of order n, with k ≥ 0 cycles, ℓ leaves and s support vertices. We use an induction on k

to show that γ×2(G) ≥ (2n + ℓ − s + 2)/3 − 2k/3 with equality if and only if G ∈ Gk. For the base step of the induction let

k = 0. Then G is a tree, and the result follows by Theorem 2. Assume the result holds for all connected graphs G′ of order n′

with 0 < k′ < k cycles l′ leaves and s′ support vertices (that is, γ×2(G
′) ≥ (2n′ + ℓ′ − s′ + 2)/3 − 2k′/3, with equality if and

only if G′ ∈ Gk′ ). Now consider the connected graph G of order nwith k ≥ 1 cycles.

We first show that γ×2(G) ≥ (2n + ℓ − s + 2)/3 − 2k/3. Let S be a γ×2(G)-set, and C = u1u2...uru1 be a cycle of

G. If {u1, u2, . . . , ur} ⊆ S, then S is a double dominating set of the graph G′ = G − u1u2, and thus by the inductive

hypothesis, |S| ≥ γ×2(G
′) ≥ (2n + ℓ(G′) − s(G′) + 2)/3 − 2k(G′)/3. Clearly l − s ≤ ℓ(G′) − s(G′) and k(G′) ≤ k − 1.

Thus γ×2(G) ≥ (2n+ ℓ− s+ 2)/3− 2(k− 1)/3 > (2n+ ℓ− s+ 2)/3− 2k/3. Next assume that uj ̸∈ S for some 1 ≤ j ≤ r . By

Observation 1, uj is not a support vertex of G. Let G′
1,G

′
2, . . . ,G

′
w be the components of G − uj. Clearly S ∩ V (G′

i) is a double

dominating set for G′
i , for each 1 ≤ i ≤ w. Furthermore, n(G′

i) ≥ 2, for each 1 ≤ i ≤ w, since uj is not a support vertex of G.

Thus, by the inductive hypothesis, |S| ≥ Σw
i=1((2n(G

′
i)+ℓ(G′

i)−s(G′
i)+2)/3−2k(G′

i)/3). Observe that ℓ−s ≤ Σw
i=1ℓ(G

′
i)−s(G′

i)

and k − 1 ≥ Σw
i=1k(G

′
i). Thus |S| ≥ (2(n − 1) + ℓ − s + 2w)/3 − 2(k − 1)/3 ≥ (2n + ℓ − s + 2)/3 − 2k/3, and consequently

γ×2(G) ≥ (2n+ℓ−s+2)/3−2k/3. (Note that it is easy to see that ifw ≥ 2, thenwe have γ×2(G) > (2n+ℓ−s+2)/3−2k/3).
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Wenext show that γ×2(G) = (2n+ℓ−s+2)/3−2k/3 if and only ifG ∈ Gk. Assume that γ×2(G) = (2n+ℓ−s+2)/3−2k/3.

Let S be a γ×2(G)-set, and C = u1u2...uru1 be a cycle ofG. According to the first part of the proof, we have {u1, u2, . . . , ur} ̸⊆ S.

Thus there is an integer jwith 1 ≤ j ≤ r such that uj ̸∈ S. Suppose that degG(uj) ≥ 3. Clearly uj is not a support vertex in G by

Observation 1. Let G′ = G−uj. According to the first part of the proof G′ contains only one connected component. Notice that

S ∩G′ is a double dominating set of the graph G′. By the inductive hypothesis, |S| ≥ (2n(G′)+ ℓ(G′)− s(G′)+2)/3−2k(G′)/3.

Clearly l−s ≤ l(G′)−s(G′) and k−2 ≥ k(G′). Thus |S| ≥ (2(n−1)+ℓ−s+2)/3−2(k−2)/3 ≥ (2n+ℓ−s)/3−2(k−2)/3 and

so γ×2(G) ≥ (2n+ℓ− s+2)/3−2k/3+2/3, a contradiction. Thus degG(uj) = 2. Evidently, {uj−1, uj+1} ⊆ S, since S is double

dominating set of G and uj ̸∈ S. Let G′ = G − uj. Clearly S is a double dominating set of the graph G′. Then by the inductive

hypothesis, |S| ≥ (2n(G′) + ℓ(G′) − s(G′) + 2)/3 − 2k(G′)/3. Suppose that |S| > (2n(G′) + ℓ(G′) − s(G′) + 2)/3 − 2k(G′)/3.

Clearly ℓ− s ≤ (ℓ(G′)− s(G′)) and k(G′) ≤ k−1. Then |S| > (2(n−1)+ℓ− s+2)/3−2(k−1)/3 ≥ (2n+ℓ− s+2)/3−2k/3

and so γ×2(G) > (2n + ℓ − s + 2)/3 − 2k/3, a contradiction. Thus |S| = (2n(G′) + ℓ(G′) − s(G′) + 2)/3 − 2k(G′)/3. By the

inductive hypothesis, G′ ∈ Gk(G′). Suppose that uj−1 and uj+1 are joined by at least two paths of G′. Then clearly k(G′) ≤ k− 2.

Now |S| ≥ (2n(G′)+ℓ(G′)− s(G′)+2)/3−2(k−2)/3 and so γ×2(G) ≥ (2n+ℓ− s+2)/3−2k/3+2/3, a contradiction. Thus

uj−1 and uj+1 are joined by a unique path of G′. Thus clearly k(G′) = k − 1, and so G′ ∈ Gk−1. If {uj−1, uj+1} ∩ L(G′) = ∅, then

uj−1 and uj+1 are two special vertices of S and so S is a special γ×2(G
′)-set. Thus G is obtained from G′ and uj by Procedure

A, and consequently G ∈ Gk, as desired. Thus assume that {uj−1, uj+1} ∩ L(G′) ̸= ∅. Assume that uj+1 ∈ L(G′). Then clearly

uj+2 is a support vertex of G′. Suppose that uj+2 is a strong support vertex of G′. Then clearly ℓ − s < ℓ(G′) − s(G′) and so

|S| = (2n(G′) + ℓ(G′) − s(G′) + 2)/3 − 2(k − 1)/3 > (2(n − 1) + ℓ − s + 2)/3 − 2(k − 1)/3 = (2n + ℓ − s + 2)/3 − 2k/3.

Thus γ×2(G) > (2n+ ℓ− s+ 2)/3− 2k/3, a contradiction. We deduce that uj+2 is not a strong support vertex of G′. Similarly

uj−2 is not a strong support vertex of G′ if uj−1 ∈ L(G′). Thus uj−1 and uj+1 are two special vertices of S and so S is a special

γ×2(G
′)-set. Consequently, G is obtained from G′ by adding the vertex uj according to the Procedure A. Consequently, G ∈ Gk.

For the converse let G ∈ Gk. Thus G is obtained from a graph G′ ∈ Gk−1, by the Procedure A. Let S ′ be the special

γ×2(G
′)-set that used to produce G. Notice that G′ contains exactly k−1 cycles by Observation 4. By the inductive hypothesis

|S ′| = (2n(G′) + ℓ(G′) − s(G′) + 2)/3 − 2(k − 1)/3. Clearly ℓ − s = ℓ(G′) − s(G′) and thus |S ′| = (2n + ℓ − s + 2)/3 − 2k/3.

Evidently, S ′ is a double dominating set of G. Since by Observation 4, G contains exactly k cycles, by the first part of the proof,

γ×2(G) = (2n + ℓ − s + 2)/3 − 2k/3. ■

Acknowledgments

We would like to thank both referees for their helpful comments.

References

[1] M. Blidia, M. Chellali, T.W. Haynes, M.A. Henning, Independent and double domination in trees, Util. Math. 70 (2006) 159–173.

[2] M. Chellali, A note on the double domination number in trees, AKCE Int. J. Graphs Comb. 3 (2) (2006) 147–150.

[3] J. Harant, M.A. Henning, On double domination in graphs, Discuss. Math. Graph Theory 25 (2005) 29–34.

[4] F. Harary, T.W. Haynes, Double domination in graphs, Ars Combin. 55 (2000) 201–213.

[5] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.

[6] C. Sivagnanam, Double domination number and connectivity of graphs, Int. J. Digit. Inf. Wirel. Commun. 2 (1) (2012) 40–45.

http://refhub.elsevier.com/S0166-218X(18)30345-7/sb1
http://refhub.elsevier.com/S0166-218X(18)30345-7/sb2
http://refhub.elsevier.com/S0166-218X(18)30345-7/sb3
http://refhub.elsevier.com/S0166-218X(18)30345-7/sb4
http://refhub.elsevier.com/S0166-218X(18)30345-7/sb5
http://refhub.elsevier.com/S0166-218X(18)30345-7/sb6

	A new lower bound on the double domination number of a graph
	Introduction
	Families of graphs
	New lower bound
	Acknowledgments
	References


