Note

A new lower bound on the double domination number of a graph

Majid Hajian ${ }^{\text {a,* }}$, Nader Jafari Rad ${ }^{\text {b }}$
a Department of Mathematics, Shahrood University of Technology, Shahrood, Iran
${ }^{\mathrm{b}}$ Department of Mathematics, Shahed University, Tehran, Iran

A RTICLE INFO

Article history:

Received 23 November 2017
Received in revised form 8 June 2018
Accepted 9 June 2018
Available online 30 June 2018

Keywords:

Domination number
Double domination number

Abstract

A subset S of vertices of a graph G is a double dominating set of G if every vertex in $V(G)-S$ has at least two neighbors in S and every vertex of S has a neighbor in S. The double domination number $\gamma_{\times 2}(G)$ is the minimum cardinality of a double dominating set of G. Chellali (2006) showed that if T is a nontrivial tree of order n, with ℓ leaves and s support vertices, then $\gamma_{\times 2}(T) \geq(2 n+\ell-s+2) / 3$. In this paper we generalize the above lower bound for any connected graph. We show that if G is a connected graph of order $n \geq 2$ with $k \geq 0$ cycles, ℓ leaves and s support vertices, then $\gamma_{\times 2}(G) \geq(2 n+\ell-s+2) / 3-2 k / 3$. We also characterize all graphs achieving equality for this new bound.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

For notation and terminology not given here we refer to [5]. Let $G=(V, E)$ be a graph with vertex set V of order n and edge set E. The open neighborhood of a vertex $v \in V$ is $N(v)=\{u \in V: u v \in E\}$ and the closed neighborhood of v is $N[v]=N(v) \cup\{v\}$. The degree of v is $\operatorname{deg}(v)=|N(v)|$. A vertex of degree one is referred as a leaf and its unique neighbor is called a support vertex. The set of all leaves of a graph G is denoted by $L(G)$, and the set of all support vertices of a graph G is denoted by $S(G)$. A strong support vertex is a support vertex adjacent to at least two leaves, while a weak support vertex is a support vertex adjacent to precisely one leaf. A cactus graph is a graph such that no pair of cycles have a common edge. A subset $S \subseteq V$ is a dominating set of G if every vertex not in S is adjacent to a vertex in S. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G.

A subset S of vertices of a graph G is a double dominating set, abbreviated DDS, of G if every vertex in $V(G)-S$ has at least two neighbors in S and every vertex of S has a neighbor in S, that is, $|N[v] \cap S| \geq 2$ for any vertex $v \in V(G)$. The double domination number $\gamma_{\times 2}(G)$ is the minimum cardinality of a double dominating set of G. A double dominating set of G with minimum cardinality is called a $\gamma_{\times 2}(G)$-set. Double domination was introduced by Harary and Haynes [4] and further studied in, for example, [1-3,6].

Observation 1 (Chellali [2]). Every DDS of a graph contains all its leaves and support vertices.
Chellali [2] showed that if T is a tree of order n with ℓ leaves and s support vertices, then $\gamma_{\times 2}(G)$ is bounded below by $(2 n+\ell-s+2) / 3$. He then characterized trees achieving equality for the above bound. For this purpose he introduced a family of trees as follows. Let \mathcal{G}_{0} be the class of all trees $T=T_{k}$ that can be obtained as follows. Let $T_{1}=P_{2}=u v$ and $A\left(T_{1}\right)=\{u, v\}$. If $k \geq 2$, then T_{i+1} can be obtained recursively from T_{i} by one of the following operations.

[^0]Operation \mathcal{O}_{1} : Attach a vertex z by joining it to any support of T_{i}. Let $A\left(T_{i+1}\right)=A\left(T_{i}\right) \cup\{z\}$.
Operation \mathcal{O}_{2} : Attach a path $P_{3}=a b c$ by joining c to any vertex d of $A\left(T_{i}\right)$ with the condition that if d is a leaf of T_{i} then its support vertex is not strong in T_{i}. Let $A\left(T_{i+1}\right)=A\left(T_{i}\right) \cup\{a, b\}$.

Theorem 2 (Chellali [2]). If T is a nontrivial tree of order n, with ℓ leaves and s support vertices, then $\gamma_{\times 2}(T) \geq(2 n+\ell-s+2) / 3$, with equality if and only if $T \in \mathcal{G}_{0}$.

In this paper we generalize the above result. We present a lower bound for the double domination number of any connected graph G. We show that if G is a connected graph of order $n \geq 2$ with $k \geq 0$ cycles, ℓ leaves and support vertices, then $\gamma_{\times 2}(G) \geq(2 n+\ell-s+2) / 3-2 k / 3$, and we characterize all graphs achieving equality for this new bound.

For a graph G, we denote by $n(G), s(G), \ell(G)$ and $k(G)$, the order, the number of support vertices, the number of leaves and the number of cycles of G, respectively.

2. Families of graphs

For a graph G, a $\gamma_{\times 2}(G)$-set S is called a special $\gamma_{\times 2}(G)$-set if S contains at least two vertices x and y namely special vertices of S such that x and y are joined by a unique path of G, and if x or y is a leaf of G then its support vertex is not a strong vertex in G.

For any positive integer k, we define a sequence $H_{0}, H_{1}, \ldots, H_{k}$ of graphs as a special sequence as follows. Let H_{0} be a tree obtained from a path $P_{2}: x y$ and $k 3$-path $P^{i}: a^{i} b^{i} c^{i}, i=1,2, \ldots, k$, by joining x to each $a^{i}, i=1,2, \ldots, k$. For $i=1,2, \ldots, k$, we build the graph H_{i}, recursively, from H_{i-1} as follows. Let H_{i} be obtained from a H_{i-1} by adding a new vertex and joining it to both b^{i} and c^{i}.

Remark 3. It is easy to see that $H_{0} \in \mathcal{G}_{0}$, and $S_{0}=V\left(H_{0}\right)-\bigcup_{j=1}^{k}\left\{a^{j}\right\}$ is a $\gamma_{\times 2}\left(H_{i}\right)$-set for each $0 \leq i \leq k$. Moreover, for $i=1,2, \ldots, k, b^{i}$ and c^{i} are two special vertices of H_{i-1}, and thus S_{0} is a special $\gamma_{\times 2}\left(H_{i-1}\right)$-set.

We now introduce some families of graphs. Let \mathcal{G}_{0} be the families of trees described in Section 1 . For $i=1, \ldots, k$, we construct a family \mathcal{G}_{i} from \mathcal{G}_{i-1}, recursively, by the following Procedure.

- Procedure A: For each i with $1 \leq i \leq k$, let \mathcal{G}_{i} be the family of all graphs G_{i} such that G_{i} can be obtained from a graph $G_{i-1} \in \mathcal{G}_{i-1}$ with a special $\gamma_{\times 2}\left(G_{i-1}\right)$-set S_{i-1} by adding a new vertex and joining it to precisely two special vertices of S_{i-1}. Note that the existence of a graph $G_{i-1} \in \mathcal{G}_{i-1}$ with a special $\gamma_{\times 2}\left(G_{i-1}\right)$-set S_{i-1} is guaranteed, since the graph H_{i-1} described in Remark 3 is one of such graphs.

The following observation follows from the definitions.
Observation 4. For $k \geq 0$, every graph $G \in \mathcal{G}_{k}$ contains exactly k cycles.
It is also worth noting that any graph $G \in \mathcal{G}_{k}$ for $k \geq 0$ is a cactus graph.

3. New lower bound

In this section we present our main result. We give a lower bound for the double domination number of a connected graph G in terms of the number of cycles of G, and then characterize all connected graphs achieving equality for the proposed bound.

Theorem 5. If G is a connected graph of order $n \geq 2$ with $k \geq 0$ cycles, ℓ leaves and s support vertices, then $\gamma_{\times 2}(G) \geq$ $(2 n+\ell-s+2) / 3-2 k / 3$, with equality if and only if $G \in \mathcal{G}_{k}$.

Proof. Let G be a connected graph of order n, with $k \geq 0$ cycles, ℓ leaves and s support vertices. We use an induction on k to show that $\gamma_{\times 2}(G) \geq(2 n+\ell-s+2) / 3-2 k / 3$ with equality if and only if $G \in \mathcal{G}_{k}$. For the base step of the induction let $k=0$. Then G is a tree, and the result follows by Theorem 2 . Assume the result holds for all connected graphs G^{\prime} of order n^{\prime} with $0<k^{\prime}<k$ cycles l^{\prime} leaves and s^{\prime} support vertices (that is, $\gamma_{\times 2}\left(G^{\prime}\right) \geq\left(2 n^{\prime}+\ell^{\prime}-s^{\prime}+2\right) / 3-2 k^{\prime} / 3$, with equality if and only if $G^{\prime} \in \mathcal{G}_{k^{\prime}}$). Now consider the connected graph G of order n with $k \geq 1$ cycles.

We first show that $\gamma_{\times 2}(G) \geq(2 n+\ell-s+2) / 3-2 k / 3$. Let S be a $\gamma_{\times 2}(G)$-set, and $C=u_{1} u_{2} \ldots u_{r} u_{1}$ be a cycle of G. If $\left\{u_{1}, u_{2}, \ldots, u_{r}\right\} \subseteq S$, then S is a double dominating set of the graph $G^{\prime}=G-u_{1} u_{2}$, and thus by the inductive hypothesis, $|S| \geq \gamma_{\times 2}\left(G^{\prime}\right) \geq\left(2 n+\ell\left(G^{\prime}\right)-s\left(G^{\prime}\right)+2\right) / 3-2 k\left(G^{\prime}\right) / 3$. Clearly $l-s \leq \ell\left(G^{\prime}\right)-s\left(G^{\prime}\right)$ and $k\left(G^{\prime}\right) \leq k-1$. Thus $\gamma_{\times 2}(G) \geq(2 n+\ell-s+2) / 3-2(k-1) / 3>(2 n+\ell-s+2) / 3-2 k / 3$. Next assume that $u_{j} \notin S$ for some $1 \leq j \leq r$. By Observation $1, u_{j}$ is not a support vertex of G. Let $G_{1}^{\prime}, G_{2}^{\prime}, \ldots, G_{w}^{\prime}$ be the components of $G-u_{j}$. Clearly $S \cap V\left(G_{i}^{\prime}\right)$ is a double dominating set for G_{i}^{\prime}, for each $1 \leq i \leq w$. Furthermore, $n\left(G_{i}^{\prime}\right) \geq 2$, for each $1 \leq i \leq w$, since u_{j} is not a support vertex of G. Thus, by the inductive hypothesis, $|S| \geq \Sigma_{i=1}^{w}\left(\left(2 n\left(G_{i}^{\prime}\right)+\ell\left(G_{i}^{\prime}\right)-s\left(G_{i}^{\prime}\right)+2\right) / 3-2 k\left(G_{i}^{\prime}\right) / 3\right)$. Observe that $\ell-s \leq \Sigma_{i=1}^{w} \ell\left(G_{i}^{\prime}\right)-s\left(G_{i}^{\prime}\right)$ and $k-1 \geq \Sigma_{i=1}^{w} k\left(G_{i}^{\prime}\right)$. Thus $|S| \geq(2(n-1)+\ell-s+2 w) / 3-2(k-1) / 3 \geq(2 n+\ell-s+2) / 3-2 k / 3$, and consequently $\gamma_{\times 2}(G) \geq(2 n+\ell-s+2) / 3-2 k / 3$. (Note that it is easy to see that if $w \geq 2$, then we have $\left.\gamma_{\times 2}(G)>(2 n+\ell-s+2) / 3-2 k / 3\right)$.

We next show that $\gamma_{\times 2}(G)=(2 n+\ell-s+2) / 3-2 k / 3$ if and only if $G \in \mathcal{G}_{k}$. Assume that $\gamma_{\times 2}(G)=(2 n+\ell-s+2) / 3-2 k / 3$. Let S be a $\gamma_{\times 2}(G)$-set, and $C=u_{1} u_{2} \ldots u_{r} u_{1}$ be a cycle of G. According to the first part of the proof, we have $\left\{u_{1}, u_{2}, \ldots, u_{r}\right\} \nsubseteq S$. Thus there is an integer j with $1 \leq j \leq r$ such that $u_{j} \notin S$. Suppose that $\operatorname{deg}_{G}\left(u_{j}\right) \geq 3$. Clearly u_{j} is not a support vertex in G by Observation 1. Let $G^{\prime}=G-u_{j}$. According to the first part of the proof G^{\prime} contains only one connected component. Notice that $S \cap G^{\prime}$ is a double dominating set of the graph G^{\prime}. By the inductive hypothesis, $|S| \geq\left(2 n\left(G^{\prime}\right)+\ell\left(G^{\prime}\right)-s\left(G^{\prime}\right)+2\right) / 3-2 k\left(G^{\prime}\right) / 3$. Clearly $l-s \leq l\left(G^{\prime}\right)-s\left(G^{\prime}\right)$ and $k-2 \geq k\left(G^{\prime}\right)$. Thus $|S| \geq(2(n-1)+\ell-s+2) / 3-2(k-2) / 3 \geq(2 n+\ell-s) / 3-2(k-2) / 3$ and so $\gamma_{\times 2}(G) \geq(2 n+\ell-s+2) / 3-2 k / 3+2 / 3$, a contradiction. Thus $\operatorname{deg}_{G}\left(u_{j}\right)=2$. Evidently, $\left\{u_{j-1}, u_{j+1}\right\} \subseteq S$, since S is double dominating set of G and $u_{j} \notin S$. Let $G^{\prime}=G-u_{j}$. Clearly S is a double dominating set of the graph G^{\prime}. Then by the inductive hypothesis, $|S| \geq\left(2 n\left(G^{\prime}\right)+\ell\left(G^{\prime}\right)-s\left(G^{\prime}\right)+2\right) / 3-2 k\left(G^{\prime}\right) / 3$. Suppose that $|S|>\left(2 n\left(G^{\prime}\right)+\ell\left(G^{\prime}\right)-s\left(G^{\prime}\right)+2\right) / 3-2 k\left(G^{\prime}\right) / 3$. Clearly $\ell-s \leq\left(\ell\left(G^{\prime}\right)-s\left(G^{\prime}\right)\right)$ and $k\left(G^{\prime}\right) \leq k-1$. Then $|S|>(2(n-1)+\ell-s+2) / 3-2(k-1) / 3 \geq(2 n+\ell-s+2) / 3-2 k / 3$ and so $\gamma_{\times 2}(G)>(2 n+\ell-s+2) / 3-2 k / 3$, a contradiction. Thus $|S|=\left(2 n\left(G^{\prime}\right)+\ell\left(G^{\prime}\right)-s\left(G^{\prime}\right)+2\right) / 3-2 k\left(G^{\prime}\right) / 3$. By the inductive hypothesis, $G^{\prime} \in \mathcal{G}_{k\left(G^{\prime}\right)}$. Suppose that u_{j-1} and u_{j+1} are joined by at least two paths of G^{\prime}. Then clearly $k\left(G^{\prime}\right) \leq k-2$. Now $|S| \geq\left(2 n\left(G^{\prime}\right)+\ell\left(G^{\prime}\right)-s\left(G^{\prime}\right)+2\right) / 3-2(k-2) / 3$ and so $\gamma_{\times 2}(G) \geq(2 n+\ell-s+2) / 3-2 k / 3+2 / 3$, a contradiction. Thus u_{j-1} and u_{j+1} are joined by a unique path of G^{\prime}. Thus clearly $k\left(G^{\prime}\right)=k-1$, and so $G^{\prime} \in \mathcal{G}_{k-1}$. If $\left\{u_{j-1}, u_{j+1}\right\} \cap L\left(G^{\prime}\right)=\emptyset$, then u_{j-1} and u_{j+1} are two special vertices of S and so S is a special $\gamma_{\times 2}\left(G^{\prime}\right)$-set. Thus G is obtained from G^{\prime} and u_{j} by Procedure A, and consequently $G \in \mathcal{G}_{k}$, as desired. Thus assume that $\left\{u_{j-1}, u_{j+1}\right\} \cap L\left(G^{\prime}\right) \neq \emptyset$. Assume that $u_{j+1} \in L\left(G^{\prime}\right)$. Then clearly u_{j+2} is a support vertex of G^{\prime}. Suppose that u_{j+2} is a strong support vertex of G^{\prime}. Then clearly $\ell-s<\ell\left(G^{\prime}\right)-s\left(G^{\prime}\right)$ and so $|S|=\left(2 n\left(G^{\prime}\right)+\ell\left(G^{\prime}\right)-s\left(G^{\prime}\right)+2\right) / 3-2(k-1) / 3>(2(n-1)+\ell-s+2) / 3-2(k-1) / 3=(2 n+\ell-s+2) / 3-2 k / 3$. Thus $\gamma_{\times 2}(G)>(2 n+\ell-s+2) / 3-2 k / 3$, a contradiction. We deduce that u_{j+2} is not a strong support vertex of G^{\prime}. Similarly u_{j-2} is not a strong support vertex of G^{\prime} if $u_{j-1} \in L\left(G^{\prime}\right)$. Thus u_{j-1} and u_{j+1} are two special vertices of S and so S is a special $\gamma_{\times 2}\left(G^{\prime}\right)$-set. Consequently, G is obtained from G^{\prime} by adding the vertex u_{j} according to the Procedure A. Consequently, $G \in \mathcal{G}_{k}$.

For the converse let $G \in \mathcal{G}_{k}$. Thus G is obtained from a graph $G^{\prime} \in \mathcal{G}_{k-1}$, by the Procedure A. Let S^{\prime} be the special $\gamma_{\times 2}\left(G^{\prime}\right)$-set that used to produce G. Notice that G^{\prime} contains exactly $k-1$ cycles by Observation 4 . By the inductive hypothesis $\left|S^{\prime}\right|=\left(2 n\left(G^{\prime}\right)+\ell\left(G^{\prime}\right)-s\left(G^{\prime}\right)+2\right) / 3-2(k-1) / 3$. Clearly $\ell-s=\ell\left(G^{\prime}\right)-s\left(G^{\prime}\right)$ and thus $\left|S^{\prime}\right|=(2 n+\ell-s+2) / 3-2 k / 3$. Evidently, S^{\prime} is a double dominating set of G. Since by Observation $4, G$ contains exactly k cycles, by the first part of the proof, $\gamma_{\times 2}(G)=(2 n+\ell-s+2) / 3-2 k / 3$.

Acknowledgments

We would like to thank both referees for their helpful comments.

References

[1] M. Blidia, M. Chellali, T.W. Haynes, M.A. Henning, Independent and double domination in trees, Util. Math. 70 (2006) 159-173.
[2] M. Chellali, A note on the double domination number in trees, AKCE Int. J. Graphs Comb. 3 (2) (2006) 147-150.
[3] J. Harant, M.A. Henning, On double domination in graphs, Discuss. Math. Graph Theory 25 (2005) 29-34.
[4] F. Harary, T.W. Haynes, Double domination in graphs, Ars Combin. 55 (2000) 201-213.
[5] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
[6] C. Sivagnanam, Double domination number and connectivity of graphs, Int. J. Digit. Inf. Wirel. Commun. 2 (1) (2012) 40-45.

[^0]: * Corresponding author.

 E-mail addresses: majid_hajian2000@yahoo.com (M. Hajian), n.jafarirad@gmail.com (N.J. Rad).

