ORIGINAL PAPER

Bounds on the Identifying Codes in Trees

Hadi Rahbani ${ }^{1}$. Nader Jafari Rad ${ }^{2}$. Seyed Masoud MirRezaei ${ }^{3}$

Received: 12 February 2017 / Revised: 27 August 2018 / Published online: 20 February 2019
© Springer Japan KK, part of Springer Nature 2019

Abstract

In this paper, we continue the study of identifying codes in graphs, introduced by Karpovsky et al. (IEEE Trans Inf Theory 44:599-611, 1998). A subset S of vertices in a graph G is an identifying code if for every pair of vertices x and y of G, the sets $N[x] \cap S$ and $N[y] \cap S$ are non-empty and different. The minimum cardinality of an identifying code in G is denoted by $M(G)$. We show that for a tree T with $n \geq 3$ vertices, ℓ leaves and s support vertices, $(2 n-s+3) / 4 \leq M(T) \leq(3 n+2 \ell-1) / 5$. Moreover, we characterize all trees achieving equality for these bounds.

Keywords Identifying code \cdot Tree
Mathematics Subject Classification 05C69

1 Introduction

For notation and graph theory terminology in general we follow [10]. We consider finite, undirected, and simple graphs G with vertex set $V=V(G)$ and edge set $E=E(G)$. The number of vertices $|V(G)|$ of a graph G is called the order of G and is denoted by $n=n(G)$. The open neighborhood of a vertex $v \in V$, denoted by $N(v)$ (or $N_{G}(v)$ to refer it to G), is the set $\{u \in V \mid u v \in E\}$ and the degree of v, denoted by $\operatorname{deg}(v)$ (or $\operatorname{deg}_{G}(v)$ to refer to G), is the cardinality of its open neighborhood. A leaf of a tree T is a vertex of degree one, while a support vertex of T is a vertex

[^0]adjacent to a leaf. A strong support vertex is a support vertex adjacent to at least two leaves, and a weak support vertex is a support vertex adjacent to precisely one leaf. We denote the set of all support vertices of a tree T by $S(T)$ and the set of leaves by $L(T)$. We always denote $\ell=\ell(T)=|L(T)|$, and $s=s(T)=|S(T)|$. Whenever a tree T^{\prime} (or $T^{\prime \prime}, \ldots$) is introduced, we let $n^{\prime}, \ell^{\prime}$ (or $n^{\prime \prime}, \ell^{\prime \prime}, \ldots$) be its order, and number of leaves, respectively. A rooted tree T distinguishes one vertex u called the root. For each vertex $v \neq u$ of T we denote by T_{v} the sub-rooted tree rooted at v.

We also denote by ℓ_{v} the number of leaves adjacent to a support vertex v. We denote a path of order n by P_{n} (or $P_{n}: v_{1} v_{2} \ldots v_{n}$, where $V\left(P_{n}\right)=\left\{v_{1}, \ldots, v_{n}\right\}$ and v_{i} is adjacent to v_{i+1} for $\left.i=1,2, \ldots, n-1\right)$. The distance $d(x, y)$ between two vertices x and y is the length of a shortest path from x to y. The diameter diam (G) of a graph G is the maximum distance over all pairs of vertices of G. For a rooted tree T and a vertex v, we denote by T_{v} the sub-rooted tree, rooted at v. A subdivision of an edge $u v$ is obtained by replacing the edge $u v$ with a path $u w v$, where w is a new vertex. The subdivision graph of a graph G is the graph obtained from G by subdividing each edge of G. The subdivision tree of a tree of order at least three, is called a healthy spider. A wounded spider is the graph formed by removing at least one leaf of a healthy spider. A spider is a tree which is either a healthy spider or a wounded spider.

A subset D of vertices in a graph G is an identifying code if for every two vertices x and y of G, the sets $N[x] \cap D$ and $N[y] \cap D$ are non-empty and different. The minimum cardinality of an identifying code in G is denoted by $M(G)$. Any identifying code with $M(G)$ elements is called a $M(G)$-set. Identifying codes were defined in [12] to model fault diagnosis in multiprocessor systems. In these systems, it may happen that some of the processors become faulty, in some sense that depends on the purpose of the system, and we wish to detect and replace such processors, so that the system can work properly. This concept was further studied in, for example, [1-3,5-9]. Bertrand et al. [2] obtained the minimum cardinality of an identifying code in a path.
Theorem 1 (Bertrand et al. [2]) For a path $P_{n}, M\left(P_{n}\right)=(n+1) / 2$ if $n \geq 1$ is odd, and $M\left(P_{n}\right)=(n+2) / 2$ if $n \geq 4$ is even.

Blidia et al. [3] obtained the following lower bound for the minimum cardinality of an identifying code of a tree.

Theorem 2 (Blidia et al. [3]) If T is a tree of order $n \geq 4$, then $M(T) \geq 3(n+\ell$ $-s+1) / 7$, and this bond is sharp for infinitely many values of n.

In this paper we show that for a tree T with $n \geq 3$ vertices, l leaves and s support vertices, $(2 n-s+3) / 4 \leq M(T) \leq(3 n+2 \ell-1) / 5$. Moreover, we characterize all trees achieving these bounds. With our lower bound, the bound given in Theorem 2 is improved for trees of order n with ℓ leaves and s support vertices, where $2 n+9$ $\geq 12 \ell-5 s$. The following is useful.

Observation 3 (Blidia et al. [3]) If C is a $M(T)$-set in a tree T, then at most one vertex of L_{x} is not in C for each support vertex x, where L_{x} is the set consisting x and all of its leaves. Moreover, C contains at least ℓ vertices of $L(T) \cup S(T)$.

We end this section by stating a variant of domination, namely differentiating-total dominating set which is similar to an identifying code. A total dominating set of a graph
G with no isolated vertex is a set S of vertices such that every vertex of G is adjacent to a vertex in S. A total dominating set S of a graph G is a differentiating-total dominating set if for every pair of distinct vertices u and v in $V(G), N[u] \cap S \neq N[v] \cap S$. Let $\gamma_{t}^{D}(G)$ be the minimum cardinality of a differentiating-total dominating set of G. This variant has been introduced by Haynes, Henning and Howard [11], and further studied, for example in, $[4,13]$. The following follows immediately from the definition.

Observation 4 Any differentiating-total dominating set in a graph is an identifying code.

2 Lower Bound

In this section we give a lower bound on the identifying code of a tree, and characterize all trees achieving equality of the lower bound. The corona of two graphs G_{1} and G_{2}, denoted by $G_{1} \circ G_{2}$, is a graph obtained by taking one copy of G_{1} and $\left|V\left(G_{1}\right)\right|$ copies of G_{2}, and then joining each vertex of the i-th copy of G_{2} to the i-th vertex of G_{1}, where $1 \leq i \leq\left|V\left(G_{1}\right)\right|$. If $G_{2}=K_{1}$, then we denote $G_{1} \circ G_{2}$ by $\operatorname{cor}\left(G_{1}\right)$.
Theorem 5 If T is a tree of order $n \geq 4$ with s support vertices, then $M(T)$ $\geq(2 n-s+3) / 4$, with equality if and only if $T=P_{3}$ or $T=\operatorname{cor}\left(P_{3}\right)$.

Proof We proceed by induction on the order n. If $3 \leq n \leq 5$, then it can be easily checked that $M(T) \geq(2 n-s+3) / 4$, and equality holds if and only if $T=P_{3}$. These are sufficient for the base step of the induction. Assume that the result holds for any tree T^{\prime} of order $n^{\prime}<n$. Now consider the tree T of order $n \geq 6$. Let C be a $M(T)$-set that contains as few leaves of T as possible. Assume that $u, v \in V-C$ and $u v \in E(T)$. Let T_{u} and T_{v} be the components of $T-u v$ with $u \in V\left(T_{u}\right)$ and $v \in V\left(T_{v}\right)$. Assume that $w \in V\left(T_{u}\right) \cap C$, then $N(w)-N(u) \neq \emptyset$. Hence $\left|V\left(T_{u}\right)\right| \geq|N(w)| \geq 3$ and similarly $\left|V\left(T_{v}\right)\right| \geq 3$. Since $u \notin C$, the set $C \cap V\left(T_{u}\right)$ is an identifying code for T_{u} and also the set $C \cap V\left(T_{v}\right)$ is an identifying code of T_{v}. Hence by the induction hypothesis, we have

$$
\begin{aligned}
|C| & =\left|C \cap V\left(T_{u}\right)\right|+\left|C \cap V\left(T_{v}\right)\right| \\
& \geq\left(2\left|V\left(T_{u}\right)\right|-\left|S\left(T_{u}\right)\right|+3\right) / 4+\left(2\left|V\left(T_{v}\right)\right|-\left|S\left(T_{v}\right)\right|+3\right) / 4 \\
& \geq(2 n-(s+2)+6) / 4>(2 n-s+3) / 4 .
\end{aligned}
$$

Thus $V-C$ is an independent set.
Now assume that there exists a vertex $w \in V-C$, such that $\operatorname{deg}(w) \geq 3$. Let $\{x, y, z\} \subseteq N(w)$. Since $V-C$ is an independent set, we have $\{x, y, z\} \subseteq C$. Let T_{x} and T_{w} be the components of $T-x w$ with $x \in V\left(T_{x}\right)$ and $w \in V\left(T_{w}\right)$. Clearly $C \cap V\left(T_{x}\right)$ is an identifying code for T_{x} and $C \cap V\left(T_{w}\right)$ is an identifying code for T_{w}. By the inductive hypothesis,

$$
\begin{aligned}
|C| & =\left|C \cap V\left(T_{x}\right)\right|+\left|C \cap V\left(T_{w}\right)\right| \\
& \geq\left(2\left|V\left(T_{x}\right)\right|-\left|S\left(T_{x}\right)\right|+3\right) / 4+\left(2\left|V\left(T_{w}\right)\right|-\left|S\left(T_{w}\right)\right|+3\right) / 4 \\
& \geq(2 n-(s+1)+6) / 4>(2 n-s+3) / 4 .
\end{aligned}
$$

Thus we assume for the next that $\operatorname{deg}(w) \leq 2$ for every vertex $w \in V-C$.
Assume that $T[C]$ is connected. Then $\operatorname{deg}(w)=1$ for every vertex $w \in V-C$, and so $V-(L \cup S) \subseteq C$. By Observation 3, C contains at least ℓ vertices of $L \cup S$. Thus $|C| \geq|V-(L \cup S)|+|C \cap(L \cup S)| \geq|V-(L \cup S)|+l=n-s$. If $\ell \geq 4$, then $2 n \geq 2 \ell+2 s \geq 3 s+\ell \geq 3 s+4$ and so $M(T) \geq n-s>(2 n-s+3) / 4$, as desired. Thus we may assume that $\ell \leq 3$. If $\ell>s$, then $l=3$ and $s=2$, since $n \geq 6$. Hence $2 n \geq 2 \ell+2 s \geq 10$ and thus $M(T) \geq n-s=n-2>(2 n+1) / 4=(2 n-s+3) / 4$, as desired. Thus we may assume that $\ell=s$. Similarly, we may assume that $n=\ell+s$. If $\ell=2$, then $n=4$, a contradiction. Thus assume that $\ell=3$. Then $T=\operatorname{cor}\left(P_{3}\right)$ and $M(T)=3=(2 n-s+3) / 4$.

Next assume that $T[C]$ is not connected. Let C_{1} be a largest component of $T[C]$. If $\left|V\left(C_{1}\right)\right|=1$, then C is independent, $L \subseteq C$ and $\operatorname{deg}(w)=2$ for every vertex $w \in V-C$. We show that $n=2|C|-1$. Let T^{*} be the graph of order $|C|$ with $V\left(T^{*}\right)=C$ such that $u v \in E\left(T^{*}\right)$ if and only if there exists a vertex $w \in V-C$ with $N_{T}(u) \cap N_{T}(v)=\{w\}$. Then $\left|E\left(T^{*}\right)\right|=|V-C|$ and since T is a tree, by the construction of T^{*}, it follows that T^{*} is a tree. Therefore we have, $n=|C|+|V-C|$ $=|C|+\left|E\left(T^{*}\right)\right|=|C|+|C|-1=2|C|-1$. Now, since T is not a star, we have $|C|=(n+1) / 2>(2 n-s+3) / 4$, as desired. Thus, assume that $\left|V\left(C_{1}\right)\right| \geq 2$. If $\left|V\left(C_{1}\right)\right|=2$ and $C_{1}=\{x, y\}$, then $N(x) \cap C=\{x, y\}=N(v) \cap C$, a contradiction. Hence $\left|V\left(C_{1}\right)\right| \geq 3$. Let $v \in V\left(C_{1}\right)$ be a vertex such that $N(v)-V\left(C_{1}\right) \neq \emptyset$, and $w \in N(v)-V\left(C_{1}\right)$ be a vertex with $\operatorname{deg}(w)=2$. Let $N(w)=\{u, v\}$. Since $T\left[C_{1}\right]$ is connected, we find that $u \notin C_{1}$. Assume that $\operatorname{deg}(v)=2$. Let $T^{\prime}=T-w u$, and T_{w} and T_{u} be the components of $T-w u$ with $w \in V\left(T_{w}\right)$ and $u \in V\left(T_{u}\right)$. Clearly $C \cap V\left(T_{w}\right)$ is an identifying code for T_{w} and $C \cap V\left(T_{u}\right)$ is an identifying code for T_{u}. By the inductive hypothesis, we can easily obtain that $|C|=\left|C \cap V\left(T_{w}\right)\right|+\left|C \cap V\left(T_{u}\right)\right|$ $\geq\left(2\left|V\left(T_{w}\right)\right|-\left|S\left(T_{w}\right)\right|+3\right) / 4+\left(2\left|V\left(T_{u}\right)\right|-\left|S\left(T_{u}\right)\right|+3\right) / 4>(2 n-s+3) / 4$. Thus we may assume that $\operatorname{deg}(v) \geq 3$.

Assume that $N(u) \cap C \neq \emptyset$. If $\operatorname{deg}(u)=2$, then the result follows as before by letting $T^{\prime}=T-w v$. Thus assume that $\operatorname{deg}(u) \geq 3$. Let T_{v} and T_{u} be the components of $T-w$ with $v \in V\left(T_{v}\right)$ and $u \in V\left(T_{u}\right)$. As before, $C \cap V\left(T_{v}\right)$ is an identifying code for T_{v} and $C \cap V\left(T_{u}\right)$ is an identifying code for T_{u}. By the inductive hypothesis, we have $|C|=\left|C \cap V\left(T_{u}\right)\right|+\left|C \cap V\left(T_{v}\right)\right| \geq\left(2\left|V\left(T_{u}\right)\right|-\left|S\left(T_{u}\right)\right|+3\right) / 4+\left(2\left|V\left(T_{v}\right)\right|\right.$ $\left.-\left|S\left(T_{v}\right)\right|+3\right) / 4 \geq(2 n-s+6) / 4>(2 n-s+3) / 4$. Thus we may assume that $N(u) \cap C=\emptyset$. Let T_{u} and T_{v} be the components of $T-w$, defined as before. If $\left|V\left(T_{u}\right)\right|=1$, then $C^{\prime}=(C-\{u\}) \cup\{w\}$ is a $M(T)$-set with $\left|L \cap C^{\prime}\right|<|L \cap C|$, a contradiction by the choice of C (since C is a $M(T)$-set that contains as few leaves of T as possible.) Thus, $\left|V\left(T_{u}\right)\right| \geq 2$, and so we obtain that $\left|V\left(T_{u}\right)\right| \geq 3$. If T_{u} is a path, then by Theorem 1, we have,

$$
\begin{aligned}
M(T)=\left|C \cap V\left(T_{u}\right)\right|+\left|C \cap V\left(T_{v}\right)\right| & \geq M\left(T_{u}\right)+\left|C_{v}\right| \\
& \geq\left(n_{u}+1\right) / 2+\left(2 n_{v}-s_{v}+3\right) / 4 \\
& >\left(2 n_{u}-s_{u}+3\right) / 4+\left(2 n_{v}-s_{v}+3\right) / 4 \\
& =\left(2\left(n_{u}+n_{v}\right)-\left(s_{u}+s_{v}\right)+6\right) / 4 \\
& =(2(n-1)-(s+1)+6) / 4=(2 n-s+3) / 4 .
\end{aligned}
$$

Thus we assume that T_{u} is not a path. Let $u^{\prime} \in V\left(T_{u}\right)$ be a vertex such that $\operatorname{deg}\left(u^{\prime}\right)$ ≥ 3 and every internal vertex in the $\left(u, u^{\prime}\right)$-path has degree two. Let $d=d\left(u, u^{\prime}\right)$ and P be the $\left(u, u^{\prime}\right)$-path. Let $P: x_{0} x_{1} \ldots x_{d}$, where $x_{0}=u$ and $x_{d}=u^{\prime}$. Assume that $\left|N\left(x_{i}\right) \cap C\right|=1$ for some $i \in\{0,1, \ldots, d-1\}$. Without loss of generality, assume that $x_{i-1} \in N\left(x_{i}\right) \cap(V-C)$. Then the result follows easily as before by letting $T^{\prime}=T-x_{i-1} x_{i-2}$. Thus we may assume that $N\left(x_{i}\right) \cap C=\emptyset$ for every $i=0,1, \ldots, d-1$. Since $V-C$ is independent and $u \in C$, we have $x_{2 j} \in C$ for $j=0,1, \ldots,\lfloor d / 2\rfloor$. Since $x_{d}=u^{\prime} \in C$, we find that d is even. We deduce that $\left|C \cap\left(V(P)-\left\{u^{\prime}\right\}\right)\right|=d / 2$. Assume that $T_{v}, T_{u^{\prime}}$ are the two components of $(T-(V(P) \cup\{w\})) \cup\left\{u^{\prime}\right\}$, with $v \in V\left(T_{v}\right)$ and $u^{\prime} \in V\left(T_{u^{\prime}}\right)$. As before, $C \cap V\left(T_{v}\right)$ is an identifying code for T_{v} and $C \cap V\left(T_{u^{\prime}}\right)$ is an identifying code for $T_{u^{\prime}}$. By the inductive hypothesis,

$$
\begin{aligned}
|C| & =\left|C \cap V\left(T_{u^{\prime}}\right)\right|+\left|C \cap V\left(T_{v}\right)\right|+d / 2 \\
& \geq\left(2\left|V\left(T_{u^{\prime}}\right)\right|-\left|S\left(T_{u^{\prime}}\right)\right|+3\right) / 4+\left(2\left|V\left(T_{v}\right)\right|-\left|S\left(T_{v}\right)\right|+3\right) / 4+d / 2 \\
& =(2(n-d-1)-s+6) / 4+d / 2>(2 n-s+3) / 4 .
\end{aligned}
$$

This completes the proof.
We note that if $2 n+9 \geq 12 \ell-5 s$, then the lower bound of Theorem 5 is better than the bound given in Theorem 2.

3 Upper Bound

We begin this section with the following.
Theorem 6 (Ning et al. [13]) If T is a tree of order $n \geq 3$ with ℓ leaves, then $\gamma_{t}^{D}(T)$ $\leq 3(n+\ell) / 5$, with equality if and only if $T=P_{3}$, or $T \in \mathcal{F}$.

As noted in Observation 4, any differentiating-total dominating set is an identifying code, as well. Thus for any graph $G, M(G) \leq \gamma_{t}^{D}(G)$. Now from Theorem 6, we obtain the following upper bound.

Corollary 7 For any tree T of order $n \geq 4, M(T) \leq 3(n+\ell) / 5$.
Our aim in this section is to improve Corollary 7 for any tree T of order $n \geq 3$. We show that for any tree T of order $n \geq 3$ with ℓ leaves, $M(T) \leq(3 n+2 \ell-1) / 5$, and characterize all trees achieving equality for this bound. We first present some necessary lemmas. The following is easily verified.

Lemma 8 If T is a tree obtained from a tree T^{\prime} of order $n^{\prime} \geq 3$ by adding a leaf to T^{\prime}, then $M(T) \leq M\left(T^{\prime}\right)+1$.

Proof Assume that T^{\prime} is a tree of order $n^{\prime} \geq 3$ and T is obtained from T^{\prime} by adding a new vertex w to T^{\prime} with edge $w v$, where $v \in V\left(T^{\prime}\right)$. Let C^{\prime} be a $M\left(T^{\prime}\right)$-set. If $v \notin C^{\prime}$, then $C^{\prime} \cup\{w\}$ is an identifying code for T, and so $M(T) \leq M\left(T^{\prime}\right)+1$. Thus assume
that $v \in C^{\prime}$. If $N_{T^{\prime}}(v) \cap C^{\prime} \neq \emptyset$, then $C^{\prime} \cup\{w\}$ is an identifying code for T, and so the result follows. Thus assume that $N_{T^{\prime}}(v) \cap C^{\prime}=\emptyset$. Let $u \in N_{T^{\prime}}(v)$. Then $C^{\prime} \cup\{u\}$ is an identifying code for T, and so $M(T) \leq M\left(T^{\prime}\right)+1$.

Lemma 9 Let T^{*} be a spider tree with central vertex w such that $\operatorname{deg}(w) \geq 2$, and T^{\prime} be an arbitrary tree. Let T be a tree obtained from T^{\prime} and T^{*} by joining w to a vertex $v \in V\left(T^{\prime}\right)$, and $T^{\prime \prime}=T^{\prime}-v$. If $\operatorname{deg}(v) \geq 3$ and $M\left(T^{\prime}\right) \leq\left(3 n\left(T^{\prime}\right)+2 \ell\left(T^{\prime}\right)-1\right) / 5$ or $\operatorname{deg}(v)=2$ and $M\left(T^{\prime \prime}\right) \leq\left(3 n\left(T^{\prime \prime}\right)+2 \ell\left(T^{\prime \prime}\right)-1\right) / 5$, then $M(T)<(3 n(T)$ $+2 \ell(T)-1) / 5$.

Proof Each vertex of $N(w)$ is a leaf or a support vertex of degree two, since T^{*} is a spider tree. Let r_{1} be the number of leaves of T^{*} at distance one from w and r_{2} be the number of leaves of T^{*} at distance two from w. Let C^{\prime} be a $M\left(T^{\prime}\right)$-set. If $\operatorname{deg}(v) \geq 3$, then $C=C^{\prime} \cup N_{T *}[w]$ is an identifying code for T. Thus we obtain that $M(T) \leq M\left(T^{\prime}\right)+r_{2}+r_{1}+1 \leq\left(3 n^{\prime}+2 \ell^{\prime}-1\right) / 5+r_{2}+r_{1}+1<(3 n+2 \ell-1) / 5$, since $n^{\prime}=n-2 r_{2}-r_{1}-1$ and $\ell^{\prime}=\ell-r_{1}-r_{2}$. Thus assume that $\operatorname{deg}(v)=2$. If $C^{\prime \prime}$ is a $M\left(T^{\prime \prime}\right)$-set, then $C=C^{\prime \prime} \cup N_{T *}[w]$ is an identifying code for T. Hence $M(T) \leq M\left(T^{\prime \prime}\right)+r_{2}+r_{1}+1 \leq\left(3 n^{\prime \prime}+2 \ell^{\prime \prime}-1\right) / 5+r_{2}+r_{1}+1<(3 n+2 \ell-1) / 5$, since $n^{\prime \prime}=n-2 r_{2}-r_{1}-2$ and $\ell^{\prime \prime} \leq \ell-r_{1}-r_{2}+1$.

Lemma 10 Let T^{\prime} be an arbitrary tree and $v \in V\left(T^{\prime}\right)$ be a vertex with $\operatorname{deg}(v) \geq 2$, and T be a tree obtained from T^{\prime} by joining v to a leaf of a path P_{3}. If $M\left(T^{\prime}\right)$ $\leq\left(3 n\left(T^{\prime}\right)+2 \ell\left(T^{\prime}\right)-1\right) / 5$, then $M(T)<(3 n(T)+2 \ell(T)-1) / 5$.

Proof Assume that T is obtained from T^{\prime} by joining v to the leaf w of a path $P_{3}=w z y$. Let C^{\prime} be a $M\left(T^{\prime}\right)$-set. If $v \in C^{\prime}$, then $C^{\prime} \cup\{w, z\}$ is an identifying code for T and if $v \notin C^{\prime}$, then $C^{\prime} \cup\{w, y\}$ is an identifying code for T. Hence $M(T) \leq M\left(T^{\prime}\right)+2 \leq\left(3 n\left(T^{\prime}\right)+2 \ell\left(T^{\prime}\right)-1\right) / 5+2$ $\leq(3(n-3)+2(\ell-1)-1) / 5+2<(3 n+2 \ell-1) / 5$.

We are now ready to present the main result of this section.
Theorem 11 For any tree T, of order $n \geq 3$ with ℓ leaves, $M(T) \leq(3 n+2 \ell-1) / 5$. Equality holds if and only if $T=P_{4}$.

Proof We use an induction on the order n of T to prove the upper bound. The base step is obvious for $n=3$ and $n=4$. Assume that for any tree T^{\prime} of order $n^{\prime}<n$, with l^{\prime} leaves, $M\left(T^{\prime}\right) \leq\left(3 n^{\prime}+2 \ell^{\prime}-1\right) / 5$. Now consider the tree T of order $n>4$. Assume that T has a strong support vertex. Let v be a strong support vertex, and u be a leaf adjacent to v. Let $T^{\prime}=T-u$. By Lemma $8, M(T) \leq M\left(T^{\prime}\right)+1$. By the inductive hypothesis, $M(T) \leq M\left(T^{\prime}\right)+1 \leq\left(3 n\left(T^{\prime}\right)+2 \ell\left(T^{\prime}\right)-1\right) / 5+1$ $=(3(n-1)+2(\ell-1)-1) / 5+1=(3 n+2 \ell-1) / 5$. Thus we may assume for the next that T has no strong support vertex.

Let $d=\operatorname{diam}(T)$. Since $n>4$ and T has no strong support vertex, we have $d \geq 4$. We root T at a leaf x_{0} of a diametrical path $x_{0} x_{1} \ldots x_{d}$ from x_{0} to a leaf x_{d} farthest from x_{0}. Thus, $\operatorname{deg}\left(x_{d-1}\right)=\operatorname{deg}\left(x_{1}\right)=2$.

Assume that $d=4$. Note that $\operatorname{deg}\left(x_{3}\right)=2$. If $\operatorname{deg}\left(x_{2}\right)=2$, then $T=P_{5}$, and $M(T)=3<(3 n+2 \ell-1) / 5$. Thus assume that $\operatorname{deg}\left(x_{2}\right)>2$. If x_{2} is a support vertex,
then T has $\operatorname{deg}\left(x_{2}\right)-1$ support vertices of degree two. Then $N\left[x_{2}\right]-L$ is an identifying code for T, implying that $M(T) \leq \operatorname{deg}\left(x_{2}\right)<(3 n+2 \ell-1) / 5$, since $n=2 \operatorname{deg}\left(x_{2}\right)$ and $\ell=\operatorname{deg}\left(x_{2}\right)$. Thus assume that x_{2} is not a support vertex. Then T has $\operatorname{deg}\left(x_{2}\right)$ support vertices of degree two, and we can see that $N\left[x_{2}\right]$ is an identifying code for T, implying that $M(T) \leq \operatorname{deg}\left(x_{2}\right)+1<(3 n+2 \ell-1) / 5$, since $n=2 \operatorname{deg}\left(x_{2}\right)+1$ and $\ell=\operatorname{deg}\left(x_{2}\right)$.

Assume next that $d=5$. Note that $\operatorname{deg}\left(x_{4}\right)=2$. Assume that $\operatorname{deg}\left(x_{3}\right)=2$. If $\operatorname{deg}\left(x_{2}\right)=2$, then $T=P_{6}$, and $M(T)=4<(3 n+2 \ell-1) / 5$. Thus assume that $\operatorname{deg}\left(x_{2}\right)>2$. Since $d=5$, any vertex of $N\left(x_{2}\right)-\left\{x_{3}\right\}$ is a leaf or a support vertex of degree two. Assume that x_{2} is a support vertex. There is a unique leaf adjacent to x_{2}. Then $S(T) \cup\left\{x_{3}\right\}$ is an identifying code for T, implying that $M(T) \leq|S(T)|+1$ $=\operatorname{deg}\left(x_{2}\right)+1<(3 n+2 \ell-1) / 5$, since $n=2 \operatorname{deg}\left(x_{2}\right)+1$ and $\ell=\operatorname{deg}\left(x_{2}\right)$. Thus assume that x_{2} is not a support vertex. Then $S(T) \cup\left\{x_{2}, x_{3}\right\}$ is an identifying code for T, implying that $M(T) \leq|S(T)|+2=\operatorname{deg}\left(x_{2}\right)+2<(3 n+2 \ell-1) / 5$, since $n=2 \operatorname{deg}\left(x_{2}\right)+2$ and $\ell=\operatorname{deg}\left(x_{2}\right)$. Thus assume that $\operatorname{deg}\left(x_{3}\right) \geq 3$, and similarly, $\operatorname{deg}\left(x_{2}\right) \geq 3$. Since T has no strong support vertex, any child of x_{3} is a leaf or a support vertex of degree two. Let r_{1} be the number of leaves of $T_{x_{3}}$ at distance one from x_{3} and r_{2} be the number of leaves of $T_{x_{3}}$ at distance two from x_{3}. Note that $\operatorname{deg}\left(x_{3}\right)=r_{1}+r_{2}+1$. Let $T^{\prime}=T-T_{x_{3}}$, then $n^{\prime}=n-r_{1}-2 r_{2}-1$ and $\ell^{\prime}=\ell-r_{1}-r_{2}$. If C^{\prime} is a $M\left(T^{\prime}\right)$-set, then $C=C^{\prime} \cup N_{T_{x_{3}}}\left[x_{3}\right]$ is an identifying code for T. Hence $M(T) \leq M\left(T^{\prime}\right)+r_{2}+r_{1}+1 \leq\left(3 n^{\prime}+2 \ell^{\prime}-1\right) / 5+r_{2}+r_{1}+1$ $=\left(3 n+2 \ell-3 r_{2}+1\right) / 5<(3 n+2 \ell-1) / 5$, since $r_{2} \geq 1$.

Thus assume that $d \geq 6$. If $\operatorname{deg}\left(x_{d-2}\right) \geq 3$, then by the inductive hypothesis and Lemma $9, M(T)<(3 n+2 \ell-1) / 5$, since $T_{x_{d-2}}$ is a spider. Thus assume that $\operatorname{deg}\left(x_{d-2}\right)=2$. If $\operatorname{deg}\left(x_{d-3}\right) \geq 3$, then from the inductive hypothesis and Lemma 10, we obtain $M(T)<(3 n+2 \ell-1) / 5$. We thus assume that $\operatorname{deg}\left(x_{d-3}\right)=2$.

We next proceed according to the value of $\operatorname{deg}\left(x_{d-4}\right)$. First assume that $\operatorname{deg}\left(x_{d-4}\right)$ $=2$. Assume that $\operatorname{deg}\left(x_{d-5}\right) \geq 3$. Let $T^{\prime}=T-T_{x_{d-4}}$, and C^{\prime} be a $M\left(T^{\prime}\right)-$ set. Then $C^{\prime} \cup\left\{x_{d-1}, x_{d-2}, x_{d-3}\right\}$ is an identifying code for T. By the inductive hypothesis, $M(T) \leq M\left(T^{\prime}\right)+3 \leq(3(n-5)+2(\ell-1)-1) / 5+3<(3 n+2 \ell-2) / 5$. We thus assume that $\operatorname{deg}\left(x_{d-5}\right)=2$. Assume that $\operatorname{deg}\left(x_{d-6}\right) \geq 3$. Let $y_{0}^{\prime \prime}$ be a leaf of $T_{x_{d-6}}-\left\{x_{d}, x_{d-1}, \ldots, x_{d-5}\right\}$ at maximum distance from x_{d-6}, and $y_{0}^{\prime \prime} y_{1}^{\prime \prime} \ldots y_{t}^{\prime \prime} x_{d-6}$ be the shortest path from $y_{0}^{\prime \prime}$ to x_{d-6} in $T_{x_{d-6}}-\left\{x_{d}, x_{d-1}, \ldots, x_{d-5}\right\}$. Clearly $t \leq 5$. With a similar argument as before, we can assume that $t \in\{0,3,5\}$, and $\operatorname{deg}\left(y_{i}^{\prime \prime}\right)=2$ for $i=1, \ldots, t-1$ if $t \in\{3,5\}$. Let A be the set vertices of $T_{x_{d-6}}$ at even distance from x_{d-6}. Let $T^{\prime}=T-T_{x_{d-6}}$, and C^{\prime} be a $M\left(T^{\prime}\right)$-set. Then $C^{\prime} \cup A \cup\left\{x_{d-6}, x_{d-5}\right\}$ is an identifying code for T. Let r_{i} be the number of leaves of $T_{x_{d-6}}$ at distance i from x_{d-6} for $i \in\{1,4,6\}$. By the inductive hypothesis,

$$
\begin{aligned}
M(T) & \leq M\left(T^{\prime}\right)+|A|+2 \\
& =M\left(T^{\prime}\right)+3 r_{6}+2 r_{4}+2 \\
& \leq\left(3\left(n-6 r_{6}-4 r_{4}-r_{1}-1\right)+2\left(\ell-r_{6}-r_{4}-r_{1}+1\right)-1\right) / 5+3 r_{6}+2 r_{4}+2 \\
& <(3 n+2 \ell-2) / 5 .
\end{aligned}
$$

We thus assume that $\operatorname{deg}\left(x_{d-6}\right)=2$. If $T=P_{8}$ or $T=P_{9}$, then $M(T)=5$ $<(3 n+2 \ell-1) / 5$. Thus $n>9$. Let $T^{\prime}=T-T_{x_{d-6}}$, and C^{\prime} be a $M\left(T^{\prime}\right)$-set. If $x_{d-7} \in C^{\prime}$, then $C^{\prime} \cup\left\{x_{d-1}, x_{d-2}, x_{d-3}, x_{d-5}\right\}$ is an identifying code of T, and if $x_{d-7} \notin C^{\prime}$, then $C^{\prime} \cup\left\{x_{d}, x_{d-2}, x_{d-4}, x_{d-6}\right\}$ is a identifying code of tree T. By the inductive hypothesis, $M(T) \leq M\left(T^{\prime}\right)+4 \leq(3(n-7)+2 \ell-1) / 5+4<$ $(3 n+2 \ell-1) / 5$.

Next assume that $\operatorname{deg}\left(x_{d-4}\right) \geq 3$. Let y_{0} be a leaf of $T_{x_{d-4}}-\left\{x_{d}, x_{d-1}, x_{d-2}, x_{d-3}\right\}$ at maximum distance from $\left(x_{d-4}\right)$, and $y_{0} y_{1} \ldots y_{q} x_{d-4}$ be the shortest path from y_{0} to x_{d-4}. Clearly $q \leq 3$.

Assume that $q=3$. Since y_{0} plays the same role of x_{d}, we may assume that $\operatorname{deg}\left(y_{i}\right)=2$ for $i=1,2,3$. By Lemmas 9 and 10, we may assume that $T_{x_{d-4}}$ has no leaf at distance 3 from x_{d-4}. Assume that $T_{x_{d-4}}$ has a leaf b at distance 2 from x_{d-4}, and let a be the support vertex adjacent to b. Evidently, $\operatorname{deg}(a)=2$. Let T^{\prime} $=T-\left\{x_{d}, x_{d-1}, x_{d-2}, x_{d-3}\right\}$, and C^{\prime} be a $M\left(T^{\prime}\right)$-set. If $x_{d-4} \notin C^{\prime}$, then $N(a) \cap C^{\prime}$ $=N(b) \cap C^{\prime}$, a contradiction. Hence $x_{d-4} \in C^{\prime}$ and so $C^{\prime} \cup\left\{x_{d}, x_{d-2}\right\}$ is an identifying code for T. Then by the inductive hypothesis, we obtain $M(T) \leq\left|C^{\prime}\right|+2 \leq(3(n$ $-4)+2(\ell-1)-1) / 5+2<(3 n+2 \ell-1) / 5$. We thus assume that $T_{x_{d-4}}$ has no leaf at distance 2 from x_{d-4}. Let r_{1} be the number of leaves of $T_{x_{d-4}}$ adjacent to x_{d-4}, and r_{4} be the number of leaves of $T_{x_{d-4}}$ at distance four from x_{d-4}. Note that $r_{1} \leq 1$. Let A be the set of all vertices of $T_{x_{d-4}}$ at distance 2 or 4 from x_{d-4}. Assume that $r_{1}=1$. Let $T^{\prime}=T-T_{x_{d-4}}$. If C^{\prime} is a $M\left(T^{\prime}\right)$-set, then $C^{\prime} \cup A \cup\left\{x_{d-3}, x_{d-4}\right\}$ is an identifying code for T. Then by the inductive hypothesis, $M(T) \leq M\left(T^{\prime}\right)+|A|+2 \leq\left(3\left(n-4 r_{4}-2\right)\right.$ $\left.+2\left(\ell-r_{4}\right)-1\right) / 5+2 r_{4}+2=\left((3 n+2 \ell-2)-4 r_{4}-3 r_{1}+7\right) / 5<(3 n+2 \ell-2) / 5$, since $r_{4} \geq 2$. Thus assume that $r_{1}=0$. If $\operatorname{deg}\left(x_{d-5}\right) \geq 2$, then the result follows as before by letting $T^{\prime}=T-T_{x_{d-4}}$. Thus assume that $\operatorname{deg}\left(x_{d-5}\right)=2$. Let $T^{\prime}=T-T_{x_{d-5}}$, and C^{\prime} be a $M\left(T^{\prime}\right)$-set. Then $\left(C^{\prime} \cup A\right) \cup\left\{x_{d-3}, x_{d-4}\right\}$ is an identifying code for T. Then $M(T) \leq M\left(T^{\prime}\right)+|A|+2 \leq\left(3\left(n-4 r_{4}-2\right)+2\left(\ell-r_{4}+1\right)-1\right) / 5+2 r_{4}+2$ $=\left((3 n+2 \ell-2)-4 r_{4}+6\right) / 5<(3 n+2 \ell-2) / 5$.

Assume next that $q=2$. Then $\operatorname{deg}\left(y_{1}\right)=2$. If $\operatorname{deg}\left(y_{2}\right) \geq 3$, then the inductive hypothesis and Lemma 9 imply that, $M(T)<(3 n+2 \ell-1) / 5$. Thus assume that $\operatorname{deg}\left(y_{2}\right)=2$. Then by the inductive hypothesis and Lemma 10 , we have $M(T)<$ $(3 n+2 \ell-1) / 5$.

Now assume that $q=1$. Then $\operatorname{deg}\left(y_{1}\right)=2$. Let $T^{\prime}=T-\left\{x_{d}, x_{d-1}, x_{d-2}, x_{d-3}\right\}$, and C^{\prime} be a $M\left(T^{\prime}\right)$-set. If $x_{d-4} \notin C^{\prime}$, then $N\left(y_{0}\right) \cap C^{\prime}=N\left(y_{1}\right) \cap C^{\prime}$, a contradiction. Hence $x_{d-4} \in C^{\prime}$ and so $C^{\prime} \cup\left\{x_{d}, x_{d-2}\right\}$ is an identifying code for T. Then $M(T)$ $\leq M\left(T^{\prime}\right)+2 \leq(3(n-4)+2(\ell-1)-1) / 5+2<(3 n+2 \ell-2) / 5$.

It remains to assume that $q=0$. Observe that x_{d-4} is a weak support vertex. Furthermore, $\operatorname{deg}\left(x_{d-4}\right)=3$. Assume that $\operatorname{deg}\left(x_{d-5}\right) \geq 3$. Let $T^{\prime}=T-T_{x_{d-4}}$, and C^{\prime} be a $M\left(T^{\prime}\right)$-set. Clearly $n\left(T^{\prime}\right) \geq 3$. Then $C^{\prime} \cup\left\{x_{d-1}, x_{d-2}, x_{d-3}, x_{d-4}\right\}$ is an identifying code for T, and so by the inductive hypothesis, $M(T) \leq M\left(T^{\prime}\right)+4$ $\leq\left(3 n\left(T^{\prime}\right)+2 \ell\left(T^{\prime}\right)-1\right) / 5+4<(3 n+2 \ell-2) / 5$, since $n\left(T^{\prime}\right)=n-6$ and $\ell\left(T^{\prime}\right)=$ $\ell-2$. Thus assume that $\operatorname{deg}\left(x_{d-5}\right)=2$. If $d=6$, then T is a tree obtained from the path $P_{7}: x_{0} x_{1} \ldots x_{6}$ by adding a leaf to x_{2}, and note that $M(T)=5<(3 n+2 \ell-1) / 5$. We thus assume that $d \geq 7$.

Assume that $\operatorname{deg}\left(x_{d-6}\right)=2$. If $d=7$, then T is obtained from a path $P_{8}: x_{0} x_{1} \ldots x_{7}$ by adding a leaf to x_{3}, and so we can see that $M(T) \leq 6$
$<(3 n+1 \ell-2) / 5$. If $d=8$, then $\operatorname{deg}\left(x_{2}\right)=2$, since x_{0} can plays the same role of x_{d}. So T is obtained from a path $P_{9}: x_{0} x_{1} \ldots x_{8}$ by adding a leaf to x_{4}, and we observe that $M(T) \leq 6<(3 n+1 \ell-2) / 5$. Thus assume that $d \geq 9$. Let $T^{\prime}=T-T_{x_{d-6}}$, and let C^{\prime} be a $M\left(T^{\prime}\right)$-set. Then $C^{\prime} \cup\left\{x_{d-1}, x_{d-2}, x_{d-3}, x_{d-4}, x_{d-5}\right\}$ is an identifying code for T. By the inductive hypothesis, $M(T) \leq M\left(T^{\prime}\right)+5 \leq\left(3 n\left(T^{\prime}\right)+2 \ell\left(T^{\prime}\right)-1\right) / 5+4$ $<(3 n+2 \ell-2) / 5$, since $n\left(T^{\prime}\right)=n-8$ and $\ell\left(T^{\prime}\right) \leq \ell-1$.

Thus assume that $\operatorname{deg}\left(x_{d-6}\right) \geq 3$. Let $T^{\prime}=T-T_{x_{d-5}}$, and C^{\prime} be a $M\left(T^{\prime}\right)$-set. If $x_{d-6} \in C^{\prime}$, then $C^{\prime} \cup\left\{x_{d}, x_{d-2}, x_{d-4}, x_{d-5}\right\}$ is an identifying code for T, and by the inductive hypothesis, $M(T) \quad \leq \quad M\left(T^{\prime}\right) \quad+\quad 4$ $\leq\left(3 n\left(T^{\prime}\right)+2 \ell\left(T^{\prime}\right)-1\right) / 5+4<(3 n+2 \ell-2) / 5$, since $n\left(T^{\prime}\right)=n-7$ and $\ell\left(T^{\prime}\right)=\ell-2$. Thus we assume that $x_{d-6} \notin C^{\prime}$. Hence x_{d-6} does not have a child which is a support vertex of degree two.

Let y_{0}^{\prime} be a leaf of $T_{x_{d-6}}-\left\{y_{0}, x_{d}, x_{d-1}, \ldots, x_{d-5}\right\}$ at maximum distance from x_{d-6}, and $y_{0}^{\prime} y_{1}^{\prime} \ldots y_{t}^{\prime} x_{d-6}$ be the shortest path from y_{0}^{\prime} to x_{d-6}. Clearly, $t \leq 5$. As noted earlier, $t \neq 1$. We proceed depending on t.

Assume that $t=5$. Since y_{0}^{\prime} plays the same role of x_{d}, we may assume that $\operatorname{deg}\left(y_{i}^{\prime}\right)=2$ for $i=1,2,3,5$, and y_{4}^{\prime} is a support vertex of degree three. Let $T^{\prime}=T-T_{y_{5}^{\prime}}$, and C^{\prime} be a $M\left(T^{\prime}\right)$-set. If $x_{d-6} \notin C^{\prime}$, then $\mid C^{\prime} \cup$ $\left\{x_{d}, x_{d-1}, x_{d-2}, x_{d-3}, x_{d-4}, x_{d-5}, y_{0}\right\} \mid \geq 5$. Then $C^{\prime \prime}=\left(C^{\prime}-\left\{x_{d}, x_{d-1}, x_{d-2}, x_{d-3}\right.\right.$, $\left.\left.x_{d-4}, x_{d-5}, y_{0}\right\}\right) \cup\left\{x_{d}, x_{d-2}, x_{d-4}, x_{d-5}, x_{d-6}\right\}$ is a $M\left(T^{\prime}\right)$-set. Thus we may assume that $x_{d-6} \in C^{\prime}$. Then $C=C^{\prime} \cup\left\{y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}, y_{4}^{\prime}\right\}$ is an identifying code for T. By the inductive hypothesis, $M(T) \leq M\left(T^{\prime}\right)+4 \leq\left(3 n\left(T^{\prime}\right)+2 \ell\left(T^{\prime}\right)-1\right) / 5+4 \leq$ $(3(n-7)+2(\ell-2)-1) / 5+4<(3 n+2 \ell-2) / 5$.

If $t=4$, then by Lemmas 9 and 10 we may assume that $\operatorname{deg}\left(y_{1}^{\prime}\right)=\operatorname{deg}\left(y_{2}^{\prime}\right)$ $=\operatorname{deg}\left(y_{3}^{\prime}\right)=2$. Assume that $\operatorname{deg}\left(y_{4}^{\prime}\right)=2$. Let $T^{\prime}=T-T_{y_{4}^{\prime}}$, and C^{\prime} be a $M\left(T^{\prime}\right)-$ set. Then $C^{\prime} \cup\left\{y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}\right\}$ is an identifying code for T, and by the inductive hypothesis, $M(T) \leq M\left(T^{\prime}\right)+3 \leq\left(3 n\left(T^{\prime}\right)+2 \ell\left(T^{\prime}\right)-1\right) / 5+3=(3(n-5)+2(\ell-1)-1) / 5+3$ $<(3 n+2 \ell-2) / 5$. Thus assume that $\operatorname{deg}\left(y_{4}^{\prime}\right) \geq 3$. By Lemmas 9 and 10 , we may assume that there is no leaf in $T_{y_{4}^{\prime}}$ at distance 3 from y_{4}^{\prime}. Thus any leaf of $T_{y_{4}^{\prime}}$ is at distance 1,2 or 4 from y_{4}^{\prime}. Let r_{i} be the number of leaves of $T_{y_{4}^{\prime}}$ at distance i from y_{4}^{\prime} for $i=1,2,4$. Since T has no strong support vertex, $r_{1} \leq 1$. Note that for every leaf x of $T_{y_{4}^{\prime}}$ at distance 2 or 4 from y_{4}^{\prime}, any internal vertex w of the path from x to y_{4}^{\prime} ($w \notin\left\{x, y_{4}^{\prime}\right\}$) has degree two. Let A be the set of vertices $T_{y_{4}^{\prime}}$ at distance 2 or 4 from y_{4}^{\prime}. Let $T^{\prime}=T-T_{y_{4}^{\prime}}$, and C^{\prime} be a $M\left(T^{\prime}\right)$-set. Then $C^{\prime} \cup A \cup\left\{y_{3}^{\prime}, y_{4}^{\prime}\right\}$ is an identifying code for T. Thus by the inductive hypothesis,

$$
\begin{aligned}
M(T) & \leq M\left(T^{\prime}\right)+|A|+2 \\
& =M\left(T^{\prime}\right)+2 r_{4}+r_{2}+2 \\
& \leq\left(3 n\left(T^{\prime}\right)+2 \ell\left(T^{\prime}\right)-1\right) / 5+2 r_{4}+2 \\
& \leq\left(3\left(n-4 r_{4}-2 r_{2}-r_{1}-1\right)+2\left(\ell-r_{4}-r_{2}-r_{1}\right)-1\right) / 5+2 r_{4}+r_{2}+r_{1}+1 \\
& \leq\left(3 n+2 \ell-1+\left(-4 r_{4}-3 r_{2}-5 r_{1}+7\right)\right) / 5 \\
& <(3 n+2 \ell-1)) / 5 .
\end{aligned}
$$

Next assume that $t=3$. By Lemmas 9 and 10, we may assume that $\operatorname{deg}\left(y_{1}^{\prime}\right)$ $=\operatorname{deg}\left(y_{2}^{\prime}\right)=\operatorname{deg}\left(y_{3}^{\prime}\right)=2$. Let $T^{\prime}=T-T_{y_{3}^{\prime}}$ and C^{\prime} be a $M\left(T^{\prime}\right)$-set. If $x_{d-6} \notin C^{\prime}$, then clearly $\left|C^{\prime} \cup\left\{x_{d}, x_{d-1}, x_{d-2}, x_{d-3}, x_{d-4}, x_{d-5}, y_{0}\right\}\right| \geq 5$, and so $C^{\prime \prime}=\left(C^{\prime}\right.$ $\left.-\left\{x_{d}, x_{d-1}, x_{d-2}, x_{d-3}, x_{d-4}, x_{d-5}, y_{0}\right\}\right) \cup\left\{x_{d}, x_{d-2}, x_{d-4}, x_{d-5}, x_{d-6}\right\}$ is a $M\left(T^{\prime}\right)$ set. Thus we may assume that $x_{d-6} \in C^{\prime}$. Then $C=C^{\prime} \cup\left\{y_{0}^{\prime}, y_{2}^{\prime}\right\}$ is an identifying code for T. By the inductive hypothesis, $M(T) \leq M\left(T^{\prime}\right)+2 \leq\left(3 n\left(T^{\prime}\right)+2 \ell\left(T^{\prime}\right)\right.$ $-1) / 5+3=(3(n-4)+2(\ell-1)-1) / 5+2<(3 n+2 \ell-2) / 5$.

Next assume that $t=2$. We may assume that $\operatorname{deg}\left(y_{1}^{\prime}\right)=2$. Now the result follows by the inductive hypothesis and Lemmas 9 and 10 . Since x_{d-6} does not have a child which is a support vertex of degree two, we have $t \neq 1$.

Hence $t=0$. Then x_{d-6} is a support vertex of degree 3. Let $T^{\prime}=T-T_{x_{d-6}}$. If $n\left(T^{\prime}\right)=1$, then $n=10$, and $\left\{x_{d}, x_{d-2}, x_{d-4}, x_{d-5}, x_{d-6}, y_{0}^{\prime}\right\}$ is an identifying code for T, and so $M(T)=6<(3 n+2 \ell-1) / 5$. If $n\left(T^{\prime}\right)=2$, then $n=11$, and $\left\{x_{d}, x_{d-2}, x_{d-4}, x_{d-5}, x_{d-6}, x_{d-7}\right\}$ is an identifying code for T, and so $M(T)$ $=6<(3 n+2 \ell-1) / 5$. Thus we assume that $n\left(T^{\prime}\right) \geq 3$. Let C^{\prime} be a $M\left(T^{\prime}\right)$-set. Then $C^{\prime} \cup\left\{x_{d}, x_{d-2}, x_{d-4}, x_{d-5}, x_{d-6}\right\}$ is an identifying code for T. By the inductive hypothesis, $M(T) \leq M\left(T^{\prime}\right)+5 \leq\left(3 n\left(T^{\prime}\right)+2 \ell\left(T^{\prime}\right)-1\right) / 5+4<(3 n+2 \ell-2) / 5$. Thus the upper bound is proved.

Now we prove the second part of the theorem. Let T be a tree of order $n \geq 3$, with $M(T)=(3 n+2 \ell-1) / 5$. Suppose that $\operatorname{diam}(T) \geq 4$. If T has no strong support vertex, then as it is seen above, $M(T)<(3 n+2 \ell-1) / 5$, a contradiction. Thus assume that T has some strong support vertex. Let T^{\prime} be a tree obtained from T by removing $\ell_{v}-1$ leaves of every strong support vertex v. Clearly T^{\prime} has no strong support vertex, and as before, $M\left(T^{\prime}\right)<\left(3 n\left(T^{\prime}\right)+2 \ell\left(T^{\prime}\right)-1\right) / 5=(3(n-\ell+s)+2 s-1) / 5$. By Lemma $8, M(T) \leq M\left(T^{\prime}\right)+\ell-s<(3(n-\ell+s)+2 s-1) / 5+\ell-s=(3 n+2 \ell-1) / 5$, a contradiction. We deduce that $\operatorname{diam}(T) \leq 3$. If $\operatorname{diam}(T)=2$, then T is a star, and thus $M(T)=n-1<(3 n+2 \ell-1) / 5$. Thus $\operatorname{diam}(T)=3$. Then T is a double-star. Now it can be easily seen that the assumption $M(T)=(3 n+2 \ell-1) / 5$ implies that $T=P_{4}$. The converse is obvious.

Acknowledgements The authors would like to thank both referees for their careful review and many helpful comments.

References

1. Balbuena, C., Foucaud, F., Hansberg, A.: Locating-dominating sets and identifying codes in graphs of girth at least 5. Electron. J. Combin. 22(2), P2.15 (2015)
2. Bertrand, N., Charon, I., Hudry, O., Lobstein, A.: Identifying and locating-dominating codes on chains and cycles. Eur. J. Combin. 25, 969-987 (2004)
3. Blidia, M., Chellali, M., Maffray, F., Moncel, J., Semri, A.: Locating-domination and identifying codes in trees. Australas. J. Combin. 39, 219-232 (2007)
4. Chellali, M.: On locating and differentiating-total domination in trees. Discuss. Math. Graph Theory 28, 383-392 (2008)
5. Chen, X.-G., Sohn, M.Y.: Bounds on the locating-total domination number of a tree. Discrete Appl. Math. 159, 769-773 (2011)
6. Foucaud, F., Henning, M.A.: Location-domination in line graphs. Discrete Math. 340, 3140-3153 (2017)
7. Foucaud, F., Perarnau, G.: Bounds for identifying codes in terms of degree parameters. Electron. J. Combin. 19(1), P32 (2012)
8. Foucaud, F., Klasing, R., Kosowski, A., Raspaud, A.: On the size of identifying codes in triangle-free graphs. Discrete Appl. Math. 160, 1532-1546 (2012)
9. Foucaud, F., Gravier, S., Naserasr, R., Parreau, A., Valicov, P.: Identifying codes in line graphs. J. Graph Theory 73, 425-448 (2013)
10. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998)
11. Haynes, T.W., Henning, M.A., Howard, J.: Locating and total dominating sets in trees. Discrete Appl. Math. 154, 1293-1300 (2006)
12. Karpovsky, M.G., Chakrabarty, K., Levitin, L.B.: On a new class of codes for identifying vertices in graphs. IEEE Trans. Inf. Theory 44, 599-611 (1998)
13. Ning, W., Lu, M., Guo, J.: Bounds on the differentiating-total domination number of a tree. Discrete Appl. Math. 200, 153-160 (2016)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: Nader Jafari Rad
 n.jafarirad@gmail.com

 Hadi Rahbani
 rahbanihadi@gmail.com
 Seyed Masoud MirRezaei
 sm.mirrezaei@shahroodut.ac.ir

 1 Department of Mathematics, Shahrood University of Technology, Shahrood, Iran
 2 Department of Mathematics, Shahed University, Tehran, Iran
 3 Department of Electrical Engineering, Shahrood University of Technology, Shahrood, Iran

