
Graphs and Combinatorics (2019) 35:599–609

https://doi.org/10.1007/s00373-019-02018-1

ORIG INAL PAPER

Bounds on the Identifying Codes in Trees

Hadi Rahbani1 · Nader Jafari Rad2 · Seyed Masoud MirRezaei3

Received: 12 February 2017 / Revised: 27 August 2018 / Published online: 20 February 2019

© Springer Japan KK, part of Springer Nature 2019

Abstract

In this paper, we continue the study of identifying codes in graphs, introduced by

Karpovsky et al. (IEEE Trans Inf Theory 44:599–611, 1998). A subset S of vertices

in a graph G is an identifying code if for every pair of vertices x and y of G, the sets

N [x] ∩ S and N [y] ∩ S are non-empty and different. The minimum cardinality of an

identifying code in G is denoted by M(G). We show that for a tree T with n ≥ 3

vertices, ℓ leaves and s support vertices, (2n − s + 3)/4 ≤ M(T ) ≤ (3n + 2ℓ − 1)/5.

Moreover, we characterize all trees achieving equality for these bounds.

Keywords Identifying code · Tree

Mathematics Subject Classification 05C69

1 Introduction

For notation and graph theory terminology in general we follow [10]. We consider

finite, undirected, and simple graphs G with vertex set V = V (G) and edge set

E = E(G). The number of vertices |V (G)| of a graph G is called the order of G and

is denoted by n = n(G). The open neighborhood of a vertex v ∈ V , denoted by N (v)

(or NG(v) to refer it to G), is the set {u ∈ V | uv ∈ E} and the degree of v, denoted

by deg(v) (or degG(v) to refer to G), is the cardinality of its open neighborhood. A

leaf of a tree T is a vertex of degree one, while a support vertex of T is a vertex
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adjacent to a leaf. A strong support vertex is a support vertex adjacent to at least two

leaves, and a weak support vertex is a support vertex adjacent to precisely one leaf.

We denote the set of all support vertices of a tree T by S(T ) and the set of leaves by

L(T ). We always denote ℓ = ℓ(T ) = |L(T )|, and s = s(T ) = |S(T )|. Whenever a

tree T ′ (or T ′′, …) is introduced, we let n′, ℓ′ (or n′′, ℓ′′,…) be its order, and number

of leaves, respectively. A rooted tree T distinguishes one vertex u called the root. For

each vertex v �= u of T we denote by Tv the sub-rooted tree rooted at v.

We also denote by ℓv the number of leaves adjacent to a support vertex v. We denote

a path of order n by Pn (or Pn : v1v2 . . . vn , where V (Pn) = {v1, . . . , vn} and vi is

adjacent to vi+1 for i = 1, 2, . . . , n − 1). The distance d(x, y) between two vertices

x and y is the length of a shortest path from x to y. The diameter diam(G) of a graph

G is the maximum distance over all pairs of vertices of G. For a rooted tree T and a

vertex v, we denote by Tv the sub-rooted tree, rooted at v. A subdivision of an edge uv

is obtained by replacing the edge uv with a path uwv, where w is a new vertex. The

subdivision graph of a graph G is the graph obtained from G by subdividing each edge

of G. The subdivision tree of a tree of order at least three, is called a healthy spider. A

wounded spider is the graph formed by removing at least one leaf of a healthy spider.

A spider is a tree which is either a healthy spider or a wounded spider.

A subset D of vertices in a graph G is an identifying code if for every two vertices x

and y of G, the sets N [x]∩D and N [y]∩D are non-empty and different. The minimum

cardinality of an identifying code in G is denoted by M(G). Any identifying code with

M(G) elements is called a M(G)-set. Identifying codes were defined in [12] to model

fault diagnosis in multiprocessor systems. In these systems, it may happen that some

of the processors become faulty, in some sense that depends on the purpose of the

system, and we wish to detect and replace such processors, so that the system can

work properly. This concept was further studied in, for example, [1–3,5–9]. Bertrand

et al. [2] obtained the minimum cardinality of an identifying code in a path.

Theorem 1 (Bertrand et al. [2]) For a path Pn , M(Pn) = (n + 1)/2 if n ≥ 1 is odd,

and M(Pn) = (n + 2)/2 if n ≥ 4 is even.

Blidia et al. [3] obtained the following lower bound for the minimum cardinality

of an identifying code of a tree.

Theorem 2 (Blidia et al. [3]) If T is a tree of order n ≥ 4, then M(T ) ≥ 3(n + ℓ

− s + 1)/7, and this bond is sharp for infinitely many values of n.

In this paper we show that for a tree T with n ≥ 3 vertices, l leaves and s support

vertices, (2n − s + 3)/4 ≤ M(T ) ≤ (3n + 2ℓ − 1)/5. Moreover, we characterize all

trees achieving these bounds. With our lower bound, the bound given in Theorem 2

is improved for trees of order n with ℓ leaves and s support vertices, where 2n + 9

≥ 12ℓ − 5s. The following is useful.

Observation 3 (Blidia et al. [3]) If C is a M(T )-set in a tree T , then at most one vertex

of Lx is not in C for each support vertex x, where Lx is the set consisting x and all of

its leaves. Moreover, C contains at least ℓ vertices of L(T ) ∪ S(T ).

We end this section by stating a variant of domination, namely differentiating-total

dominating set which is similar to an identifying code. A total dominating set of a graph
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G with no isolated vertex is a set S of vertices such that every vertex of G is adjacent to

a vertex in S. A total dominating set S of a graph G is a differentiating-total dominating

set if for every pair of distinct vertices u and v in V (G), N [u] ∩ S �= N [v] ∩ S. Let

γ D
t (G) be the minimum cardinality of a differentiating-total dominating set of G. This

variant has been introduced by Haynes, Henning and Howard [11], and further studied,

for example in, [4,13]. The following follows immediately from the definition.

Observation 4 Any differentiating-total dominating set in a graph is an identifying

code.

2 Lower Bound

In this section we give a lower bound on the identifying code of a tree, and characterize

all trees achieving equality of the lower bound. The corona of two graphs G1 and G2,

denoted by G1 ◦ G2, is a graph obtained by taking one copy of G1 and |V (G1)| copies

of G2, and then joining each vertex of the i-th copy of G2 to the i-th vertex of G1,

where 1 ≤ i ≤ |V (G1)|. If G2 = K1, then we denote G1 ◦ G2 by cor(G1).

Theorem 5 If T is a tree of order n ≥ 4 with s support vertices, then M(T )

≥ (2n − s + 3)/4, with equality if and only if T = P3 or T = cor(P3).

Proof We proceed by induction on the order n. If 3 ≤ n ≤ 5, then it can be easily

checked that M(T ) ≥ (2n − s +3)/4, and equality holds if and only if T = P3. These

are sufficient for the base step of the induction. Assume that the result holds for any

tree T ′ of order n′ < n. Now consider the tree T of order n ≥ 6. Let C be a M(T )-set

that contains as few leaves of T as possible. Assume that u, v ∈ V −C and uv ∈ E(T ).

Let Tu and Tv be the components of T − uv with u ∈ V (Tu) and v ∈ V (Tv). Assume

that w ∈ V (Tu) ∩ C , then N (w) − N (u) �= ∅. Hence |V (Tu)| ≥ |N (w)| ≥ 3 and

similarly |V (Tv)| ≥ 3. Since u /∈ C , the set C ∩ V (Tu) is an identifying code for

Tu and also the set C ∩ V (Tv) is an identifying code of Tv . Hence by the induction

hypothesis, we have

|C | = |C ∩ V (Tu)| + |C ∩ V (Tv)|

≥ (2|V (Tu)| − |S(Tu)| + 3)/4 + (2|V (Tv)| − |S(Tv)| + 3)/4

≥ (2n − (s + 2) + 6)/4 > (2n − s + 3)/4.

Thus V − C is an independent set.

Now assume that there exists a vertex w ∈ V − C , such that deg(w) ≥ 3. Let

{x, y, z} ⊆ N (w). Since V − C is an independent set, we have {x, y, z} ⊆ C . Let

Tx and Tw be the components of T − xw with x ∈ V (Tx ) and w ∈ V (Tw). Clearly

C ∩ V (Tx ) is an identifying code for Tx and C ∩ V (Tw) is an identifying code for Tw.

By the inductive hypothesis,

|C | = |C ∩ V (Tx )| + |C ∩ V (Tw)|

≥ (2|V (Tx )| − |S(Tx )| + 3)/4 + (2|V (Tw)| − |S(Tw)| + 3)/4

≥ (2n − (s + 1) + 6)/4 > (2n − s + 3)/4.
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Thus we assume for the next that deg(w) ≤ 2 for every vertex w ∈ V − C .

Assume that T [C] is connected. Then deg(w) = 1 for every vertex w ∈ V − C ,

and so V − (L ∪ S) ⊆ C . By Observation 3, C contains at least ℓ vertices of L ∪ S.

Thus |C | ≥ |V − (L ∪ S)|+ |C ∩ (L ∪ S)| ≥ |V − (L ∪ S)|+ l = n − s. If ℓ ≥ 4, then

2n ≥ 2ℓ+ 2s ≥ 3s + ℓ ≥ 3s + 4 and so M(T ) ≥ n − s > (2n − s + 3)/4, as desired.

Thus we may assume that ℓ ≤ 3. If ℓ > s, then l = 3 and s = 2, since n ≥ 6. Hence

2n ≥ 2ℓ+ 2s ≥ 10 and thus M(T ) ≥ n − s = n − 2 > (2n + 1)/4 = (2n − s + 3)/4,

as desired. Thus we may assume that ℓ = s. Similarly, we may assume that n = ℓ+ s.

If ℓ = 2, then n = 4, a contradiction. Thus assume that ℓ = 3. Then T = cor(P3)

and M(T ) = 3 = (2n − s + 3)/4.

Next assume that T [C] is not connected. Let C1 be a largest component of T [C].

If |V (C1)| = 1, then C is independent, L ⊆ C and deg(w) = 2 for every vertex

w ∈ V − C . We show that n = 2|C | − 1. Let T ∗ be the graph of order |C | with

V (T ∗) = C such that uv ∈ E(T ∗) if and only if there exists a vertex w ∈ V − C

with NT (u) ∩ NT (v) = {w}. Then |E(T ∗)| = |V − C | and since T is a tree, by the

construction of T ∗, it follows that T ∗ is a tree. Therefore we have, n = |C | + |V − C |

= |C | + |E(T ∗)| = |C | + |C | − 1 = 2|C | − 1. Now, since T is not a star, we have

|C | = (n + 1)/2 > (2n − s + 3)/4, as desired. Thus, assume that |V (C1)| ≥ 2. If

|V (C1)| = 2 and C1 = {x, y}, then N (x) ∩ C = {x, y} = N (v) ∩ C , a contradiction.

Hence |V (C1)| ≥ 3. Let v ∈ V (C1) be a vertex such that N (v) − V (C1) �= ∅, and

w ∈ N (v) − V (C1) be a vertex with deg(w) = 2. Let N (w) = {u, v}. Since T [C1]

is connected, we find that u /∈ C1. Assume that deg(v) = 2. Let T ′ = T − wu, and

Tw and Tu be the components of T − wu with w ∈ V (Tw) and u ∈ V (Tu). Clearly

C∩V (Tw) is an identifying code for Tw and C∩V (Tu) is an identifying code for Tu . By

the inductive hypothesis, we can easily obtain that |C | = |C ∩ V (Tw)| + |C ∩ V (Tu)|

≥ (2|V (Tw)|− |S(Tw)|+3)/4+ (2|V (Tu)|− |S(Tu)|+3)/4 > (2n − s +3)/4. Thus

we may assume that deg(v) ≥ 3.

Assume that N (u) ∩ C �= ∅. If deg(u) = 2, then the result follows as before by

letting T ′ = T −wv. Thus assume that deg(u) ≥ 3. Let Tv and Tu be the components

of T −w with v ∈ V (Tv) and u ∈ V (Tu). As before, C ∩ V (Tv) is an identifying code

for Tv and C ∩ V (Tu) is an identifying code for Tu . By the inductive hypothesis, we

have |C | = |C ∩ V (Tu)| + |C ∩ V (Tv)| ≥ (2|V (Tu)| − |S(Tu)| + 3)/4 + (2|V (Tv)|

− |S(Tv)| + 3)/4 ≥ (2n − s + 6)/4 > (2n − s + 3)/4. Thus we may assume that

N (u) ∩ C = ∅. Let Tu and Tv be the components of T − w, defined as before. If

|V (Tu)| = 1, then C ′ = (C − {u}) ∪ {w} is a M(T )-set with |L ∩ C ′| < |L ∩ C |, a

contradiction by the choice of C ( since C is a M(T )-set that contains as few leaves

of T as possible.) Thus, |V (Tu)| ≥ 2, and so we obtain that |V (Tu)| ≥ 3. If Tu is a

path, then by Theorem 1, we have,

M(T ) = |C ∩ V (Tu)| + |C ∩ V (Tv)| ≥ M(Tu) + |Cv|

≥ (nu + 1)/2 + (2nv − sv + 3)/4

> (2nu − su + 3)/4 + (2nv − sv + 3)/4

= (2(nu + nv) − (su + sv) + 6)/4

= (2(n−1) − (s+1) + 6)/4 = (2n−s+3)/4.
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Thus we assume that Tu is not a path. Let u′ ∈ V (Tu) be a vertex such that deg(u′)

≥ 3 and every internal vertex in the (u, u′)-path has degree two. Let d = d(u, u′)

and P be the (u, u′)-path. Let P : x0x1 . . . xd , where x0 = u and xd = u′. Assume

that |N (xi ) ∩ C | = 1 for some i ∈ {0, 1, . . . , d − 1}. Without loss of generality,

assume that xi−1 ∈ N (xi ) ∩ (V − C). Then the result follows easily as before by

letting T ′ = T − xi−1xi−2. Thus we may assume that N (xi ) ∩ C = ∅ for every

i = 0, 1, . . . , d − 1. Since V − C is independent and u ∈ C , we have x2 j ∈ C

for j = 0, 1, . . . , ⌊d/2⌋. Since xd = u′ ∈ C , we find that d is even. We deduce

that |C ∩ (V (P) − {u′})| = d/2. Assume that Tv, Tu′ are the two components of

(T − (V (P) ∪ {w})) ∪ {u′}, with v ∈ V (Tv) and u′ ∈ V (Tu′). As before, C ∩ V (Tv)

is an identifying code for Tv and C ∩ V (Tu′) is an identifying code for Tu′ . By the

inductive hypothesis,

|C | = |C ∩ V (Tu′)| + |C ∩ V (Tv)| + d/2

≥ (2|V (Tu′)| − |S(Tu′)| + 3)/4 + (2|V (Tv)| − |S(Tv)| + 3)/4 + d/2

= (2(n − d − 1) − s + 6)/4 + d/2 > (2n − s + 3)/4.

This completes the proof. ⊓⊔

We note that if 2n + 9 ≥ 12ℓ − 5s, then the lower bound of Theorem 5 is better

than the bound given in Theorem 2.

3 Upper Bound

We begin this section with the following.

Theorem 6 (Ning et al. [13]) If T is a tree of order n ≥ 3 with ℓ leaves, then γ D
t (T )

≤ 3(n + ℓ)/5, with equality if and only if T = P3, or T ∈ F .

As noted in Observation 4, any differentiating-total dominating set is an identifying

code, as well. Thus for any graph G, M(G) ≤ γ D
t (G). Now from Theorem 6, we obtain

the following upper bound.

Corollary 7 For any tree T of order n ≥ 4, M(T ) ≤ 3(n + ℓ)/5.

Our aim in this section is to improve Corollary 7 for any tree T of order n ≥ 3.

We show that for any tree T of order n ≥ 3 with ℓ leaves, M(T ) ≤ (3n + 2ℓ − 1)/5,

and characterize all trees achieving equality for this bound. We first present some

necessary lemmas. The following is easily verified.

Lemma 8 If T is a tree obtained from a tree T ′ of order n′ ≥ 3 by adding a leaf to T ′,

then M(T ) ≤ M(T ′) + 1.

Proof Assume that T ′ is a tree of order n′ ≥ 3 and T is obtained from T ′ by adding a

new vertex w to T ′ with edge wv, where v ∈ V (T ′). Let C ′ be a M(T ′)-set. If v /∈ C ′,

then C ′ ∪ {w} is an identifying code for T , and so M(T ) ≤ M(T ′) + 1. Thus assume
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that v ∈ C ′. If NT ′(v) ∩ C ′ �= ∅, then C ′ ∪ {w} is an identifying code for T , and so

the result follows. Thus assume that NT ′(v) ∩ C ′ = ∅. Let u ∈ NT ′(v). Then C ′ ∪ {u}

is an identifying code for T , and so M(T ) ≤ M(T ′) + 1. ⊓⊔

Lemma 9 Let T ∗ be a spider tree with central vertex w such that deg(w) ≥ 2, and T ′

be an arbitrary tree. Let T be a tree obtained from T ′ and T ∗ by joining w to a vertex

v ∈ V (T ′), and T ′′ = T ′ − v. If deg(v) ≥ 3 and M(T ′) ≤ (3n(T ′) + 2ℓ(T ′) − 1)/5

or deg(v) = 2 and M(T ′′) ≤ (3n(T ′′) + 2ℓ(T ′′) − 1)/5, then M(T ) < (3n(T )

+ 2ℓ(T ) − 1)/5.

Proof Each vertex of N (w) is a leaf or a support vertex of degree two, since T ∗ is

a spider tree. Let r1 be the number of leaves of T ∗ at distance one from w and r2

be the number of leaves of T ∗ at distance two from w. Let C ′ be a M(T ′)-set. If

deg(v) ≥ 3, then C = C ′ ∪ NT ∗[w] is an identifying code for T . Thus we obtain that

M(T ) ≤ M(T ′) + r2 + r1 + 1 ≤ (3n′ + 2ℓ′ − 1)/5 + r2 + r1 + 1 < (3n + 2ℓ − 1)/5,

since n′ = n − 2r2 − r1 − 1 and ℓ′ = ℓ − r1 − r2. Thus assume that deg(v) = 2.

If C ′′ is a M(T ′′)-set, then C = C ′′ ∪ NT ∗[w] is an identifying code for T . Hence

M(T ) ≤ M(T ′′)+ r2 + r1 +1 ≤ (3n′′ +2ℓ′′ −1)/5+ r2 + r1 +1 < (3n +2ℓ−1)/5,

since n′′ = n − 2r2 − r1 − 2 and ℓ′′ ≤ ℓ − r1 − r2 + 1. ⊓⊔

Lemma 10 Let T ′ be an arbitrary tree and v ∈ V (T ′) be a vertex with deg(v) ≥ 2,

and T be a tree obtained from T ′ by joining v to a leaf of a path P3. If M(T ′)

≤ (3n(T ′) + 2ℓ(T ′) − 1)/5, then M(T ) < (3n(T ) + 2ℓ(T ) − 1)/5.

Proof Assume that T is obtained from T ′ by joining v to the leaf w of a

path P3 = wzy. Let C ′ be a M(T ′)−set. If v ∈ C ′, then C ′ ∪ {w, z} is

an identifying code for T and if v /∈ C ′, then C ′ ∪ {w, y} is an identifying

code for T . Hence M(T ) ≤ M(T ′) + 2 ≤ (3n(T ′) + 2ℓ(T ′) − 1)/5 + 2

≤ (3(n − 3) + 2(ℓ − 1) − 1)/5 + 2 < (3n + 2ℓ − 1)/5. ⊓⊔

We are now ready to present the main result of this section.

Theorem 11 For any tree T , of order n ≥ 3 with ℓ leaves, M(T ) ≤ (3n + 2ℓ − 1)/5.

Equality holds if and only if T = P4.

Proof We use an induction on the order n of T to prove the upper bound. The base

step is obvious for n = 3 and n = 4. Assume that for any tree T ′ of order n′ < n,

with l ′ leaves, M(T ′) ≤ (3n′ + 2ℓ′ − 1)/5. Now consider the tree T of order n > 4.

Assume that T has a strong support vertex. Let v be a strong support vertex, and

u be a leaf adjacent to v. Let T ′ = T − u. By Lemma 8, M(T ) ≤ M(T ′) + 1.

By the inductive hypothesis, M(T ) ≤ M(T ′) + 1 ≤ (3n(T ′) + 2ℓ(T ′) − 1)/5 + 1

= (3(n − 1) + 2(ℓ − 1) − 1)/5 + 1 = (3n + 2ℓ − 1)/5. Thus we may assume for the

next that T has no strong support vertex.

Let d = diam(T ). Since n > 4 and T has no strong support vertex, we have d ≥ 4.

We root T at a leaf x0 of a diametrical path x0x1 . . . xd from x0 to a leaf xd farthest

from x0. Thus, deg(xd−1) = deg(x1) = 2.

Assume that d = 4. Note that deg(x3) = 2. If deg(x2) = 2, then T = P5, and

M(T ) = 3 < (3n+2ℓ−1)/5. Thus assume that deg(x2) > 2. If x2 is a support vertex,
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then T has deg(x2)−1 support vertices of degree two. Then N [x2]−L is an identifying

code for T , implying that M(T ) ≤ deg(x2) < (3n + 2ℓ − 1)/5, since n = 2 deg(x2)

and ℓ = deg(x2). Thus assume that x2 is not a support vertex. Then T has deg(x2)

support vertices of degree two, and we can see that N [x2] is an identifying code for

T , implying that M(T ) ≤ deg(x2) + 1 < (3n + 2ℓ − 1)/5, since n = 2 deg(x2) + 1

and ℓ = deg(x2).

Assume next that d = 5. Note that deg(x4) = 2. Assume that deg(x3) = 2. If

deg(x2) = 2, then T = P6, and M(T ) = 4 < (3n + 2ℓ − 1)/5. Thus assume that

deg(x2) > 2. Since d = 5, any vertex of N (x2) − {x3} is a leaf or a support vertex

of degree two. Assume that x2 is a support vertex. There is a unique leaf adjacent to

x2. Then S(T ) ∪ {x3} is an identifying code for T , implying that M(T ) ≤ |S(T )| + 1

= deg(x2) + 1 < (3n + 2ℓ − 1)/5, since n = 2 deg(x2) + 1 and ℓ = deg(x2).

Thus assume that x2 is not a support vertex. Then S(T ) ∪ {x2, x3} is an identifying

code for T , implying that M(T ) ≤ |S(T )| + 2 = deg(x2) + 2 < (3n + 2ℓ − 1)/5,

since n = 2 deg(x2) + 2 and ℓ = deg(x2). Thus assume that deg(x3) ≥ 3, and

similarly, deg(x2) ≥ 3. Since T has no strong support vertex, any child of x3 is a leaf

or a support vertex of degree two. Let r1 be the number of leaves of Tx3 at distance

one from x3 and r2 be the number of leaves of Tx3 at distance two from x3. Note

that deg(x3) = r1 + r2 + 1. Let T ′ = T − Tx3 , then n′ = n − r1 − 2r2 − 1 and

ℓ′ = ℓ − r1 − r2. If C ′ is a M(T ′)-set, then C = C ′ ∪ NTx3
[x3] is an identifying code

for T . Hence M(T ) ≤ M(T ′) + r2 + r1 + 1 ≤ (3n′ + 2ℓ′ − 1)/5 + r2 + r1 + 1

= (3n + 2ℓ − 3r2 + 1)/5 < (3n + 2ℓ − 1)/5, since r2 ≥ 1.

Thus assume that d ≥ 6. If deg(xd−2) ≥ 3, then by the inductive hypothesis

and Lemma 9, M(T ) < (3n + 2ℓ − 1)/5, since Txd−2
is a spider. Thus assume that

deg(xd−2) = 2. If deg(xd−3) ≥ 3, then from the inductive hypothesis and Lemma 10,

we obtain M(T ) < (3n + 2ℓ − 1)/5. We thus assume that deg(xd−3) = 2.

We next proceed according to the value of deg(xd−4). First assume that deg(xd−4)

= 2. Assume that deg(xd−5) ≥ 3. Let T ′ = T − Txd−4
, and C ′ be a M(T ′)−set. Then

C ′ ∪ {xd−1, xd−2, xd−3} is an identifying code for T . By the inductive hypothesis,

M(T ) ≤ M(T ′) + 3 ≤ (3(n − 5) + 2(ℓ − 1) − 1)/5 + 3 < (3n + 2ℓ − 2)/5. We

thus assume that deg(xd−5) = 2. Assume that deg(xd−6) ≥ 3. Let y′′
0 be a leaf of

Txd−6
− {xd , xd−1, . . . , xd−5} at maximum distance from xd−6, and y′′

0 y′′
1 . . . y′′

t xd−6

be the shortest path from y′′
0 to xd−6 in Txd−6

− {xd , xd−1, . . . , xd−5}. Clearly t ≤ 5.

With a similar argument as before, we can assume that t ∈ {0, 3, 5}, and deg(y′′
i ) = 2

for i = 1, . . . , t − 1 if t ∈ {3, 5}. Let A be the set vertices of Txd−6
at even distance

from xd−6. Let T ′ = T − Txd−6
, and C ′ be a M(T ′)-set. Then C ′ ∪ A ∪ {xd−6, xd−5}

is an identifying code for T . Let ri be the number of leaves of Txd−6
at distance i from

xd−6 for i ∈ {1, 4, 6}. By the inductive hypothesis,

M(T ) ≤ M(T ′) + |A| + 2

= M(T ′) + 3r6 + 2r4 + 2

≤ (3(n−6r6−4r4−r1−1) + 2(ℓ − r6 − r4 − r1 + 1) − 1)/5+3r6 + 2r4 + 2

< (3n + 2ℓ − 2)/5.
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We thus assume that deg(xd−6) = 2. If T = P8 or T = P9, then M(T ) = 5

< (3n + 2ℓ − 1)/5. Thus n > 9. Let T ′ = T − Txd−6
, and C ′ be a M(T ′)-set.

If xd−7 ∈ C ′, then C ′ ∪ {xd−1, xd−2, xd−3, xd−5} is an identifying code of T , and

if xd−7 /∈ C ′, then C ′ ∪ {xd , xd−2, xd−4, xd−6} is a identifying code of tree T . By

the inductive hypothesis, M(T ) ≤ M(T ′) + 4 ≤ (3(n − 7) + 2ℓ − 1)/5 + 4 <

(3n + 2ℓ − 1)/5.

Next assume that deg(xd−4) ≥ 3. Let y0 be a leaf of Txd−4
−{xd , xd−1, xd−2, xd−3}

at maximum distance from (xd−4), and y0 y1 . . . yq xd−4 be the shortest path from y0

to xd−4. Clearly q ≤ 3.

Assume that q = 3. Since y0 plays the same role of xd , we may assume that

deg(yi ) = 2 for i = 1, 2, 3. By Lemmas 9 and 10, we may assume that Txd−4
has

no leaf at distance 3 from xd−4. Assume that Txd−4
has a leaf b at distance 2 from

xd−4, and let a be the support vertex adjacent to b. Evidently, deg(a) = 2. Let T ′

= T − {xd , xd−1, xd−2, xd−3}, and C ′ be a M(T ′)-set. If xd−4 /∈ C ′, then N (a) ∩ C ′

= N (b)∩C ′, a contradiction. Hence xd−4 ∈ C ′ and so C ′∪{xd , xd−2} is an identifying

code for T . Then by the inductive hypothesis, we obtain M(T ) ≤ |C ′| + 2 ≤ (3(n

− 4)+ 2(ℓ− 1)− 1)/5 + 2 < (3n + 2ℓ− 1)/5. We thus assume that Txd−4
has no leaf

at distance 2 from xd−4. Let r1 be the number of leaves of Txd−4
adjacent to xd−4, and

r4 be the number of leaves of Txd−4
at distance four from xd−4. Note that r1 ≤ 1. Let A

be the set of all vertices of Txd−4
at distance 2 or 4 from xd−4. Assume that r1 = 1. Let

T ′ = T −Txd−4
. If C ′ is a M(T ′)-set, then C ′∪ A∪{xd−3, xd−4} is an identifying code

for T . Then by the inductive hypothesis, M(T ) ≤ M(T ′)+|A|+2 ≤ (3(n −4r4 −2)

+2(ℓ−r4)−1)/5+2r4+2 = ((3n+2ℓ−2)−4r4−3r1+7)/5 < (3n+2ℓ−2)/5, since

r4 ≥ 2. Thus assume that r1 = 0. If deg(xd−5) ≥ 2, then the result follows as before

by letting T ′ = T − Txd−4
. Thus assume that deg(xd−5) = 2. Let T ′ = T − Txd−5

,

and C ′ be a M(T ′)-set. Then (C ′ ∪ A) ∪ {xd−3, xd−4} is an identifying code for T .

Then M(T ) ≤ M(T ′) + |A| + 2 ≤ (3(n − 4r4 − 2) + 2(ℓ − r4 + 1) − 1)/5 + 2r4 + 2

= ((3n + 2ℓ − 2) − 4r4 + 6)/5 < (3n + 2ℓ − 2)/5.

Assume next that q = 2. Then deg(y1) = 2. If deg(y2) ≥ 3, then the inductive

hypothesis and Lemma 9 imply that, M(T ) < (3n + 2ℓ − 1)/5. Thus assume that

deg(y2) = 2. Then by the inductive hypothesis and Lemma 10, we have M(T ) <

(3n + 2ℓ − 1)/5.

Now assume that q = 1. Then deg(y1) = 2. Let T ′ = T − {xd , xd−1, xd−2, xd−3},

and C ′ be a M(T ′)−set. If xd−4 /∈ C ′, then N (y0)∩C ′ = N (y1)∩C ′, a contradiction.

Hence xd−4 ∈ C ′ and so C ′ ∪ {xd , xd−2} is an identifying code for T . Then M(T )

≤ M(T ′) + 2 ≤ (3(n − 4) + 2(ℓ − 1) − 1)/5 + 2 < (3n + 2ℓ − 2)/5.

It remains to assume that q = 0. Observe that xd−4 is a weak support vertex.

Furthermore, deg(xd−4) = 3. Assume that deg(xd−5) ≥ 3. Let T ′ = T − Txd−4
,

and C ′ be a M(T ′)-set. Clearly n(T ′) ≥ 3. Then C ′ ∪ {xd−1, xd−2, xd−3, xd−4} is

an identifying code for T , and so by the inductive hypothesis, M(T ) ≤ M(T ′) + 4

≤ (3n(T ′)+ 2ℓ(T ′)− 1)/5 + 4 < (3n + 2ℓ− 2)/5, since n(T ′) = n − 6 and ℓ(T ′) =

ℓ − 2. Thus assume that deg(xd−5) = 2. If d = 6, then T is a tree obtained from the

path P7 : x0x1 . . . x6 by adding a leaf to x2, and note that M(T ) = 5 < (3n+2ℓ−1)/5.

We thus assume that d ≥ 7.

Assume that deg(xd−6) = 2. If d = 7, then T is obtained from a path

P8 : x0x1 . . . x7 by adding a leaf to x3, and so we can see that M(T ) ≤ 6
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< (3n +1ℓ−2)/5. If d = 8, then deg(x2) = 2, since x0 can plays the same role of xd .

So T is obtained from a path P9 : x0x1 . . . x8 by adding a leaf to x4, and we observe that

M(T ) ≤ 6 < (3n+1ℓ−2)/5. Thus assume that d ≥ 9. Let T ′ = T −Txd−6
, and let C ′

be a M(T ′)-set. Then C ′ ∪ {xd−1, xd−2, xd−3, xd−4, xd−5} is an identifying code for

T . By the inductive hypothesis, M(T ) ≤ M(T ′) + 5 ≤ (3n(T ′) + 2ℓ(T ′) − 1)/5 + 4

< (3n + 2ℓ − 2)/5, since n(T ′) = n − 8 and ℓ(T ′) ≤ ℓ − 1.

Thus assume that deg(xd−6) ≥ 3. Let T ′ = T − Txd−5
, and C ′ be a M(T ′)-set. If

xd−6 ∈ C ′, then C ′ ∪ {xd , xd−2, xd−4, xd−5} is an identifying code for T , and by the

inductive hypothesis, M(T ) ≤ M(T ′) + 4

≤ (3n(T ′) + 2ℓ(T ′) − 1)/5 + 4 < (3n + 2ℓ − 2)/5, since n(T ′) = n − 7 and

ℓ(T ′) = ℓ − 2. Thus we assume that xd−6 /∈ C ′. Hence xd−6 does not have a child

which is a support vertex of degree two.

Let y′
0 be a leaf of Txd−6

− {y0, xd , xd−1, . . . , xd−5} at maximum distance from

xd−6, and y′
0 y′

1 . . . y′
t xd−6 be the shortest path from y′

0 to xd−6. Clearly, t ≤ 5. As

noted earlier, t �= 1. We proceed depending on t .

Assume that t = 5. Since y′
0 plays the same role of xd , we may assume

that deg(y′
i ) = 2 for i = 1, 2, 3, 5, and y′

4 is a support vertex of degree

three. Let T ′ = T − Ty′
5
, and C ′ be a M(T ′)-set. If xd−6 /∈ C ′, then |C ′ ∪

{xd , xd−1, xd−2, xd−3, xd−4, xd−5, y0}| ≥ 5. Then C ′′ = (C ′−{xd , xd−1, xd−2, xd−3,

xd−4, xd−5, y0})∪{xd , xd−2, xd−4, xd−5, xd−6} is a M(T ′)-set. Thus we may assume

that xd−6 ∈ C ′. Then C = C ′ ∪ {y′
1, y′

2, y′
3, y′

4} is an identifying code for T . By

the inductive hypothesis, M(T ) ≤ M(T ′) + 4 ≤ (3n(T ′) + 2ℓ(T ′) − 1)/5 + 4 ≤

(3(n − 7) + 2(ℓ − 2) − 1)/5 + 4 < (3n + 2ℓ − 2)/5.

If t = 4, then by Lemmas 9 and 10 we may assume that deg(y′
1) = deg(y′

2)

= deg(y′
3) = 2. Assume that deg(y′

4) = 2. Let T ′ = T − Ty′
4
, and C ′ be a M(T ′)−set.

Then C ′ ∪ {y′
1, y′

2, y′
3} is an identifying code for T , and by the inductive hypothesis,

M(T ) ≤ M(T ′)+3 ≤ (3n(T ′)+2ℓ(T ′)−1)/5+3 = (3(n−5)+2(ℓ−1)−1)/5+3

< (3n + 2ℓ − 2)/5. Thus assume that deg(y′
4) ≥ 3. By Lemmas 9 and 10, we may

assume that there is no leaf in Ty′
4

at distance 3 from y′
4. Thus any leaf of Ty′

4
is at

distance 1, 2 or 4 from y′
4. Let ri be the number of leaves of Ty′

4
at distance i from

y′
4 for i = 1, 2, 4. Since T has no strong support vertex, r1 ≤ 1. Note that for every

leaf x of Ty′
4

at distance 2 or 4 from y′
4, any internal vertex w of the path from x to y′

4

(w /∈ {x, y′
4}) has degree two. Let A be the set of vertices Ty′

4
at distance 2 or 4 from

y′
4. Let T ′ = T − Ty′

4
, and C ′ be a M(T ′)-set. Then C ′ ∪ A ∪{y′

3, y′
4} is an identifying

code for T . Thus by the inductive hypothesis,

M(T ) ≤ M(T ′) + |A| + 2

= M(T ′) + 2r4 + r2 + 2

≤ (3n(T ′) + 2ℓ(T ′) − 1)/5 + 2r4 + 2

≤ (3(n−4r4−2r2−r1−1) + 2(ℓ − r4 − r2 − r1) − 1)/5 + 2r4 + r2 + r1 + 1

≤ (3n + 2ℓ − 1 + (−4r4 − 3r2 − 5r1 + 7))/5

< (3n + 2ℓ − 1))/5.
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Next assume that t = 3. By Lemmas 9 and 10, we may assume that deg(y′
1)

= deg(y′
2) = deg(y′

3) = 2. Let T ′ = T − Ty′
3

and C ′ be a M(T ′)-set. If xd−6 /∈ C ′,

then clearly |C ′ ∪ {xd , xd−1, xd−2, xd−3, xd−4, xd−5, y0}| ≥ 5, and so C ′′ = (C ′

−{xd , xd−1, xd−2, xd−3, xd−4, xd−5, y0})∪{xd , xd−2, xd−4, xd−5, xd−6} is a M(T ′)-

set. Thus we may assume that xd−6 ∈ C ′. Then C = C ′ ∪ {y′
0, y′

2} is an identifying

code for T . By the inductive hypothesis, M(T ) ≤ M(T ′) + 2 ≤ (3n(T ′) + 2ℓ(T ′)

− 1)/5 + 3 = (3(n − 4) + 2(ℓ − 1) − 1)/5 + 2 < (3n + 2ℓ − 2)/5.

Next assume that t = 2. We may assume that deg(y′
1) = 2. Now the result follows

by the inductive hypothesis and Lemmas 9 and 10. Since xd−6 does not have a child

which is a support vertex of degree two, we have t �= 1.

Hence t = 0. Then xd−6 is a support vertex of degree 3. Let T ′ = T − Txd−6
.

If n(T ′) = 1, then n = 10, and {xd , xd−2, xd−4, xd−5, xd−6, y′
0} is an identifying

code for T , and so M(T ) = 6 < (3n + 2ℓ − 1)/5. If n(T ′) = 2, then n = 11,

and {xd , xd−2, xd−4, xd−5, xd−6, xd−7} is an identifying code for T , and so M(T )

= 6 < (3n + 2ℓ − 1)/5. Thus we assume that n(T ′) ≥ 3. Let C ′ be a M(T ′)-set.

Then C ′ ∪{xd , xd−2, xd−4, xd−5, xd−6} is an identifying code for T . By the inductive

hypothesis, M(T ) ≤ M(T ′) + 5 ≤ (3n(T ′) + 2ℓ(T ′) − 1)/5 + 4 < (3n + 2ℓ − 2)/5.

Thus the upper bound is proved.

Now we prove the second part of the theorem. Let T be a tree of order n ≥ 3, with

M(T ) = (3n + 2ℓ − 1)/5. Suppose that diam(T ) ≥ 4. If T has no strong support

vertex, then as it is seen above, M(T ) < (3n+2ℓ−1)/5, a contradiction. Thus assume

that T has some strong support vertex. Let T ′ be a tree obtained from T by removing

ℓv −1 leaves of every strong support vertex v. Clearly T ′ has no strong support vertex,

and as before, M(T ′) < (3n(T ′) + 2ℓ(T ′) − 1)/5 = (3(n − ℓ + s) + 2s − 1)/5. By

Lemma 8, M(T ) ≤ M(T ′)+ℓ−s < (3(n−ℓ+s)+2s−1)/5+ℓ−s = (3n+2ℓ−1)/5,

a contradiction. We deduce that diam(T ) ≤ 3. If diam(T ) = 2, then T is a star, and

thus M(T ) = n − 1 < (3n + 2ℓ− 1)/5. Thus diam(T ) = 3. Then T is a double-star.

Now it can be easily seen that the assumption M(T ) = (3n + 2ℓ − 1)/5 implies that

T = P4. The converse is obvious. ⊓⊔

Acknowledgements The authors would like to thank both referees for their careful review and many helpful

comments.

References

1. Balbuena, C., Foucaud, F., Hansberg, A.: Locating-dominating sets and identifying codes in graphs of

girth at least 5. Electron. J. Combin. 22(2), P2.15 (2015)

2. Bertrand, N., Charon, I., Hudry, O., Lobstein, A.: Identifying and locating-dominating codes on chains

and cycles. Eur. J. Combin. 25, 969–987 (2004)

3. Blidia, M., Chellali, M., Maffray, F., Moncel, J., Semri, A.: Locating-domination and identifying codes

in trees. Australas. J. Combin. 39, 219–232 (2007)

4. Chellali, M.: On locating and differentiating-total domination in trees. Discuss. Math. Graph Theory

28, 383–392 (2008)

5. Chen, X.-G., Sohn, M.Y.: Bounds on the locating-total domination number of a tree. Discrete Appl.

Math. 159, 769–773 (2011)

6. Foucaud, F., Henning, M.A.: Location-domination in line graphs. Discrete Math. 340, 3140–3153

(2017)

123



Graphs and Combinatorics (2019) 35:599–609 609

7. Foucaud, F., Perarnau, G.: Bounds for identifying codes in terms of degree parameters. Electron. J.

Combin. 19(1), P32 (2012)

8. Foucaud, F., Klasing, R., Kosowski, A., Raspaud, A.: On the size of identifying codes in triangle-free

graphs. Discrete Appl. Math. 160, 1532–1546 (2012)

9. Foucaud, F., Gravier, S., Naserasr, R., Parreau, A., Valicov, P.: Identifying codes in line graphs. J.

Graph Theory 73, 425–448 (2013)

10. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Marcel Dekker,

New York (1998)

11. Haynes, T.W., Henning, M.A., Howard, J.: Locating and total dominating sets in trees. Discrete Appl.

Math. 154, 1293–1300 (2006)

12. Karpovsky, M.G., Chakrabarty, K., Levitin, L.B.: On a new class of codes for identifying vertices in

graphs. IEEE Trans. Inf. Theory 44, 599–611 (1998)

13. Ning, W., Lu, M., Guo, J.: Bounds on the differentiating-total domination number of a tree. Discrete

Appl. Math. 200, 153–160 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

123


	Bounds on the Identifying Codes in Trees
	Abstract
	1 Introduction
	2 Lower Bound
	3 Upper Bound
	Acknowledgements
	References


