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Abstract

A set S of vertices in a graph G is a total dominating set of G if every vertex in G is

adjacent to some vertex in S. The total domination number, γt (G), is the minimum

cardinality of a total dominating set of G. A cactus is a connected graph in which every

edge belongs to at most one cycle. Equivalently, a cactus is a connected graph in which

every block is an edge or a cycle. Let G be a connected graph of order n ≥ 2 with k ≥ 0

cycles and ℓ leaves. Recently, the authors have proved that γt (G) ≥ 1
2
(n − ℓ+ 2)− k.

As a consequence of this bound, γt (G) = 1
2
(n − ℓ + 2 + m) − k for some integer

m ≥ 0. In this paper, we characterize the class of cactus graphs achieving equality in

this bound, thereby providing a classification of all cactus graphs according to their

total domination number.
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1 Introduction

A total dominating set, abbreviated TD-set, of a graph G with no isolated vertex is

a set S of vertices such that every vertex in G is adjacent to a vertex in S. The total

domination number, denoted by γt (G), of G is the minimum cardinality of a TD-set

of G. We call a TD-set of cardinality γt (G) a γt -set of G. For a recent book on total

domination in graphs we refer the reader to [6]. A cactus is a connected graph in

which every edge belongs to at most one cycle. Equivalently, a (non-trivial) cactus is

a connected graph in which every block is an edge or a cycle. Our aim in this paper is

to provide a characterization of all cactus graphs according to their total domination

number.

For notation and graph theory terminology we generally follow [6]. The order of

a graph G = (V (G), E(G)) with vertex set V (G) and edge set E(G) is denoted by

n(G) = |V (G)| and its size by m(G) = |E(G)|. Two vertices v and w are neighbors in

G if they are adjacent; that is, if vw ∈ E(G). The open neighborhood of a vertex v in

G is the set of neighbors of v, denoted NG(v), and the closed neighborhood of v is the

set NG[v] = NG(v)∪{v}. The degree of a vertex v in G is denoted dG(v) = |NG(v)|.

For a set S of vertices in a graph G, the subgraph induced by S is denoted by G[S].

Further, the subgraph obtained from G by deleting all vertices in S and all edges

incident with vertices in S is denoted by G − S. If S = {v}, we simply denote G −{v}

by G −v. Two vertices u and v in a graph G are connected if there exists a (u, v)-path

in G. If every two vertices in G are connected, then the graph G is connected. The

distance between two vertices u and v in a connected graph G is the minimum length

of a (u, v)-path in G. The diameter, diam(G), of G is the maximum distance among

pairs of vertices in G. A block of G is a maximal connected subgraph of G which has

no cut-vertex of its own. A cycle edge of a graph G is an edge that belongs to a cycle

of G.

A leaf of a graph G is a vertex of degree 1 in G, while a support vertex of G is

a vertex adjacent to a leaf. The set of all leaves of G is denoted by L(G), and we let

ℓ(G) = |L(G)| be the number of leaves in G. The set of all support vertices of G by

S(G). A tree T of order n ≥ 2 is a star if n = 2 or n ≥ 3 and T contains exactly one

vertex that is not leaf. A double star is a tree with exactly two (adjacent) vertices that

are not leaves. Further, if one of these vertices is adjacent to r leaves and the other to

s leaves, then we denote the double star by S(r , s). We denote the path and cycle on

n vertices by Pn and Cn , respectively.

Let v be a vertex of a tree T . We call the vertex v a bad leaf of T if v is a leaf and

no γt -set of T contains v. The vertex v is a stable vertex of T if v is not a support

vertex and γt (T − v) ≥ γt (T ). We remark that the total domination of a tree can be

computed in linear time. In particular, to determine if a leaf of a tree is a bad leaf can

be determined in linear time. The bad leaves of a tree can also be efficiently computed

using results of Cockayne et al. [2].

A rooted tree T distinguishes one vertex r called the root. For each vertex v �= r

of T , the parent of v is the neighbor of v on the unique (r , v)-path, while a child of v

is any other neighbor of v. The set of children of v is denoted by C(v). A descendant

of v is a vertex u �= v such that the unique (r , u)-path contains v. In particular, every

child of v is a descendant of v. A grandchild and a great grandchild of v in T are
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descendants of v at distance 2 and 3 from v, respectively. We let D(v) denote the set

of descendants of v, and we define D[v] = D(v) ∪ {v}. The maximal subtree at v is

the subtree of T induced by D[v] and is denoted by Tv .

We use the standard notation [k] = {1, . . . , k}.

2 Main Results

Our aim in this paper is to provide a characterization of all cactus graphs according

to their total domination number. More precisely, we shall prove the following result

where Gm
k is a family of graphs defined in Sect. 3 for each integer k ≥ 0 and m ≥ 0.

Theorem 1 Let m ≥ 0 be an integer. If G is a cactus graph of order n ≥ 2 with k ≥ 0

cycles and ℓ leaves, then γt (G) = 1
2
(n − ℓ + 2 + m) − k if and only if G ∈ Gm

k .

We proceed as follows. In Sect. 3 we define the families Gm
k of graphs for each

integer k ≥ 0 and m ≥ 0. Known results on the total domination number are given in

Sect. 4. In Sect. 5 we present a proof of our main result.

3 The FamiliesGm

k

In this section, we define the families Gm
k of graphs for each integer k ≥ 0 and m ≥ 0.

3.1 The FamilyG0
k

The family G0
0 of trees was defined by Chellali and Haynes [1] as follows. Let G0

0 be

the class of trees T that can be obtained from a sequence T1, . . . , Tℓ of trees, where

ℓ ≥ 1 and where the tree T1 is the path P4 with support vertices x and y, and where the

tree T = Tℓ. Further if ℓ ≥ 2, then for each i ∈ [ℓ], the tree Ti can be obtained from

the tree Ti−1 by applying one of the following three operations O1,O2,O3 defined

below. For the initial tree T1 (recall that T1 is a path P4 with support vertices x and

y), we define A(T1) = {x, y}, and for i ≥ 2, we define the set A(Ti ) of vertices in Ti

recursively according to the rules given below. Further, we define H to be a path P4

with support vertices u and v.

• Operation O1. Add a new vertex to Ti−1 and join it to a vertex of A(Ti−1). Let

A(Ti ) = A(Ti−1).

• Operation O2. Add a vertex disjoint copy of H to Ti−1, and add an edge from a

leaf of H to a leaf of Ti−1. Let A(Ti ) = A(Ti−1) ∪ {u, v}.

• Operation O3. Add a vertex disjoint copy of H to Ti−1, and add a new vertex w and

an edge from w to a support of H and a leaf of Ti−1. Let A(Ti ) = A(Ti−1)∪{u, v}.

For k ≥ 1, Hajian et al. [4] recursively define the family G0
i of graphs for each

i ∈ [k] by the following procedure.

• Procedure A: For i ∈ [k], a graph Gi belongs to the family G0
i if it contains an

edge e = xy such that the graph Gi −e belongs to the family G0
i−1 and the vertices

x and y are leaves in Gi − e that are connected by a unique path in Gi − e.
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3.2 The FamilyG1
k

Hajian et al. [4] defined the family of trees G1
0 as follows. Let T 1

0 , T 2
0 and T 3

0 be the

class of trees defined as follows.

• Let T 1
0 be the class of all trees T that can be obtained from a tree T ′ ∈ G0

0 by

adding a ≥ 1 new vertices and joining all of them to the same leaf of T ′.

• Let T 2
0 be the class of all trees T that can be obtained from a tree T ′ ∈ G0

0 that

contains a support vertex x all of whose neighbors, except for exactly one neighbor,

are leaves in T ′ by removing all leaf-neighbors of x .

• Let T 3
0 be the class of all trees T that can be obtained from a tree T ′ ∈ G0

0 by

adding a vertex disjoint copy of a double star Q and adding an edge from a leaf

of Q to a vertex of degree at least 2 in T ′.

Let G1
0 be the class of trees T that can be obtained from a sequence T1, . . . , Tℓ of

trees, where ℓ ≥ 1 and where the tree T1 ∈ T 1
0 ∪ T 2

0 ∪ T 3
0 and the tree T = Tℓ.

Further, if ℓ ≥ 2, then for each i ∈ [ℓ], the tree Ti can be obtained from the tree Ti−1

by applying operation O∗ defined below.

• Operation O∗. Add a vertex disjoint copy of a double star Q to Ti−1 by adding

an edge joining a leaf of Q and a leaf of Ti−1.

For k ≥ 1, Hajian et al. [4] defined the family G1
i of graphs for each i ∈ [k] by the

following two procedures.

• Procedure B: For i ∈ [k], a graph Gi belongs to the family G1
i if it contains an

edge e = xy such that the graph Gi −e belongs to the family G1
i−1 and the vertices

x and y are leaves in Gi − e that are connected by a unique path in Gi − e.

• Procedure C: For i ∈ [k], a graph Gi belongs to the family G1
i if it contains an

edge e = xy such that the graph Gi −e belongs to the family G0
i−1 and the vertices

x and y are connected by a unique path in Gi − e. Further, exactly one of x and y

is a leaf in Gi − e.

3.3 FamilyGm

0 ,m ≥ 2

Recall that the families G0
0 and G1

0 are defined in Sects. 3.1 and 3.2, respectively. For

m ≥ 2, we recursively define the family Gm
0 of graphs constructed from the families

G
m−1
0 and G

m−2
0 as follows.

• Let T
m,1

0 be the class of all trees T that can be obtained from a tree T ′ ∈ G
m−1
0 by

adding a ≥ 1 new vertices and joining all of them to precisely one bad leaf of T ′.

For m = 2, add the path P2 to T
2,1

0 , and for simplicity and uniformity, denote the

resulting class by T
2,1

0 . (That is, T
2,1

0 ∪ {P2} is denoted by T
2,1

0 .)

• Let T
m,2

0 be the class of all trees T that can be obtained from a tree T ′ ∈ G
m−2
0 by

adding a vertex disjoint copy of a double star Q and identifying a leaf of Q with

a stable vertex of T ′.

• Let T
m,3

0 be the class of all trees T that can be obtained from a tree T ′ ∈ G
m−1
0 by

adding a vertex disjoint copy of a double star Q and adding an edge from a leaf

of Q to a vertex of T ′ of degree at least 2.
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Let Gm
0 be the class of trees T that can be obtained from a sequence T1, . . . , Tℓ of

trees, where ℓ ≥ 1 and where the tree T1 ∈ T
m,1

0 ∪ T
m,2

0 ∪ T
m,3

0 and the tree T = Tℓ.

Further, if ℓ ≥ 2, then for each i ∈ [ℓ]\{1}, the tree Ti can be obtained from the tree

Ti−1 by applying operation O∗ defined in Sect. 3.2.

3.4 FamilyGm

k
,m ≥ 2 and k ≥ 1

For m ≥ 2 and k ≥ 1, construct a family Gm
k from G

m−2
k−1 , Gm−1

k−1 and Gm
k−1, recursively,

as follows.

• Procedure D: For i ∈ [k], a graph Gi belongs to the family Gm
i if it contains

an edge e = xy such that the graph Gi − e belongs to the family G
m−2
i−1 and the

vertices x and y are non-leaves in Gi − e that are connected by a unique path in

Gi − e and γt (Gi ) = γt (Gi − e).

• Procedure E: For i ∈ [k], a graph Gi belongs to the family Gm
i if it contains

an edge e = xy such that the graph Gi − e belongs to the family G
m−1
i−1 and the

vertices x and y are connected by a unique path in Gi −e and γt (Gi ) = γt (Gi −e).

Further, exactly one of x and y is a leaf in Gi − e.

• Procedure F: For i ∈ [k], a graph Gi belongs to the family Gm
i if it contains an

edge e = xy such that the graph Gi −e belongs to the family Gm
i−1 and the vertices

x and y are connected by a unique path in Gi − e and γt (Gi ) = γt (Gi − e).

Further, both x and y are leaves in Gi − e.

4 Known Results

In this section, we present some known results and observations. We begin with the

following elementary properties of a total dominating set in a graph G.

Observation 1 The following hold in a graph G with no isolated vertex.

(a) Every TD-set in G contains the set of support vertices of G.

(b) If G is connected and diam(G) ≥ 3, then there exists a γt -set of G that contains

no leaf of G.

Lower and upper bounds on the total domination number of a graph are well studied

in the literature. A detailed discussion of such bounds can be found in the 2013 book [6]

on total domination in graphs, and in particular in [8]. For subsequent recent papers

on bounds on the total domination number we refer the reader to [3–5,9].

A discussion of lower and upper bounds on the total domination number of a tree

can be found in [7]. Chellali and Haynes [1] were the first to establish a lower bound

on the total domination number of a tree in terms of the order, number of leaves, and

number of support vertices in the tree.

Theorem 2 [1] If T is a tree of order n ≥ 2 with ℓ leaves, then γt (T ) ≥ (n −ℓ+2)/2,

with equality if and only if T ∈ G0
0 .

The authors [4] have recently generalized the Chellali–Haynes result to connected

graphs.
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Theorem 3 [4] If G is a connected graph of order n ≥ 2 with k ≥ 0 cycles and ℓ

leaves, then the following holds.

(a) γt (G) ≥ 1
2
(n − ℓ + 2) − k, with equality if and only if G ∈ G0

k .

(b) γt (G) = 1
2
(n − ℓ + 3) − k if and only if G ∈ G1

k .

As an immediate consequence of Theorem 3, we have the following result.

Corollary 4 [4] If G is a connected graph of order n ≥ 2 with k ≥ 0 cycles and ℓ

leaves, then γt (G) = 1
2
(n − ℓ + 2 + m) − k for some integer m ≥ 0.

5 Proof of Main Result

In this section, we present a proof of our main result, namely Theorem 1. For this

purpose, we first prove Theorem 1 in the special case when k = 0, that is, when the

cactus is a tree.

Theorem 5 Let m ≥ 0 be an integer. If T is a tree of order n ≥ 2 with ℓ leaves, then

γt (T ) = 1
2
(n − ℓ + 2 + m) if and only if T ∈ Gm

0 .

Proof Let T be a tree of order n ≥ 2 with ℓ leaves. We proceed by induction on m ≥ 0,

namely first induction, to show that γt (T ) = 1
2
(n −ℓ+2+m) if and only if T ∈ Gm

0 .

If m = 0 and m = 1, then the result follows by Theorem 3(a) and Theorem 3(b),

respectively. This establishes the base step of the induction. Let m ≥ 2 and assume

that if m′ is an integer where 0 ≤ m′ < m and T ′ is a tree of order n′ ≥ 2 with ℓ′

leaves, then γt (T
′) = 1

2
(n − ℓ′ + 2 + m′) if and only if T ′ ∈ Gm′

0 . Let T be a tree of

order n ≥ 2 with ℓ leaves. We show that γt (T ) = 1
2
(n − ℓ + 2 + m) if and only if

T ∈ Gm
0 .

(	⇒) Assume that γt (T ) = 1
2
(n − ℓ + 2 + m). We show that T ∈ Gm

0 . If T = P2,

then by definition of the family T
2,1

0 , we have T ∈ T
2,1

0 ⊆ G2
0 . In this case when

T = P2, we note that γt (T ) = 2 = 1
2
(n − ℓ + 2 + 2), and so m = 2 and T ∈ Gm

0 . If

T is a star and n ≥ 3, then by the definition of the family T 2
0 we have T ∈ T 2

0 ⊆ G1
0 .

Thus, by Theorem 3(b), γt (T ) = 1
2
(n − ℓ + 2 + 1), and so m = 1 and T ∈ Gm

0 . If

T is a double star, then by the definition of the family G0
0 , we have T ∈ G0

0 . Thus, by

Theorem 3(a), γt (T ) = 1
2
(n − ℓ + 2), and so m = 0 and T ∈ Gm

0 . Hence, we may

assume that diam(T ) ≥ 4, for otherwise T ∈ Gm
0 , as desired. In particular, n ≥ 5.

We now root the tree T at a vertex r at the end of a longest path P in T . Let u be a

vertex at maximum distance from r , and so dT (u, r) = diam(T ). Necessarily, r and

u are leaves. Let v be the parent of u, let w be the parent of v, let x be the parent of w,

and let y be the parent of x . Possibly, y = r . Since u is a vertex at maximum distance

from the root r , every child of v is a leaf. By Observation 1(b), there exists a γt -set,

D say, of T that contains no leaf of T , implying that {v,w} ⊆ D. Let dT (v) = t1. ⊓⊔

Claim 1 If the vertex w has at least two neighbors in D, then T ∈ Gm
0 .

Proof Suppose that |NT (w)∩D| ≥ 2. As observed earlier, v ∈ D. Let v′ be a neighbor

of w, different from v, that belong to the set D. We now consider the tree T ′ obtained
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from T by deleting all leaf-neighbors of v. Let T ′ have order n′, and let T ′ have ℓ′

leaves. We note that n′ = n − (t1 − 1) and ℓ′ = ℓ − (t1 − 1) + 1 = ℓ − t1 + 2.

By Observation 1(b), there exists a γt -set, D′ say, of T ′ that contains no leaf of T ′.

Since the vertex v is a leaf-neighbor of w in T ′, we note that w ∈ D′ and v /∈ D′.

The set D′ can be extended to a TD-set of T by adding to it the vertex v, and so

γt (T ) ≤ |D′| + 1 = γt (T
′)+ 1. Conversely, since the set D\{v} is a TD-set of T ′, we

note that γt (T
′) ≤ |D| − 1 = γt (T ) − 1. Consequently, γt (T

′) = γt (T ) − 1. Thus,

γt (T
′) = γt (T ) − 1

= 1
2
(n − ℓ + 2 + m) − 1

= 1
2
(n − ℓ + m)

= 1
2
((n′ + t1 − 1) − (ℓ′ + t1 − 2) + m)

= 1
2
(n′ − ℓ′ + 2 + (m − 1)).

Applying the inductive hypothesis to the tree T ′, we have T ′ ∈ G
m−1
0 . If there is a

γt -set of T ′ that contains the leaf v, then such a set is a TD-set of T ′, implying that

γt (T ) ≤ γt (T
′), contradicting our earlier observation that γt (T ) = γt (T

′)+1. Hence,

the vertex v is a bad leaf of T , implying that T ∈ T
m,1

0 ⊆ Gm
0 . ⊓⊔

By Claim 1, we may assume that the vertex w has exactly one neighbor in D, for

otherwise T ∈ Gm
0 as desired. As observed earlier, the vertex v belongs to D. Thus,

NT (w) ∩ D = {v}. In particular, x /∈ D. Recall that the γt -set D of T contains no

leaf of T . By Observation 1(a), the set D contains the set S(T ) of support vertices

of T . Thus, if dT (w) ≥ 3, then every child of w different from v is a leaf in T . Let

dT (w) = t2. We note that t2 ≥ 2. Recall that x is the parent of w in the rooted tree T .

Claim 2 If dT (x) ≥ 3, then T ∈ Gm
0 .

Proof Suppose that dT (x) ≥ 3. We now consider the tree T ′ obtained from T by

deleting all vertices in the maximal subtree of T induced by D[w]; that is, T ′ =

T −V (Tw). If t2 = 2, then the subtree Tw is a star with v as its central vertex. If t2 ≥ 3,

then by our earlier observations, the subtree Tw is a double star with v and w as the two

vertices that are not leaves in the double star. Let T ′ have order n′, and let T ′ have ℓ′

leaves. We note that n′ = n−(t1+t2−1) and ℓ′ = ℓ−(t1−1)−(t2−2) = ℓ−t1−t2+3.

We show that γt (T
′) = γt (T ) − 2. Every γt -set of T ′ can be extended to a TD-set

of T by adding to it the vertices v and w, implying that γt (T ) ≤ γt (T
′)+ 2. We prove

next the reverse inequality. By supposition, dT (x) ≥ 3. By our earlier observations,

x /∈ D. Thus, since the set D contains the set S(T ) of support vertices of T , we note

that x is not a support vertex of T . Thus, no child of x is a leaf. Let w′ be an arbitrary

child of x different from w. If every child of w′ is a leaf, then since D contains no

leaf of T this implies that both w′ and x belong to D, a contradiction. Therefore, at

least one child of w′ is not a leaf. Let v′ be an arbitrary child of w′ that is not a leaf.

By maximality of the path P , every child of v′ is a leaf. Thus, by Observation 1, both

v′ and w′ belong to the set D, implying that the set D\{v,w} is a TD-set of T ′. Thus,

γt (T
′) ≤ |D| − 2 = γt (T ) − 2. Consequently, γt (T

′) = γt (T ) − 2. Thus,
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γt (T
′) = γt (T ) − 2

= 1
2
(n − ℓ + 2 + m) − 2

= 1
2
(n − ℓ + m − 2)

= 1
2
((n′ + t1 + t2 − 1) − (ℓ′ + t1 + t2 − 3) + m − 2)

= 1
2
(n′ − ℓ′ + 2 + (m − 2)).

Applying the inductive hypothesis to the tree T ′, we have T ′ ∈ G
m−2
0 . Every γt -set

of T ′−x can be extended to a TD-set of T by adding to it the vertices v and w, implying

that γt (T
′) + 2 = γt (T ) ≤ γt (T

′ − x) + |{v,w}| = γt (T
′ − x) + 2. Consequently,

we must have equality throughout this inequality chain. Hence, γt (T
′) = γt (T

′ − x).

Thus, the vertex x is a stable vertex of T ′. Let Q be obtained from the double star Tw

by adding to it a new vertex x ′ and the edge x ′w. We note that Q is a double star with

v and w as the two vertices that are not leaves in Q. Since T can be obtained from the

tree T ′ ∈ G
m−2
0 by adding a vertex disjoint copy of the double star Q and identifying

the leaf x ′ of Q with the stable vertex x of T ′, the tree T belongs to the family T
m,2

0 .

Thus, T ∈ T
m,2

0 ⊆ Gm
0 . ⊓⊔

By Claim 2, we may assume that dT (x) = 2, for otherwise T ∈ Gm
0 as desired.

By our earlier observations, the subtree Tx is a double star with v and w as the two

vertices of Tx that are not leaves. We note that Tx ∈ G0
0 .

Claim 3 If diam(T ) = 4, then T ∈ Gm
0 .

Proof Suppose that diam(T ) = 4. Thus, the vertex y is the root r of the tree T , and

so T − r = Tx . Thus, T is obtained from the tree Tx ∈ G0
0 by adding the new vertex z

and joining it with an edge to the leaf x of Tx . Hence, T ∈ T 1
0 ⊆ G1

0 . Thus, T ∈ Gm
0

where m = 1. ⊓⊔

By Claim 3, we may assume that diam(T ) ≥ 5, for otherwise T ∈ Gm
0 as desired.

We now consider the tree T ′ obtained from T by deleting all vertices in the maximal

subtree of T induced by D[x]; that is, T ′ = T − V (Tx ). As observed earlier, the

subtree Tx is a double star with v and w as the two vertices that are not leaves in the

double star. Further, Tx ∈ G0
0 . Let T ′ have order n′, and let T ′ have ℓ′ leaves. We note

that n′ = n − t1 − t2.

We show that γt (T
′) = γt (T ) − 2. Every γt -set of T ′ can be extended to a TD-set

of T by adding to it the vertices v and w, implying that γt (T ) ≤ γt (T
′)+ 2. We prove

next the reverse inequality. By our earlier observations, x /∈ D. Thus, the restriction

of the set D to the tree T ′ is a TD-set of T ′, implying that γt (T
′) ≤ |D\{v,w}| =

|D| − 2 = γt (T ) − 2. Consequently, γt (T
′) = γt (T ) − 2.

Claim 4 If dT (y) = 2, then T ∈ Gm
0 .

Proof Suppose that dT (y) = 2. In this case, ℓ′ = ℓ − (t1 − 1) − (t2 − 2) + 1 =

ℓ − t1 − t2 + 4. Thus,
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γt (T
′) = γt (T ) − 2

= 1
2
(n − ℓ + 2 + m) − 2

= 1
2
(n − ℓ + m − 2)

= 1
2
((n′ + t1 + t2) − (ℓ′ + t1 + t2 − 4) + m − 2)

= 1
2
(n′ − ℓ′ + 2 + m).

Applying the inductive hypothesis to the tree T ′, we have T ′ ∈ Gm
0 . As observed

earlier, Tx is a double star with v and w as the two vertices that are not leaves in the

double star. Thus, the tree T can be obtained from the tree T ′ by adding to T ′ the

double star Tx and adding the edge xy joining the leaf x of Tx and the leaf y of T ′.

Hence, T can be obtained from the tree T ′ ∈ Gm
0 by applying operation O∗, implying

that T ∈ Gm
0 . ⊓⊔

By Claim 4, we may assume that dT (y) ≥ 3, for otherwise T ∈ Gm
0 as desired.

Recall that T ′ = T − V (Tx ). Thus, dT ′(y) = dT (y) − 1 ≥ 2, and so y is not a leaf of

T ′. In this case, ℓ′ = ℓ − (t1 − 1) − (t2 − 2) = ℓ − t1 − t2 + 3. Thus,

γt (T
′) = γt (T ) − 2

= 1
2
(n − ℓ + m − 2)

= 1
2
((n′ + t1 + t2) − (ℓ′ + t1 + t2 − 3) + m − 2)

= 1
2
(n′ − ℓ′ + 2 + (m − 1)).

Applying the inductive hypothesis to the tree T ′, we have T ′ ∈ G
m−1
0 . The tree

T can be obtained from the tree T ′ ∈ G
m−1
0 by adding to T ′ the double star Tx and

adding the edge xy joining the leaf x of Tx and the vertex y of degree at least 2 in T ′.

Thus, the tree T belongs to the family T
m,3

0 . Hence, T ∈ T
m,3

0 ⊆ Gm
0 . This completes

the necessity part of the proof of Theorem 5.

(⇐	) Conversely, assume that T ∈ Gm
0 , where m ≥ 2 and where recall that T is

a tree of order n ≥ 2 with ℓ leaves. As shown earlier, if T is a star and n ≥ 3, then

T ∈ G1
0 , while if T is a double star, then T ∈ G0

0 . In both cases we contradict the

assumption that T ∈ Gm
0 where m ≥ 2. Hence, T is neither a star of order n ≥ 3 nor a

double star. Thus, if T �= P2, then diam(T ) ≥ 4. By definition of the family Gm
0 , the

tree T is obtained from a sequence T1, . . . , Tq of trees, where q ≥ 1 and where the

tree T1 ∈ T
m,1

0 ∪ T
m,2

0 ∪ T
m,3

0 and the tree T = Tq . Further, if q ≥ 2, then for each

i ∈ [q]\{1}, the tree Ti can be obtained from the tree Ti−1 by applying operation O∗

defined in Sect. 3.2. We proceed by induction on q ≥ 1, namely second induction, to

show that γt (T ) = 1
2
(n − ℓ + 2 + m).

Claim 5 If q = 1, then γt (T ) = 1
2
(n − ℓ + 2 + m).

Proof Suppose that q = 1. Thus, T = T1 ∈ T
m,1

0 ∪ T
m,2

0 ∪ T
m,3

0 . We consider each

of the three possibilities in turn. ⊓⊔

Claim 5.1 If T ∈ T
m,1

0 , then γt (T ) = 1
2
(n − ℓ + 2 + m).
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Proof Suppose that T ∈ T
m,1

0 . If T = P2, then as observed earlier T ∈ G2
0 . In this

case, m = 2 and γt (T ) = 2 = 1
2
(n − ℓ+ 2 + 2) = 1

2
(n − ℓ+ 2 + m). Hence, we may

assume that T �= P2, for otherwise the desired result follows. Thus, n ≥ 3 and the tree

T is neither a star nor a double star; we note that diam(T ) ≥ 4. The tree T ∈ T
m,1

0 can

be obtained from a tree T ′ ∈ G
m−1
0 by adding a ≥ 1 new vertices and joining all of

them to precisely one bad leaf, x say, of T ′. Thus, the vertex x does not belong to any

γt -set of T ′. Let T ′ have order n′, and let T ′ have ℓ′ leaves. We note that n′ = n − a

and ℓ′ = ℓ− a + 1. Applying the first induction hypothesis to the tree T ′ ∈ G
m−1
0 , we

have γt (T
′) = 1

2
(n′ − ℓ′ + 2 + (m − 1)).

We show next that γt (T ) = γt (T
′)+1. Every γt -set of T ′ can be extended to a TD-

set of T by adding to it the vertex x , and so γt (T ) ≤ γt (T
′)+ 1. By Observation 1(b),

there exists a γt -set, D say, of T that contains no leaf of T , implying that x ∈ D and that

no leaf of x belongs to D. Thus, the set D is a TD-set of T ′ that contains the vertex x .

Since no γt -set of T ′ contains the vertex x , we note that γt (T ) = |D| ≥ γt (T
′) + 1.

Consequently, γt (T ) = γt (T
′) + 1. Thus,

γt (T ) = γt (T
′) + 1

= 1
2
(n′ − ℓ′ + 1 + m) + 1

= 1
2
((n − a) − (ℓ − a + 1) + 1 + m) + 1

= 1
2
(n − ℓ + 2 + m).

This completes the proof of Claim 5.1. ⊓⊔

Claim 5.2 If T ∈ T
m,2

0 , then γt (T ) = 1
2
(n − ℓ + 2 + m).

Proof Suppose that T ∈ T
m,2

0 . Thus, the tree T can be obtained from a tree T ′ ∈ G
m−2
0

by adding a vertex disjoint copy of a double star Q and identifying a leaf of Q with a

stable vertex, x say, of T ′. Let u and v be the two vertices in Q that are not leaves, and

so S(Q) = {u, v}. Since x is a stable vertex of T ′, we note that x is not a support vertex

and γt (T
′ − x) ≥ γt (T

′). Let T ′ have order n′, and let T ′ have ℓ′ leaves. Further, let

Q have t leaves, and so |L(Q)| = t and n(Q) = t + 2. We note that n′ = n − t − 1

and ℓ′ = ℓ − t + 1. Applying the first induction hypothesis to the tree T ′ ∈ G
m−2
0 , we

have γt (T
′) = 1

2
(n′ − ℓ′ + 2 + (m − 2)) = 1

2
(n′ − ℓ′ + m).

We show next that γt (T ) = γt (T
′) + 2. Every γt -set of T ′ can be extended to a

TD-set of T by adding to it the vertices u and v, implying that γt (T ) ≤ γt (T
′) + 2.

Recall that diam(T ) ≥ 4. By Observation 1(b), there exists a γt -set, D say, of T that

contains no leaf of T , implying that {u, v} ⊆ D and that neither leaf-neighbor of u

nor v in T belongs to D. Thus, the set D\{u, v} is a TD-set of T ′ − x , implying that

γt (T
′) ≤ γt (T

′ − x) ≤ |D| − 2 = γt (T ) − 2. Consequently, γt (T ) = γt (T
′) + 2.

Thus,

γt (T ) = γt (T
′) + 2

= 1
2
(n′ − ℓ′ + m) + 2

= 1
2
((n − t − 1) − (ℓ − t + 1) + m) + 2

= 1
2
(n − ℓ + 2 + m).
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This completes the proof of Claim 5.2. ⊓⊔

Claim 5.3 If T ∈ T
m,3

0 , then γt (T ) = 1
2
(n − ℓ + 2 + m).

Proof Suppose that T ∈ T
m,3

0 . Thus, the tree T can be obtained from a tree T ′ ∈ G
m−1
0

by adding a vertex disjoint copy of a double star Q and adding an edge from a leaf, say y,

of Q to a vertex, z say, of T ′ of degree at least 2. We note that dT (y) = 2. Let u and v be

the two vertices in Q that are not leaves, and so S(Q) = {u, v}. Let T ′ have order n′, and

let T ′ have ℓ′ leaves. Further, let Q have t leaves, and so |L(Q)| = t and n(Q) = t +2.

We note that n′ = n − t −2 and ℓ′ = ℓ− t +1. Applying the first induction hypothesis

to the tree T ′ ∈ G
m−1
0 , we have γt (T

′) = 1
2
(n′−ℓ′+2+(m−1)) = 1

2
(n′−ℓ′+1+m).

We show next that γt (T ) = γt (T
′) + 2. Every γt -set of T ′ can be extended to a

TD-set of T by adding to it the vertices u and v, implying that γt (T ) ≤ γt (T
′) + 2.

By Observation 1(b), there exists a γt -set, D say, of T that contains no leaf of T ,

implying that {u, v} ⊆ D and that no leaf-neighbor of u nor v in T belongs to D. If

y ∈ D, then we can replace y in D with an arbitrary neighbor of z in T ′ to produce

a new γt -set of T . Hence, we may assume that y /∈ D. With this assumption, the set

D\{u, v} is a TD-set of T ′, implying that γt (T
′) ≤ |D|−2 = γt (T )−2. Consequently,

γt (T ) = γt (T
′) + 2. Thus,

γt (T ) = γt (T
′) + 2

= 1
2
(n′ − ℓ′ + 1 + m) + 2

= 1
2
((n − t − 2) − (ℓ − t + 1) + 1 + m) + 2

= 1
2
(n − ℓ + 2 + m).

This completes the proof of Claim 5.3. ⊓⊔

By Claims 5.1, 5.2 and 5.3, if T ∈ T
m,1

0 ∪ T
m,2

0 ∪ T
m,3

0 , then γt (T ) = 1
2
(n − ℓ +

2 + m). This completes the proof of Claim 5. ⊓⊔

By Claim 5, if q = 1, then γt (T ) = 1
2
(n − ℓ + 2 + m). This establishes the base

step of the second induction. Let q ≥ 2 and assume that if q ′ is an integer where

1 ≤ q ′ < q and if T ′ ∈ Gm
0 is a tree obtained from a sequence T1, . . . , Tq ′ of trees,

where T1 ∈ T
m,1

0 ∪ T
m,2

0 ∪ T
m,3

0 and where the tree T ′ = Tq ′ and if q ′ ≥ 2, then for

each i ∈ [q ′]\{1}, the tree Ti can be obtained from the tree Ti−1 by applying operation

O∗.

Recall that the tree T is obtained from a sequence T1, . . . , Tq of trees, where

T1 ∈ T
m,1

0 ∪ T
m,2

0 ∪ T
m,3

0 and the tree T = Tq , and where for each i ∈ [q]\{1}, the

tree Ti can be obtained from the tree Ti−1 by applying operation O∗. In particular, the

tree T is obtained from the tree Tq−1 by adding to it a vertex disjoint copy of a double

star Q and adding an edge joining a leaf of Q and a leaf of Tq−1. Let u and v be the two

vertices in Q that are not leaves, and so S(Q) = {u, v}. Let T ′ = Tq−1, and let T ′ have

order n′ and ℓ′ leaves. Further, let Q have t leaves, and so |L(Q)| = t and n(Q) = t+2.

We note that n′ = n − t −2 and ℓ′ = ℓ− (t −1)+1 = ℓ− t +2. Applying the second

induction hypothesis to the tree Tq−1 ∈ Gm
0 , we have γt (T

′) = 1
2
(n′ − ℓ′ + 2 + m).

Proceeding analogously as in the proof of the last paragraph of Claim 5.3, we have

that γt (T ) = γt (T
′) + 2. Thus,
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γt (T ) = γt (T
′) + 2

= 1
2
(n′ − ℓ′ + 2 + m) + 2

= 1
2
((n − t − 2) − (ℓ − t + 2) + 2 + m) + 2

= 1
2
(n − ℓ + 2 + m).

This completes the proof of Theorem 5. ⊓⊔

We are now in a position to prove Theorem 1. Recall its statement.

Theorem 1 Let m ≥ 0 be an integer. If G is a cactus graph of order n ≥ 2 with k ≥ 0

cycles and ℓ leaves, then γt (G) = 1
2
(n − ℓ + 2 + m) − k if and only if G ∈ Gm

k .

Proof Let m ≥ 0 be an integer, and let G be a cactus graph of order n ≥ 2 with

k ≥ 0 cycles and ℓ leaves. We proceed by induction on k to show that γt (G) =
1
2
(n − ℓ + 2 + m) − k if and only if G ∈ Gm

k . If k = 0, then the result follows

from Theorem 5. This establishes the base case. Let k ≥ 1 and assume that if G ′ is

a cactus graph of order n′ ≥ 2 with k′ cycles and ℓ′ leaves where 0 ≤ k′ < k, then

γt (G
′) = 1

2
(n′ − ℓ′ + 2 + m′) − k′ if and only if G ∈ Gm′

k′ . Let G be a cactus graph of

order n ≥ 2 with k ≥ 0 cycles and ℓ leaves. We show that γt (G) = 1
2
(n−ℓ+2+m)−k

if and only if G ∈ Gm
k . If m = 0, then the result follows by Theorem 3(a), while if

m = 1, then the result follows by Theorem 3(b). Hence, we may assume that m ≥ 2.

(	⇒) Assume that γt (G) = 1
2
(n − ℓ + 2 + m) − k. We show that G ∈ Gm

k . For

this purpose, we first prove the following claim. ⊓⊔

Claim 6 The graph G contains a cycle edge e such that γt (G − e) = γt (G).

Proof Let C : v1v2 . . . vℓv1 be a cycle in G, and let S be a γt -set of G. If V (C) ⊆ S, then

let e = v1v2. In this case, the set S is a TD-set of G−e, and so γt (G−e) ≤ |S| = γt (G).

Since removing a cycle edge from a graph cannot decrease the total domination of

the graph, we note that γt (G) ≤ γt (G − e). Consequently, γt (G) = γt (G − e).

Hence, we may assume that at least one vertex of the cycle C does not belong to the

set S. Renaming vertices of C if necessary, we may assume that v2 /∈ S. If v1 /∈ S,

then letting e = v1v2 we note that the set S is a TD-set of G − e, and so as before

γt (G) = γt (G −e). Hence, we may assume that v1 ∈ S. Analogously, we may assume

that v3 ∈ S. But then as before, letting e = v1v3 the set S is a TD-set of G−e, implying

that γt (G) = γt (G − e). ⊓⊔

By Claim 6, the graph G contains a cycle edge e such that γt (G − e) = γt (G). Let

e = uv, and consider the graph G ′ = G−e. Let G ′ have order n′ with k′ ≥ 0 cycles and

ℓ′ leaves. We note that n′ = n. Further, since G is a cactus graph, k′ = k−1. Removing

the cycle edge e from G produces at most two new leaves, namely the ends of the

edge e, implying that ℓ′−2 ≤ ℓ ≤ ℓ′. By Corollary 4, γt (G
′) = 1

2
(n′−ℓ′+2+m′)−k′

for some integer m′ ≥ 0. Applying the inductive hypothesis to the cactus graph G ′,

we have that G ′ ∈ Gm′

k′ = Gm′

k−1. We note that 1
2
(n − ℓ + 2 + m) − k = γt (G) =

γt (G
′) = 1

2
(n′ − ℓ′ + 2 + m′) − k′, implying that m − ℓ = m′ − ℓ′ + 2. Since G is a

cactus, the vertices u and v are connected in G ′ = G − e by a unique path.

Suppose that ℓ = ℓ′. In this case, neither u nor v is a leaf of G ′, implying that

both u and v have degree at least 2 in G ′. Further, the equation m − ℓ = m′ − ℓ′ + 2
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simplifies to m′ = m − 2. Thus, G ′ ∈ G
m−2
k−1 . Hence, the graph G is obtained from G ′

by Procedure D, and therefore G ∈ Gm
k .

Suppose that ℓ = ℓ′ − 1. In this case, exactly one of u and v is a leaf of G ′. Further,

the equation m − ℓ = m′ − ℓ′ +2 simplifies to m′ = m −1. Thus, G ′ ∈ G
m−1
k−1 . Hence,

the graph G is obtained from G ′ by Procedure E, and therefore G ∈ Gm
k .

Suppose that ℓ = ℓ′ − 2. In this case, both u and v are leaves in G ′. Further, the

equation m − ℓ = m′ − ℓ′ + 2 simplifies to m′ = m. Thus, G ′ ∈ Gm
k−1. Hence, the

graph G is obtained from G ′ by Procedure F, and therefore G ∈ Gm
k . This completes

the necessity part of the proof of Theorem 1.

(⇐	) Conversely, assume that G ∈ Gm
k . Recall that by our earlier assumptions,

m ≥ 2 and k ≥ 1. Thus, the graph G is obtained from either a graph G ′ ∈ G
m−2
k−1 by

Procedure D or from a graph G ′ ∈ G
m−1
k−1 by Procedure E or from a graph G ′ ∈ Gm

k−1

by Procedure F. In all three cases, let G ′ have order n′ with k′ ≥ 0 cycles and ℓ′

leaves. Further, in all cases we note that n′ = n and k′ = k − 1. We consider the three

possibilities in turn.

Suppose firstly that G is obtained from a graph G ′ ∈ G
m−2
k−1 by Procedure D. In

this case, ℓ = ℓ′ and γt (G) = γt (G
′). Applying the inductive hypothesis to the graph

G ′ ∈ G
m−2
k−1 , we have γt (G) = γt (G

′) = 1
2
(n′ − ℓ′ + 2 + (m − 2)) − (k − 1) =

1
2
(n − ℓ + 2 + m) − k.

Suppose next that G is obtained from a graph G ′ ∈ G
m−1
k−1 by Procedure E. In this

case, ℓ = ℓ′ − 1 and γt (G) = γt (G
′). Applying the inductive hypothesis to the graph

G ′ ∈ G
m−1
k−1 , we have γt (G) = γt (G

′) = 1
2
(n′ − ℓ′ + 2 + (m − 1)) − (k − 1) =

1
2
(n − ℓ + 2 + m) − k.

Suppose finally that G is obtained from a graph G ′ ∈ Gm
k−1 by Procedure F. In

this case, ℓ = ℓ′ − 2 and γt (G) = γt (G
′). Applying the inductive hypothesis to the

graph G ′ ∈ Gm
k−1, we have γt (G) = γt (G

′) = 1
2
(n′ − ℓ′ + 2 + m) − (k − 1) =

1
2
(n − ℓ + 2 + m) − k. In all three cases, γt (G) = 1

2
(n − ℓ + 2 + m) − k. This

completes the proof of Theorem 1. ⊓⊔
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