
Discrete Mathematics, Algorithms and Applications
Vol. 11, No. 5 (2019) 1950055 (11 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S1793830919500551

A Nordhaus–Gaddum bound for Roman domination

Nader Jafari Rad∗,‡ and Hadi Rahbani†

∗Department of Mathematics

Shahed University, Tehran, Iran

†Department of Mathematics

Shahrood University of Technology, Shahrood, Iran
‡n.jafarirad@gmail.com

Received 31 October 2017
Revised 28 August 2018
Accepted 10 August 2019

Published 17 September 2019

A Roman dominating function of a graph G is a labeling f : V (G) −→ {0, 1, 2} such
that every vertex with label 0 has a neighbor with label 2. The Roman domination
number, γR(G) of G, is the minimum of

P

v∈V (G) f(v) over such functions. Let G be an

n-vertex graph. Chambers et al. [E. W. Chambers, B. Kinnersley, N. Prince and D. B.
West, External Problems for Roman domination Siam J. Discrete Math. 23 (2009) 1575–
1586.] proved that if G is a connected graph of order n ≥ 3, then γR(G)+γR(G) ≤ n+3,
with equality if and only if G or G is C5 or (n/2)K2. In this paper, we construct a specific
family of graphs ξ, and prove that if G �∈ ξ and G �∈ ξ, then γR(G) + γR(Ḡ) ≤ n + 1,
and this bound is sharp.
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1. Introduction

The original study of Roman domination was motivated by the defense strategies

used to defend the Roman Empire during the reign of Emperor Constantine the

Great, 274–337 AD. He decreed that for all cities in the Roman Empire, at most two

legions should be stationed. Further, if a location having no legions was attacked,

then it must be within the vicinity of at least one location at which two legions

were stationed, so that one of the two legions could be sent to defend the attacked

city. The mathematical concept of Roman domination was defined and discussed by

Stewart [11], and ReVelle and Rosing [10], and subsequently developed by Cockayne

et al. [6]. Since then more than one hundred papers have been published. For more

references on Roman domination, see for example [1–5, 7, 8].

Let G = (V, E) be a graph having order n = |V |. The open neighborhood of

a vertex v ∈ V is the set N(v) = {u |uv ∈ E}, and its closed neighborhood is
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N [v] = N(v) ∪ {v}. The degree deg(v) of a vertex v is |N(v)|. The maximum

and minimum degrees among the vertices of G are denoted by ∆(G) and δ(G),

respectively. Any vertex u ∈ N(v) is called a neighbor of v. A vertex with exactly one

neighbor is called a leaf and its neighbor is a support vertex. A support vertex with

two or more leaf neighbors is called a strong support vertex. The open neighborhood

of a set S ⊆ V is the set N(S) =
⋃

v∈S N(v), and the closed neighborhood of a

set S is the set N [S] = N(S) ∪ S =
⋃

v∈S N [v]. The disjoint union of two graphs

G and H is denoted by G + H . A set S ⊆ V in a graph G is called a dominating

set if N [S] = V . The domination number, γ(G), is the minimum cardinality of a

dominating set in G, and a dominating set of G of cardinality γ(G) is called a γ-set

of G or just a γ(G)-set.

A function f : V −→ {0, 1, 2} having the property that for every vertex v ∈ V

with f(v) = 0, there exists a vertex u ∈ N(v) with f(u) = 2, is called a Roman

dominating function or just an RDF. The weight of an RDF f is the sum f(V ) =
∑

v∈V f(v). The minimum weight of an RDF on G is called the Roman domination

number of G and is denoted γR(G). An RDF on G with weight γR(G) is called a

γR(G)-function of G. For an RDF f in a graph G, we denote by Vi (or V f
i to refer

to f) the set of all vertices of G with label i under f . Thus, an RDF f can be

represented by a triple (V0, V1, V2), and we can use the notation f = (V0, V1, V2).

For a graph parameter ρ, bounds on ρ(G) + ρ(G) and ρ(G)ρ(G) in terms of the

number of vertices are called results of “Nordhaus–Gaddum” type, honoring the

paper of Nordhaus and Gaddum [9]. Chambers et al. [3] investigated Nordhaus–

Gaddum type bounds for Roman domination.

Theorem 1 (Chambers et al. [3]). If G is a connected graph of order n ≥ 3,

then γR(G) + γR(G) ≤ n + 3, with equality if and only if G or G is C5 or n/2K2.

By Theorem 1, if neither G nor G is C5 or n/2K2, then γR(G)+γR(G) ≤ n+2.

We characterize all graphs G with γR(G) + γR(G) = n + 2 using a new family G of

graphs, and thus we show that if none of G and G is C5 or n/2K2 or belongs to G,

then γR(G) + γR(Ḡ) ≤ n + 1. We make use of the following.

Proposition 2 (Chambers et al. [3]). If G is a graph of order n and maximum

degree ∆(G), then γR(G) ≤ n − ∆(G) + 1.

Proposition 3 (Cockayne et al. [6]). For paths and cycles of order n ≥ 3,

γR(Pn) = γR(Cn) = ⌈2n/3⌉.

Theorem 4 (Chambers et al. [3]). If G is a connected n-vertex graph with

δ(G) ≥ 2 other than those shown Fig. 1, then γR(G) ≤ 8n/11.

Proposition 5 (Cockayne et al. [6]). If G is a graph of order n with no isolated

vertices, then γR(G) = n if and only if n is even and G = (n/2)K2.
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2. Main Result

According to Theorem 1, all graphs G with γR(G)+γR(G) = n+3 are characterized.

In this paper, we wish to characterize all graphs G of order n ≥ 2 with γR(G) +

γR(G) = n+2. For this purpose we first introduce some families of graphs as follows.

In the following, a cycle Cn is represented by 12 . . . n1, where V (Cn) = {1, 2, . . . , n}.

Furthermore by Cn + ij, where |i − j| > 1, we mean a graph obtained from Cn by

adding the chord ij. For two pairs of integers i, j and i′, j′ with |i − j| > 1 and

|i′ − j′| > 1, we mean by Cn + ij + i′j′ a graph obtained from Cn by adding chords

ij and i′j′. The graph Cn + ij + i′j′ + i′′j′′ is defined similarly.

• Family G0. The class of all graphs G of order n ≥ 2 with ∆(G) = n − 1 and

δ(G) ≥ n − 2.

• Family G1. The class of graphs Pi + sK2 (3 ≤ i ≤ 5, s ≥ 0), 2K3, C3 + K2, C3 +

2K2, C4 + K2, C4 + C3, C5 + K2, C5, C6, C6 + 35, C6 + 36, C6 + 36 + 14, C7, C7 +

15, C7 + 15 + 26, C7 + 46 + 37 + 35, C8 + 15, C8 + 15 + 26.

• Family G2. The class of 7 specific graphs shown in Fig. 2.

Finally, let G = G0 ∪ G1 ∪ G2 ∪ {H3, H4}, where H3 and H4 appeared in Fig. 1.

We will prove the following.

Theorem 6. For a graph G of order n ≥ 2, γR(G) + γR(G) = n + 2 if and only if

G ∈ G or G ∈ G.

Let ξ = G ∪ {C5} ∪ {(n/2)K2 : n is even}.

Corollary 7. If G 	∈ ξ and G 	∈ ξ, then γR(G) + γR(Ḡ) ≤ n + 1.

We remark that the graph P3+K1 shows that the bound of Corollary 7 is sharp.

Fig. 1. Graphs corresponding to Theorem 4.

Fig. 2. The Family G2.
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3. Proof of Theorem 6

The (⇐) part is straightforward. Thus we prove the (⇒) part. Let G be a graph of

order n, and γR(G)+ γR(G) = n+2. If γR(G) ≤ n−∆(G) and γR(G) ≤ n−∆(G),

then γR(G)+γR(G) ≤ n−∆(G)+n−∆(G) ≤ n+1, a contradiction. Thus, without

loss of generality and by Proposition 2, assume that γR(G) = n − ∆(G) + 1. Then

γR(G) = ∆(G)+1. Let v ∈ V (G) be a vertex of maximum degree. If V (G)−N [v] =

∅, then deg(v) = n − 1 and γR(G) = 2, since n ≥ 2. From γR(G) + γR(G) = n + 2

we obtain that γR(G) = n. By Proposition 5, ∆(G) ∈ {0, 1}, and thus δ(G) ∈

{n − 1, n − 2}. Consequently, G ∈ G0. Thus assume that V (G) − N [v] 	= ∅.

Suppose that a component of G[V (G) − N [v]] has at least three vertices. Let

xy, xz ∈ E(G[V (G) − N [v]]). Then clearly the RDF, f = (N(v) ∪ {y, z}, V (G) −

(N [v] ∪ N [x], {v, x}) has weight at most n − ∆(G), a contradiction. Thus, each

component of G[V (G) − N [v]] has at most two vertices. If some vertex u ∈ N(v)

has at least three neighbors outside N [v], then the RDF f = (N(u)∪N(v), V (G)−

N [u] − N [v], {u, v}) has weight at most n − ∆(G), a contradiction. Thus, every

vertex of N(v) has at most two neighbors outside N [v]. The following lemma plays

an important role for the rest of the paper.

Lemma 8. (n − ∆(G) − 1)δ(G) − 2|E(G[V (G) − N [v]])| ≤ 2∆(G).

Proof. Clearly,
∑

v∈V (G)−N [v] deg(v) ≥ (n−∆(G)−1)δ(G). Let k = |E(G[V (G)−

N [v]])|. Observe that there are at least (n−∆(G)−1)δ(G)−2k edges joining N(v)

and V (G) − N [v], and note that there are at most 2∆(G) edges joining N(v) and

V (G) − N [v]. Counting the edges joining N(v) and V (G) − N [v] from both sides

yields (n − ∆(G) − 1)δ(G) − 2k ≤ 2∆(G).

If ∆(G) > δ(G) + 1, then ∆(G) + ∆(G) > n, and so γR(G) + γR(G) ≤ (n −

∆(G)+1)+(n−∆(G)+1) < n+2, a contradiction. Thus δ(G) ≤ ∆(G) ≤ δ(G)+1.

We first consider the case ∆(G) = δ(G).

Lemma 9. If ∆(G) = δ(G), then G or G ∈ {Kn, 2K3, C3 + C4, C5, C6, C7}.

Proof. Assume that ∆(G) = δ(G). If ∆(G) = 0, then G = Kn. Thus assume that

∆(G) ≥ 1, and so G is isolate-free, since ∆(G) = δ(G). Assume that ∆(G) = 1.

Then γR(G) = n−∆(G) + 1 = n and γR(G) = ∆(G) + 1 = 2. From Proposition 5,

we obtain G = (n/2)K2. Now from γR(G) = 2 we obtain n = 2. Consequently,

G = K2. Assume next that ∆(G) = 2. Then γR(G) = n − 1 and γR(G) = 3.

Since δ(G) = 2, G is a cycle. By Proposition 3, n − 1 = ⌈2n/3⌉ which implies that

3 ≤ n ≤ 5. Since γR(G) = 3, we observe that G = C3. Thus assume that ∆(G) ≥ 3.

If ∆(G) ≤ n − 5, then |E(G[V (G) − N [v]])| ≤ n−∆(G)−1
2 and so by Lemma 8,

we have (n − ∆(G) − 1)(δ(G) − 1) ≤ 2∆(G) and so 4(∆(G) − 1) ≤ 2∆(G), since

δ(G) = ∆(G) and 4 ≤ n − ∆(G) − 1. Hence, ∆(G) ≤ 2, a contradiction. Thus
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∆(G) ≥ n − 4. If ∆(G) = n − 4, then Lemma 8 implies that ∆(G) = 3, and so

n = 7, a contradiction, since there is no 3-regular graph of order 7. We deduce that

∆(G) ∈ {n− 3, n − 2, n − 1}.

If ∆(G) = n − 2, then γR(G) = n − ∆(G) + 1 = 3, and ∆(G) = 1, (and also

δ(G) = 1) since δ(G) = n − 2. By Proposition 5, γR(G) = n which implies that

∆(G) = γR(G)−1 = n−1, a contradiction. If ∆(G) = n−1, then G = Kn. Thus we

assume that ∆(G) = n−3. Then |V (G)−N [v]| = 2, γR(G) = 4, γR(G) = n−2 and

∆(G) = δ(G) = 2. By applying Theorem 4 on G, we obtain n ≤ 7 and so ∆(G) ≤ 4.

Let V (G)−N [v] = {x, y}, and N(v) = {v1, v2, . . . , v∆(G)}. If ∆(G) = 2, then clearly

xy ∈ E(G), since δ(G) = 2. Thus G = C5. If ∆(G) = 3, then n = 6 and γR(G) = 4.

If xy /∈ E(G), then N(x) = N(y) = N(v), since ∆(G) = δ(G) = 3. Then we observe

that G = 2K3. Assume next that xy ∈ E(G). Without loss of generality, assume

N(x) = {v1, v2, y}. If N [x] = N [y], then N(v3)∩{v1, v2} = ∅, since ∆(G) = 3.

Then deg(v3) = 1 < δ(G), a contradiction. Thus N [x] 	= N [y]. We may assume that

N(y) = {x, v2, v3}. Since ∆(G) = δ(G) = 3, we have v1v3 ∈ E(G), and so G = C6.

It remains to assume that ∆(G) = 4. Then n = 7 and γR(G) = 5. If xy /∈ E(G),

then N(x) = N(y) = N(v), since ∆(G) = δ(G) = 4. Hence, G = C3 + C4. Assume

next that xy ∈ E(G). Without loss of generality, assume N(x) = {v1, v2, v3, y}. If

N [x] = N [y], then N(v4) = {v1, v2, v3} and the subgraph G induced by {v1, v2, v3}

has no edge, since ∆(G) = δ(G) = 4, and thus G = C3 + C4. Next assume that

N [x] 	= N [y]. Without loss of generality assume that N(y) = {x, v2, v3, v4}. If

v2v3 ∈ E(G), then v1 /∈ N(v2)∪N(v3), since ∆(G) = δ(G) = 4. Hence, deg(v1) ≤ 3,

a contradiction. So v2v3 /∈ E(G). If v1v4 /∈ E(G), then {v2, v3} ⊆ N(v1)∩N(v4),

since δ(G) = 4. Hence, deg(v2) = deg(v3) = 5 > ∆(G), a contradiction. Thus v1v4 ∈

E(G), |N(v1)∩{v2, v3}| = 1, |N(v4)∩{v2, v3}| = 1 and N(v2)∩N(v3)∩N(v) =

∅. We may assume that N(v2) = {v, v1, x, y} and N(v3) = {v, v4, x, y}. Hence,

G = C7.

Henceforth, we assume that ∆(G) = δ(G) + 1. Suppose that ∆(G) < n− 5 and

∆(G) < n − 5. Then |V (G) − N(v)| ≥ 5. Let x, y, z ∈ V (G) − N [v]. Evidently,

N(x)∩N(y)∩N(z) = ∅. Then the function f = (V (G) − {x, y, z}, ∅, {x, y, z}) is

an RDF for G and so γR(G) ≤ 6. Then we have n + 2 = γR(G) + γR(G ≤ (n −

∆(G) + 1) + 6 which implies that ∆(G) ≤ 5. Similarly, we can see that ∆(G) ≤ 5.

Then δ(G) ≥ n − 6, and thus ∆(G) = δ(G) + 1 ≥ n − 5, a contradiction. We

deduce that ∆(G) ≥ n−5 or ∆(G) ≥ n−5. Without loss of generality, assume that

∆(G) ≥ n − 5. Since V (G) − N [v] 	= ∅, we have n − 5 ≤ ∆(G) ≤ n − 2.

Assume that ∆(G) = n − 2. Then γR(G) = 3, δ(G) = n − 3, γR(G) = n − 1,

∆(G) = 2 and δ(G) = 1. Hence, any component of G is a path. Also there exist

exactly one component Pt of G with γR(Pt) = t − 1 and other components of G

are P2. By Proposition 3, t − 1 = γR(Pt) = ⌈2t/3⌉, which implies that t ≤ 5.

Hence, G ∈ {P3 + sK2, P4 + sK2, P5 + sK2}, where s ≥ 0 is an integer. Thus
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n − 5 ≤ ∆(G) ≤ n− 3. We proceed with three lemmas namely Lemmas 10, 11 and

12 according to the value ∆(G) = n − 5, n − 4 or n − 3.

Lemma 10. If ∆(G) = n − 5, then G or G ∈ {2K2 + K2, K2 + K4, P5 + K2, P3 +

2K2, C3 + 2K2, P5 + K2, C5 + K2, C8 + 15, C8 + 15 + 26} ∪ {G1, G2}.

Proof. Assume that ∆(G) = n − 5. Then γR(G) = 6, γR(G) = n − 4 and δ(G) =

n− 6. Let V (G)−N [v] = {x, y, z, w} and k = |E(G[G−N [v]])|. It can be seen that

k ≤ 2 and so by Lemma 8 we have ∆(G) ≤ 4.

If ∆(G) = 1, then clearly G = 2K2 + K2 or G = K2 + K4. If ∆(G) = 2, then

γR(G) = 3 and δ(G) = 1. Let N(v) = {v1, v2}. Since ∆(G) = 2, every vertex

N(v) must have at most one neighbor outside N [v]. Similarly δ(G) = 1 implies

that every vertex outside N [v] must have at most one neighbor in N(v). Hence,

|N(v1)∩ (V (G) − N [v])| ≤ 1, |N(v2)∩ (V (G) − N [v])| ≤ 1 and N(v1)∩N(v2) = ∅.

If k = 0, then we may assume x /∈ N(v1)∩N(v2), since ∆(G) = 2. Then

deg(x) = 0 < δ(G) = 1, a contradiction. If k = 1, then we may assume that

xy ∈ E(G) and zw /∈ E(G). Since δ(G) = 1, we have N(z)∩N(v) 	= ∅ and simi-

larly N(w)∩N(v) 	= ∅. On the other hand the subgraph induced by N(v) has no

edge. Hence, G = P5 + K2. If k = 2, then we may assume that x ∈ N(y) and

z ∈ N(w). If there is no edge joining N(v) and V (G) − N(v), then G = P3 + 2K2

or G = C3 + 2K2. Otherwise we may assume |(N(x) ∪ N(y))∩N(v)| ≥ 1. If

|(N(x) ∪ N(y))∩N(v)| = 1, then G ∈ {P5 + K2, P7}. Since γR(P7) = 5, we obtain

that G = P5 + K2. Thus assume that |(N(x) ∪ N(y))∩N(v)| = 2. Then, clearly

G = C5 + K2.

If ∆(G) = 3, then γR(G) = 4 and δ(G) = 2. Let N(v) = {v1, v2, v3}. It is evident

that k ≥ 1. If k = 1, then we may assume that xy ∈ E(G). Then N(x)∩N(v) 	= ∅

and N(y)∩N(v) 	= ∅. If u ∈ N(x)∩N(y), then N(z) = N(w) = N(v) − {u},

since δ(G) = 2. Then {u, z} is a dominating set for G − w, a contradiction. Thus

N(x)∩N(y) = ∅, and so |N(z)∩N(w)| = 1, since δ(G) = 2. We may assume

that N(z)∩N(w) = {v3}. Then {v3} /∈ N(x) ∪ N(y), and we may assume that

N(x) = {y, v1} and N(y) = {x, v2}. Since ∆(G) = δ(G) + 1 = 3, we have deg(z) =

deg(w) = 2. Thus, we may assume that N(z) = {v2, v3} and N(w) = {v1, v3}.

Then {z, v1} is a dominating set for G − y, a contradiction. Hence, k = 2, and we

may assume that x ∈ N(y) and z ∈ N(w). If u ∈ N(x)∩N(y), then the RDF f =

(N(w)∪N(u), V (G) − N [w] − N [u], {w, u}) has weight at most 5, a contradiction.

Thus N(x)∩N(y) = ∅, and similarly, N(z)∩N(w) = ∅. Clearly, there exist at

least one vertex of N(v) with exactly two neighbors in V (G) − N [v]. Without loss

of generality, assume that N(v2)∩ (V (G) − N [v]) = {y, z}. If N(x)∩N(w) 	= ∅,

then without loss of generality, assume that v3 ∈ N(x)∩N(w). Then {v2, v3} is a

dominating set for G−v1, and so γR(G) ≤ 5, a contradiction. Hence, N(x)∩N(w) =

∅, and we may assume that N(x) = {v1, y} and N(w) = {v3, z}. If v1v3 ∈ E(G),

then {v1, v2} is a dominating set for G, a contradiction. Thus, the subgraph induced

by N(v) has no edge. If {v1z, v3y} ⊆ E(G), then {z, y} is a dominating set for
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G − v, a contradiction. Hence, |{v1z, v3y}∩E(G)| ≤ 1 and so G = C8 + 15 or

G = C8 + 15 + 26.

Now assume that ∆(G) = 4. Then γR(G) = 5 and δ(G) = 3. Let N(v) =

{v1, v2, v3, v4}. Lemma 8 implies that k = 2. We may assume x ∈ N(y) and

z ∈ N(w). If u ∈ V (G) − N [v], then |N(u)∩N(v)| ≥ 2, since δ(G) = 3.

Then |N(x)∩N(y)| ≤ 2. If |N(x)∩N(y)| ≥ 1, then we may assume that

v1 ∈ N(x)∩N(y). If deg(v1) = 3, then {v1, v} is a dominating set for G,

and so γR(G) ≤ 4, a contradiction. Thus assume that deg(v1) = 4. Then

N(v1)∩{z, w} = ∅. Hence, we may assume that N(v1)∩N(v) = {v2}. Since

δ(G) = 3, we have |N(z)∩{v2, v3, v4}| ≥ 2. Then the RDF f = (N(v1) ∪

N(z), V (G) − N(v1)− N(z), {v1, z}) has weight at most 5, a contradiction. Hence,

N(x)∩N(y) = ∅, and similarly N(z)∩N(w) = ∅. If N(x)∩N(z) = ∅, then

we may assume that N(x) = {y, v1, v2} and N(z) = {w, v3, v4}. Then {x, z}

is a dominating set for G − v, a contradiction. Thus N(x)∩N(z) 	= ∅, and

similarly N(x)∩N(w) 	= ∅, N(y)∩N(z) 	= ∅ and N(y)∩N(w) 	= ∅. Then we

may assume that N(x) = {y, v1, v2}, N(y) = {x, v3, v4}, N(z) = {w, v1, v3} and

N(w) = {z, v2, v4}. If v1v2 ∈ E(G), then {v1, y} is a dominating set for G − w

and so γR(G) ≤ 5. Similarly, we can see that {v3v4, v1v3, v2v4}∩E(G) = ∅. If

{v1v4, v2v3} ⊆ E(G), then {v1, v2} is a dominating set for G−y, and so γR(G) ≤ 5,

a contradiction. Therefore |{v1v4, v2v3}∩E(G)| ≤ 1. Then G = G1 or G = G2.

Lemma 11. If ∆(G) = n− 4, then G or G ∈ {2K2 + K1, K2 + K3, P4 + K2, C4 +

K2, C7 + 15 + 26, C7 + 15} ∪ {G3, G4, G5, G6}.

Proof. Assume that ∆(G) = n − 4. Then δ(G) = n − 5, γR(G) = 5 and γR(G) =

n − 3. Let V (G) − N(v) = {x, y, z}. Observe that G − N [v] has at most one edge

and so by Lemma 8, we have ∆ ≤ 5. If ∆(G) = 5, then γR(G) = 6 and k = 1.

We may assume that xy ∈ E(G). Since δ(G) = 4, we have N(x)∩N(y) 	= ∅. Let

{u} ⊆ N(x)∩N(y). By Lemma 8, u /∈ N(z), and so N(v) − {u} ⊆ N(z). Thus

{u, z} is a dominating set for G, a contradiction. Hence ∆(G) ≤ 4.

If ∆(G) = 1, then clearly G = 2K2 + K1 or G = K2 + K3. If ∆(G) = 2,

then clearly k = 1. Without loss of generality, assume that xy ∈ E(G). If (N(x) ∪

N(y))∩N(v) 	= ∅, then G = P6, a contradiction since γR(P6) = 4. Hence, (N(x) ∪

N(y))∩N(v) = ∅. Since δ(G) = 1, we have |N(z)∩N(v)| ≥ 1. Then G = P4 + K2

if |N(z)∩N(v)| = 1, and G = C4 + K2 otherwise.

If ∆(G) = 3, then δ(G) = 2 and n = 7. Let N(v) = {v1, v2, v3}. Lemma 8 implies

that k ≤ 2. If k = 1, then we may assume that xy ∈ E(G). If u ∈ N(x)∩N(y),

then Lemma 8 implies that N(z) = N(v) − {u}. Then {z, u} is dominating set

for G, a contradiction. Thus N(x)∩N(y) = ∅ and |N(x)| = 2 or |N(y)| = 2. If

|N(x)| = |N(y)| = 2, then we may assume that N(x) = {v1, y}, N(y) = {v2, x}.

If deg(z) = 3, then N(v3)∩N(v) = ∅, since ∆(G) = 3. Thus G = C7 + 15 + 26.

If deg(z) = 2, then v3 ∈ N(z), since δ(G) = ∆(G) − 1 = 2. We may assume

that N(z) = {v2, v3}. If v1v3 ∈ E(G), then {v1, v2} is a dominating set for G, a
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contradiction. On the other hand, since ∆(G) = 3, we have {v1, v3}∩N(v2) = ∅.

Thus G = C7 + 15. Assume next that |N(x)| = 2 and |N(y)| = 3. Without loss of

generality, we may assume that N(x) = {v1, y}, N(y) = {v2, v3, x}. If v1 ∈ N(z),

then {v1, y} is a dominating set for G, a contradiction. Thus N(z) = {v2, v3}. Since

∆(G) = 3, the subgraph induced by N(v) has no edges, and thus G = C7 +15+26.

Now assume that the subgraph induced by V (G) − N(v) has no edges. Lemma 8

implies that deg(x) = deg(y) = deg(z) = 2. Without loss of generality, assume

that N(x) = {v1, v2}, N(y) = {v2, v3} and N(z) = {v1, v3}. Since ∆(G) = 3, the

subgraph induced by N(v) has no edges, and thus G = G3.

Now assume that ∆(G) = 4. Then Lemma 8 implies that k = 1. We may

assume, without loss of generality, that xy ∈ E(G). Let N(v) = {v1, v2, v3, v4}. If

deg(z) = 4, then by Lemma 8, N(x)∩N(y) = ∅. We may assume that N(x) =

{y, v1, v2} and N(y) = {x, v3, v4}. If v1v2 ∈ E(G), then {v2, y} is a dominating set

for G, and so γR(G) ≤ 4, a contradiction. Thus v1v2 /∈ E(G). Similarly, v3v4 /∈

E(G). If the subgraph induced by N(v) has no edges, then G = G4. Thus the

subgraph induced by N(v) has some edges. Assume next that v1v3 ∈ E(G). Then

{v2, v4}∩ (N(v1)∪N(v3)) = ∅, since ∆(G) = 4. Also if v2v4 ∈ E(G), then {v2, v3} is

a dominating set for G, and so γR(G) ≤ 4, a contradiction. Thus G = G5. Similarly,

if v2v4 ∈ E(G), then G = G5. Assume next that deg(z) = 3, then Lemma 8 implies

that |N(x)∩N(y)| ≤ 1. Assume that |N(x)∩N(y)| = 1. If deg(x) = 4, then,

|N(x)∩N(y)| ≥ 2, a contradiction since deg(y) ≥ δ(G) = 3. Thus deg(x) = 3, and

similarly deg(y) = 3. We can assume that N(x) = {y, v1, v2}, N(y) = {x, v1, v3}

and N(z) = {v2, v3, v4}. If v2 ∈ N(v4), then {v2, y} is a dominating set for G,

a contradiction. Thus v2v4 /∈ E(G) and similarly, v3v4 /∈ E(G). If v1 ∈ N(v4),

then {v1, z} is a dominating set for G, a contradiction. Thus v1 	∈ N(v4) and

deg(v4) = 2 < δ(G), a contradiction. Thus N(x)∩N(y) = ∅. Then deg(x) =

deg(y) = 3. We can assume that N(x) = {y, v1, v2}, N(y) = {x, v3, v4} and N(z) =

{v1, v2, v3}. Then N(v4)∩N(v) 	= ∅, since δ(G) = 3. If v3v4 ∈ E(G), then {x, v3}

is a dominating set for G, a contradiction. Thus v3v4 	∈ E(G). Without loss of

generality, we assume that v1v4 ∈ E(G), since δ(G) = 3. If v2v4 	∈ E(G) then

v1v2, v1v3 /∈ E(G), since ∆(G) = 4. If v2v3 ∈ E(G), then {v1, v3} is a dominating

set for G, a contradiction. Thus v2v3 	∈ E(G). Consequently, G = G6. It remains to

assume that v2v4 ∈ E(G). Then the assumption ∆(G) = 4 implies that G = G5.

Lemma 12. If ∆(G) = n−3, then G or G ∈ {K2+K2, P3+K2, P5, C3+K2, C5, C6+

35, C6 + 36, C6 + 36 + 14, C7 + 15, C7 + 15 + 26, C7 + 46 + 37 + 35} ∪ {H3, H4, G7}.

Proof. Assume that ∆(G) = n− 3. Then γR(G) = 4, γR(G) = n− 2, δ(G) = n− 4

and δ(G) = 2. Let V (G)−N [v] = {x, y}. Without loss of generality, we may assume

deg(x) ≥ deg(y). If ∆(G) ≥ 5, then n ≥ 8. If G is none of the graphs shown Fig. 1,

then by Theorem 4, we obtain n ≤ 7, a contradiction. Thus G is one of the graphs

shown Fig. 1. Now the assumption on G and G leads to G ∈ {H3, H4}. Now assume

that ∆(G) ≤ 4. We proceed according to the value of ∆(G).
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If ∆(G) = 1, then n = 4, δ(G) = 0 and so xy /∈ E(G). Hence, G = K2 + K2.

If ∆(G) = 2, then δ(G) = 1. Let N(v) = {v1, v2}. If xy /∈ E(G), then

N(x)∩N(v) 	= ∅ and N(y)∩N(v) 	= ∅. Since ∆(G) = 2, v1v2 /∈ E(G) and

N(x)∩N(y) = ∅, we may assume, without loss of generality, that N(x)∩N(v) =

{v1} and N(y)∩N(v) = {v2}. Hence, G = P5. Assume next that xy ∈ E(G).

Clearly N(x)∩N(y) = ∅, since ∆(G) = 2. If there exist two edges joining N(v) and

V (G)−N [v], then G = C5. If there exist one edges joining N(v) and V (G)−N [v],

then G = P5. Otherwise G = P3 + K2 or G = C3 + K2.

If ∆(G) = 3, then γR(G) = 4 and δ(G) = 2. Let N(v) = {v1, v2, v3}. First

assume that xy ∈ E(G). Clearly 2 ≤ deg(x) ≤ deg(y)) ≤ 3. Assume that

deg(x) = 3. Let N [x] = {x, y, v1, v2}. Assume that deg(y) = 3. If N [x] = N [y], then

N(v3)∩N(v) = ∅, since ∆(G) = 3. So deg(v3) = 1, a contradiction, since δ(G) = 2.

Hence, N [x] 	= N [y]. We may assume that N [y] = {y, x, v2, v3}. If v1v3 ∈ E(G),

then δ(G) ≥ 3, a contradiction. Hence, v1v3 /∈ E(G). On the other hand since

∆(G) = 3, N(v2)∩N(v) = ∅. We conclude that G = C6 + 35. Assume next that

deg(y) = 2. If N [y] ⊂ N [x], we may assume that N [y] = {y, x, v2}. Then since

δ(G) = 2 and ∆(G) = 3, we obtain that v1v3 ∈ E(G) and N(v2)∩N(v) = ∅. Hence,

G = C6+36. Now assume that N [y] 	⊆ N [x]. We may assume that N [y] = {y, x, v3}.

Since ∆(G) = 3, the subgraph induced by N(v) has at most one edge. Hence,

G ∈ {G7, G7, C6 + 35}. Now assume that deg(x) = 2. Then deg(y) = 2. Let

N [x] = {x, y, v1}. If N [x] = N [y], then N(v1)∩N(v) = ∅ and v2v3 ∈ E(G), since

δ(G) = 2 and ∆(G) = 3. Hence, G = C6+36+14. Next we assume that N [x] 	= N [y].

Without loss of generality, assume that N [y] = {y, x, v2}. If v1v2 ∈ E(G), then

N(v3)∩N(v) = ∅, since ∆(G) = 3, and so deg(v3) = 1 < δ(G) = 2, a contra-

diction. Hence, v1v2 /∈ E(G). Moreover, N(v3)∩{v1, v2} 	= ∅, since δ(G) = 2. If

v1v3 	∈ E(G), then G = C6 + 35. Otherwise G = G7.

Next, assume that xy /∈ E(G) and that deg(x) = 3. If deg(y) = 3, then δ(G) ≥ 3,

a contradiction. Hence, deg(y) = 2. Without loss of generality, N(y) = {v2, v3}.

Since ∆(G) = 3, the subgraph induced by N(v) has no edge, and so G = C6+36+14.

Next assume next that deg(x) = 2. Assume that N(x) = {v1, v2}. If N(x) =

N(y), then N(v3)∩{v1, v2} = ∅, since ∆(G) = 3. Thus deg(v3) = 1 < δ(G),

a contradiction. Hence, N(x) 	= N(y). We may assume N(y) = {v2, v3}. Since

∆(G) = 3, we have N(v2)∩N(v) = ∅. On the other hand if v1v3 ∈ E(G), then

∆(G) = 2, a contradiction. Hence, v1v3 /∈ E(G). Therefore, G = C6 + 36.

Now assume that ∆(G) = 4. Then δ(G) = 3 and γR(G) = 5. Let N(v) =

{v1, v2, v3, v4}. We show that xy ∈ E(G). Suppose that xy /∈ E(G). Assume that

deg(x) = 4. If deg(y) = 4, then there exist vertex u ∈ N(v) such that deg(u) =

3, since ∆(G) = 3. Therefore, {u, v} is a dominating set for G, a contradiction.

Thus deg(y) = 3, since δ(G) = 3. Without loss of generality, we may assume that

N(y) = {v1, v2, v3}. Since δ(G) = 3, we have N(v4)∩N(v) 	= ∅. Without loss of

generality, assume that v3 ∈ N(v4). Since ∆(G) = 4, we have N(v3)∩{v1, v2} = ∅.

Then {y, v3} is a dominating set for G, a contradiction. Hence, xy ∈ E(G). We

consider the following cases.
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Case 1. deg(x) = 4. Assume that N [x] = {x, y, v1, v2, v3}. We consider the following

subcases:

Subcase 1.1. deg(y) = 4. We show that N [x] 	= N [y]. Suppose that N [x] = N [y].

Since δ(G) = 3, we may assume that |N(v4)∩{v1, v2, v3}| ≥ 2. If deg(v4) = 4, then

G is a 4-regular graph, a contradiction, since ∆(G) = δ(G) + 1. Hence, deg(v4) = 3

and we may assume without loss of generality that N(v4) = {v, v2, v3}. Since

∆(G) = 4, the subgraph induced by {v1, v2, v3} has no edges. Then {v1, v} is a

dominating set for G, a contradiction. Thus N [x] 	= N [y]. We thus may assume that

N [y] = {x, v2, v3, v4}. If v2v3 ∈ E(G), then, N(v4)∩{v2, v3} = ∅, since ∆(G) = 4.

On other hand since δ(G) = 3, we have v1v4 ∈ E(G). Then {y, v4} is a dominating

set for G, a contradiction. Hence, v2v3 /∈ E(G). Assume next that v1v4 ∈ E(G).

If deg(v1) = 3, then {v1, x} is a dominating set for G, a contradiction. Hence,

deg(v1) = 4, and similarly deg(v4) = 4. Hence, G is a 4-regular graph, a con-

tradiction. Hence, v1v4 /∈ E(G). Since δ(G) = 3 and ∆(G) = 4, we may assume

N(v1) = {v, v2, x} and N(v4) = {v, v3, y}. Hence, G = C7 + 15.

Subcase 1.2. deg(y) = 3. If N [y] ⊂ N [x], then we may assume N(y) = {x, v1, v2}. If

v1v2 ∈ E(G), then N(v4)∩{v1, v2} = ∅, and so deg(v4) ≤ 2, a contradiction. Hence,

v1v2 /∈ E(G). If deg(v4) = 4, then N(v3)∩{v1, v2} = ∅, since ∆(G) = 4. So {v3, x}

is a dominating set for G, a contradiction. Hence, deg(v4) = 3. If {v1, v2} ⊆ N(v4),

then deg(v3) = 2, a contradiction. Hence, |N(v4)∩{v1, v2}| = 1, and we may assume

that N(v4) = {v, v2, v3}. If v1v3 ∈ E(G), then {v2, y} is a dominating set for G,

a contradiction. Hence, G = C7 + 46 + 37 + 35. If N [y] 	⊆ N [x]. We may assume

that N(y) = {x, v3, v4}. If v3v4 /∈ E(G), then {v4, y} is a dominating set for G, a

contradiction. Hence, v3v4 ∈ E(G). Since ∆(G) = 4, we have N(v3)∩{v1, v2} = ∅.

If v1v2 /∈ E(G), then {v1, x} is a dominating set for G, a contradiction. Hence,

v1v2 ∈ E(G). On the other hand |N(v4)∩{v1, v2}| ≤ 1, since ∆(G) = 4. If v4 	∈

E(G), then G = C7 + 15 + 26. Otherwise G = C7 + 15.

Case 2. deg(x) = 3. Clearly deg(y) = 3. Without loss of generality, assume that

N(x) = {y, v1, v2}. We show that N [x] = N [y]. Suppose that N [x] 	= N [y]. If

N(x)∩N(y) 	= ∅, then we may assume that N(y) = {x, v2, v3}. Since ∆(G) = 4,

we have |N(v2)∩N(v)| ≤ 1. Without loss of generality, we may assume that

v1 /∈ N(v2). Then {v1, x} is a dominating set for G, a contradiction. Hence,

N(x)∩N(y) = ∅. Then {x, y} is a dominating set for G, a contradiction. Hence,

N [x] = N [y]. Then N [y] = {x, y, v1, v2}. Since ∆(G) = 4 and δ(G) = 3, we

have v3v4 ∈ E(G). If deg(v3) = 4, then N(v4)∩{v1, v2} = ∅, since ∆(G) = 4.

Then deg(v4) = 2 < δ(G) = 3, a contradiction. Hence, deg(v3) = 3, and

similarly deg(v4) = 3. Since ∆(G) = 4, N(v4)∩N(v3) = {v} and v1v2 /∈

E(G), we may assume that N(v3) = {v, v4, v1} and N(v4) = {v, v3, v2}. Hence,

G = C7 + 15 + 26.
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