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ABSTRACT. Let 0 < p < 1 and M, be the algebra of n-by-n matrices with complex entries. In
this paper we discuss about the following optimization problem

M(p) := max{r(A) : A € Mn, p(4) =p, || Al =1},
Where ||A||, p(A) and r(A), are spectral norm, spectral radius and numerical radius of A respec-
tively.

A well known inequality of Haagerup and Harpe [2] states that M (0) = cos (#) and by
Wintner theorem [3] M(p) = 1 if and only if p = 1. If we take the maximum over all upper
triangular non-negative matrices, then by [1] the following inequality holds

T
M(p) < p+ (1 —p? — .
() <p+(1-p )COS(n+1)
AMS Mathematical Subject Classification [2010]: 47A12, 47A63.

1. Introduction

For 1 < p <1, calculating
M(p) := max{r(A): A€ M,, p(A) =p,[|A]| =1},

is a challenging problem. The problem states that how much we can increase the numerical
radius of matrices with fixed spectral radius and spectral norm? There are some partial answers
to this question [1, 2, 3].

All of our simulations approves that the maximum in this optimization problem is attained at
the matrix in the following form

P q 0 0

0 p ¢ 0 0
(1) A(n,p,q) = :

0 P q

0 0 »p

nxn

We will prove that if this guess is true, then

T
n+1

r(A) <p+ [\/p%os?(Z)ﬂ —p? fpcos(%)]cos( ).

Note that for n > 3 we have

\/PQCOSQ(W) +1-p? —peos() <112
n n

Therefore the last inequality improves the main inequality in [1], for n > 3.
In addition, we present a new proof of Wintner theorem.
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2. Main results
Through this section we assume that the guess (1) is true.

LEMMA 2.1. Let 0 < k,x <1 and ||A(n,k,z)|| = 1. Then

x < \/k20052(7r) +1-k% — kcos(ﬁ).
n n

PROOF. Clearly if £ = 0 then z = 1 and we have desired equality. Suppose that 0 < k <1
and set A = £ A. We have

1 . . .

5 = IAIP = A4 = p(A4").

But AA! is the following tridiagonal matrix

£L'2 x
1+ %= 5 0 0
7 I+&Z % 0 0
AAt = : : :

x 12 xT
0 © ek

0 7 1

Now consider the following matrix

1+ i—i % ] 0 .. .. 0

7 1+%= % 0 e 0

H = : : : : : : ,

r 1+ 0

0 e 0 0

2

Since 0 < H < AA!, we have p(H) < p(AA?!). Setting a =c= £, b=1+ %, by [4] we have
1

2

x x T
=14+ + Zcos(=) < —.
p(H) =14 5+ 2eos(T) < o
Therefore
x < \/lﬂzcosQ(W) +1-—k% — kcos(z).
n n
THEOREM 2.2. For every A € M, the following inequality holds
r(A) < plA) + [/ p(4)2c0?(Z) + [ AI? = p(A)> = p(A)cos()]cos(—).
- n n n+1
PrOOF. By Lemma 2.1, we have
0
A) < A
r(A) < p(A) +qeos(——)
< 20082( 2 _ 2 _ T .
< o)+ [y o(Acost (D) + IR = p(4)2 — p(A)eos(Zeos( ")

COROLLARY 2.3. (Wintner Theorem) If B € M,, and r(B) = || B||, then p(B) = || B]|.
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PROOF. Let n > 2, p(B) = p and without loss of generality suppose that ||B| = By
Haagerup-Harpe inequality, we have
™
1=7(B) <p+qeos(_——) =r(A(n.p.q)) < [Aln.p,g) = 1.
s — 1—p 1-p — ;
Hence 1 > p > 1 — cos(;75), ¢ = s and ||A(n7p,@|| = 1. Now consider the
following unit vector
. (sin%ﬂ,sin%,...,sin%)
> k=1 sz%
_ (sin%ﬂ,sinnz—fl,...7sinn"—ﬁ)
n+tl .
V 2
Setting A = A(n,p, q), if p < 1 then we will have
2 1 —p)sin-2T 1 1 — p)gin-=
> a2 = 2 fpsin—T— 4 SIPIRE g oD QTP i T
n+1 n+1 CoS i n+1 cos =y n+1
2 . k 1—p)? & k p(1—p) e~ . k k+1
= 1[p2§:sin2 Wl-l-( 2p7r) ZsinQ 7r1+ il ,rp)Zsin Wlsin( + 1
n+ P n+ COS* 2T 1o n+ ST o n+ n—+
2 p? 1 1-p)? n— 1-p) % 2k +1
— [p (TL+ ) ( 2p72 (n +0032 ™ ) p( ﬂ'p) (COS _ ( + )ﬂ-]
n+1 2 cos® g 2 n+1 cos iy i n+1
2 p(n+l) (1-pPn-1) 2
> 1-— 1-— -1
] 5 +(1=p)+p1—-p)n-1)
n—1
2p(1 — 2k +1
_ ‘p.( Qﬂp) Z(Sm 7T 1605( + 1)7T]
S et + n—+
o 2nT
2 n 4+ 1 Slnm
= —p(1—p) —p(1— =1
il - = p)sin%] ;

-1

Which is a contradiction. Hence p = 1 and the proof is complete.
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