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maximizing numerical radius of matrices

with fixed spectral norm and spectral radius

Rahim Alizadeh

Department of Mathematics, Shahed University, Tehran, Iran.

Abstract. Let 0 ≤ p ≤ 1 and Mn be the algebra of n-by-n matrices with complex entries. In
this paper we discuss about the following optimization problem

M(p) := max{r(A) : A ∈ Mn, ρ(A) = p, ∥A∥ = 1},

Where ∥A∥, ρ(A) and r(A), are spectral norm, spectral radius and numerical radius of A respec-
tively.

A well known inequality of Haagerup and Harpe [2] states that M(0) = cos
(

π

n+1

)

and by

Wintner theorem [3] M(p) = 1 if and only if p = 1. If we take the maximum over all upper
triangular non-negative matrices, then by [1] the following inequality holds

M(p) ≤ p+ (1− p2) cos

(

π

n+ 1

)

.
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1. Introduction

For 1 ≤ p ≤ 1, calculating

M(p) := max{r(A) : A ∈ Mn, ρ(A) = p, ∥A∥ = 1},

is a challenging problem. The problem states that how much we can increase the numerical
radius of matrices with fixed spectral radius and spectral norm? There are some partial answers
to this question [1, 2, 3].

All of our simulations approves that the maximum in this optimization problem is attained at
the matrix in the following form

A(n, p, q) =










p q 0 · · · · · · 0
0 p q 0 · · · 0
...

...
...

...
...

...

0 · · · · · · · · · p q

0 · · · · · · · · · 0 p










n×n

.(1)

We will prove that if this guess is true, then

r(A) ≤ p+ [

√

p2cos2(
π

n
) + 1− p2 − pcos(

π

n
)]cos(

π

n+ 1
).

Note that for n ≥ 3 we have
√

p2cos2(
π

n
) + 1− p2 − pcos(

π

n
) ≤ 1− p2.

Therefore the last inequality improves the main inequality in [1], for n ≥ 3.
In addition, we present a new proof of Wintner theorem.
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2. Main results

Through this section we assume that the guess (1) is true.

Lemma 2.1. Let 0 ≤ k, x ≤ 1 and ∥A(n, k, x)∥ = 1. Then

x ≤

√

k2cos2(
π

n
) + 1− k2 − kcos(

π

n
).

Proof. Clearly if k = 0 then x = 1 and we have desired equality. Suppose that 0 < k ≤ 1
and set Ã = 1

k
A. We have

1

k2
= ∥Ã∥2 = ∥ÃÃt∥ = ρ(ÃÃt).

But ÃÃt is the following tridiagonal matrix

ÃÃt =











1 + x2

k2

x
k

0 · · · · · · 0
x
k

1 + x2

k2

x
k

0 · · · 0
...

...
...

...
...

...

0 · · · · · · x
k

1 + x2

k2

x
k

0 · · · · · · · · · x
k

1











.

Now consider the following matrix

H =











1 + x2

k2

x
k

0 · · · · · · 0
x
k

1 + x2

k2

x
k

0 · · · 0
...

...
...

...
...

...

0 · · · · · · x
k

1 + x2

k2 0
0 · · · · · · · · · 0 0











,

Since 0 ≤ H ≤ ÃÃt, we have ρ(H) ≤ ρ(ÃÃt). Setting a = c = x
k

, b = 1 + x2

k2 , by [4] we have

ρ(H) = 1 +
x2

k2
+

2x

k
cos(

π

n
) ≤

1

k2
.

Therefore

x ≤

√

k2cos2(
π

n
) + 1− k2 − kcos(

π

n
).

□

Theorem 2.2. For every A ∈ Mn, the following inequality holds

r(A) ≤ ρ(A) + [

√

ρ(A)2cos2(
π

n
) + ∥A∥2 − ρ(A)2 − ρ(A)cos(

π

n
)]cos(

π

n+ 1
).

Proof. By Lemma 2.1, we have

r(A) ≤ ρ(A) + qcos(
π

n+ 1
)

≤ ρ(A) + [

√

ρ(A)2cos2(
π

n
) + ∥A∥2 − ρ(A)2 − ρ(A)cos(

π

n
)]cos(

π

n+ 1
).

□

Corollary 2.3. (Wintner Theorem) If B ∈ Mn and r(B) = ∥B∥, then ρ(B) = ∥B∥.
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Proof. Let n ≥ 2, ρ(B) = p and without loss of generality suppose that ∥B∥ = 1. By
Haagerup-Harpe inequality, we have

1 = r(B) ≤ p+ qcos(
π

n+ 1
) = r(A(n, p, q)) ≤ ∥A(n, p, q)∥ = 1.

Hence 1 ≥ p > 1 − cos( π
n+1 ), q = 1−p

cos( π

n+1
) and ∥A(n, p, 1−p

cos( π

n+1
)∥ = 1. Now consider the

following unit vector

x =
(sin π

n+1 , sin
2π
n+1 , . . . , sin

nπ
n+1 )

√
∑n

k=1 sin
2 kπ
n+1

=
(sin π

n+1 , sin
2π
n+1 , . . . , sin

nπ
n+1 )

√
n+1
2

.

Setting A = A(n, p, q), if p < 1 then we will have

1 ≥ ∥Ax∥2 =
2

n+ 1
∥(psin

π

n+ 1
+

(1− p)sin 2π
n+1

cos π
n+1

, . . . , psin
(n− 1)π

n+ 1
+

(1− p)sin nπ
n+1

cos 2π
n+1

, psin
nπ

n+ 1
)∥2

=
2

n+ 1
[p2

n∑

k=1

sin2 kπ

n+ 1
+

(1− p)2

cos2 π
n+1

n∑

k=2

sin2 kπ

n+ 1
+

2p(1− p)

cos π
n+1

n−1∑

k=1

sin
kπ

n+ 1
sin

(k + 1)π

n+ 1
]

=
2

n+ 1
[
p2(n+ 1)

2
+

(1− p)2

cos2 π
n+1

(
n− 1

2
+ cos2

π

n+ 1
) +

p(1− p)

cos π
n+1

n−1∑

k=1

(cos
π

n+ 1
− cos

(2k + 1)π

n+ 1
]

>
2

n+ 1
[
p2(n+ 1)

2
+

(1− p)2(n− 1)

2
+ (1− p)2 + p(1− p)(n− 1)

−
2p(1− p)

sin 2π
n+1

n−1∑

k=1

(sin
π

n+ 1
cos

(2k + 1)π

n+ 1
]

=
2

n+ 1
[
n+ 1

2
− p(1− p)− p(1− p)

sin 2nπ
n+1

sin 2π
n+1

︸ ︷︷ ︸

−1

] = 1,

Which is a contradiction. Hence p = 1 and the proof is complete. □
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