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Contribution of arbuscular mycorrhizal symbiosis to plant
growth under different types of soil stress
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INTRODUCTION

There are several soil fungi, arbuscular mycorrhiza fungi
(AMF), in the phylum Glomeromycota, order Glomerales, that
develop, in most cases, non-specific symbioses with most ter-
restrial plants. In this obligate association, fungal spores per-
ceive the presence of the host plant through biochemical
communication between the two partners and, after
approaching the plant roots, AM produce fungal hyphae that
grow into the apoplastic space of the host root cortical cells.
Highly branched tissues (arbuscules), which are the exchange
interface for nutrients and carbon between AM and the host
plant, and storage tissues (vesicles) are then formed. It is
known that AM fungi can enhance plant growth and produc-
tion under different conditions, including various soil stresses
(Rillig 2004; Hildebrandt et al. 2007; Miransari et al. 2007,
2008, 2009a,b; Daei et al. 2009).

Soil stresses such as heavy metals, compaction, salinity and
drought can decrease plant growth and hence production.
AM can significantly increase plant growth and production
under stress due to the formation of extensive hyphal net-
works and production of biochemicals like glomalin. Such
abilities can result in enhanced water and nutrient uptake
and improved soil structure. However, it should be men-
tioned that high levels of stress may turn the symbiosis
between the two partners into a parasitic relationship, as
unfavourable conditions may adversely influence AM perfor-
mance (Rillig 2004; Hildebrandt et al. 2007; Miransari et al.

2007, 2008, 2009a,b). The adverse effects of AM on plant
growth under stress conditions can be through unfavourable
effects of the stress on AM functioning and development.
These effects include decreased colonisation rate and spore
germination, as well as decreased fungal hyphal growth
(Jahromi et al. 2008; Evelin et al. 2009). Accordingly, with
respect to the important roles of AM in the ecosystem, some
important details regarding such mechanisms are now
reviewed.

AM AND HEAVY METALS

There are only a limited number of plants (the metallo-
phytes) that can grow under heavy metals stress, including
Minuartia verna subsp. hercynica, Arabidopsis (Cardaminopsis)
halleri, Thlaspi caerulescens, and the specific zinc-tolerant spe-
cies Viola calaminaria and V. guestphalica (Tonin et al. 2001;
Siuta et al. 2005; Hildebrandt et al. 2006). In addition to the
development of some special physiological processes, symbio-
sis with AM also enables metallophytes to grow under heavy
metal stress by substantially reducing plant uptake of the
heavy metals (Berreck & Haselwandter 2001). Most metallo-
phytes belong to the families Brassicaceae and Caryophylla-
ceae, which are known non-mycorrhizal plants (de Mars &
Boerner 1996). However, some species in these families, e.g.,
Biscutella laevigata and Thlaspi spp., are able to develop sym-
bioses with AM species such as Glomus intraradices
(Hildebrandt et al. 2007). It is interesting to examine how
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ABSTRACT

The development of symbioses between soil fungi, arbuscular mycorrhizae (AM),
and most terrestrial plants can be very beneficial to both partners and hence to the
ecosystem. Among such beneficial effects, the alleviation of soil stresses by AM is of
especial significance. It has been found that AM fungi can alleviate the unfavourable
effects on plant growth of stresses such as heavy metals, soil compaction, salinity
and drought. In this article, such mechanisms are reviewed, in the hope that this
may result in more efficient use of AM under different stress conditions.
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such species develop mycorrhizal symbiosis and how this
ability can be improved under conditions including heavy
metal stress.
AM symbiosis with plants has been observed in soils con-

taining heavy metals (Chaudhry et al. 1999; Khan et al.
2000). Most plants that are tolerant to heavy metal stress,
intensify their symbiosis (higher root colonisation) with AM
at the stage of high-nutrient demand, e.g., at the reproductive
stage. The AM symbiosis of Thlaspi praecox results in
enhanced phosphate (P) uptake and decreased zinc (Zn) and
cadmium (Cd) uptake compared with non-mycorrhizal treat-
ments, indicating the great importance of even low levels of
symbiosis under heavy metal stress (Hildebrandt et al. 2007).
The alleviating potential of AM on heavy metal stress is
determined by different factors: type and concentration of
heavy metal, plant specification and growth conditions (Hil-
debrandt et al. 1999; Turnau & Mesjasz-Przybylowicz 2003).
Molecular analyses have indicated mechanisms involved in
heavy metal tolerance of AM.
Root AM colonisation of plants under heavy metal stress

results in expression of specific genes responsible for pro-
duction of proteins (including metallothioneins) that
increase the tolerance of plants to stress (Rivera-Becerril
et al. 2005). Metallothioneins are metal-binding proteins
produced in many different organisms when exposed to
high concentrations of heavy metals such as copper (Cu),
Zn and Cd. There are many AM and plant genes involved
in this tolerance to heavy metal stress, including metal
transporter genes, which are expressed at different levels,
and AM symbiosis can regulate the transcription of such
genes (Lanfranco et al. 2002; González-Guerrero et al. 2005;
Hildebrandt et al. 2007).
AM can both positively and adversely affect the uptake of

heavy metals by plants. Similar to stresses such as soil com-
paction (Miransari et al. 2007, 2008, 2009a,b) and salinity
(Tian et al. 2004; Subramanian et al. 2006), the alleviating
effects of AM on plant growth may intensify with increasing
heavy metal concentration (Hildebrandt et al. 1999; Audet &
Charest 2006), indicating a significant interaction between
AM and stress level, and, interestingly, the probable reasons
for this remain to be investigated. Different species of AM,
including Glomus intraradices, are able to enhance tolerance
of plants such as tomato, corn and Medicago truncatula to
heavy metal stress (Wulf et al. 2003; Hildebrandt et al. 2007).
Under heavy metals stress, the diversity of AM spores

decreases compared with stress-free conditions. Hence, a lim-
ited number of spores are usually found in the rhizosphere of
e.g., Zn-tolerant plant species (Pawlowska et al. 1996; del Val
et al. 1999; González-Guerrero et al. 2008). When approach-
ing the inner part of the root, heavy metals are located in
parenchyma cells, and for most AM structures, in hyphae,
arbuscules and vesicles. While the fungal cytoplasm remains
free of Zn, Cu or Cd accumulation, the cell wall and elec-
tron-dense granules contain high amounts of these elements
(González-Guerrero et al. 2005, 2008). Heavy metals may also
be stored in vesicles (Weiersbye et al. 1999). It has also been
found that AM hyphae are able to produce insoluble glyco-
protein, called glomalin, which binds to heavy metals.
Accordingly, it can be stated that AM are able to keep heavy
metals out of plants or reduce concentrations in plants
(Hildebrandt et al. 2007).

Under heavy metal stress, the unfavourable oxidative
effects adversely influence plant growth. However, AM are
able to enhance production of antioxidant enzymes, which
can alleviate the stress of heavy metals (Avery 2001;
Ruiz-Lozano 2003). The gene products can stabilise and rear-
range the structure of proteins that are denatured due to the
oxidative stress of heavy metals. The enhanced tolerance of
AM plants is related to the simultaneous regulation of AM
stress genes and plant tolerance genes (Ruiz-Lozano 2003;
Hildebrandt et al. 2007).

Different enzymes in AM, including gluthatione S-transfer-
ase, superoxide dismutase, cytochrome P450 and thioredoxin,
are involved in alleviating the stress of reactive oxygen species
(ROS), thus decreasing the oxidative stress of heavy metals
on plants (Hildebrandt et al. 2007). Due to the catalysing
effects of glutathione S-transferases on conjugating glutathi-
one and hydrophilic products, oxidative stress may be allevi-
ated (Moons 2003; Smith et al. 2004).

Although AM are able to enhance iron (Fe) and manga-
nese (Mn) uptake in plants (Marschner & Dell 1994;
Miransari et al. 2006), they are also able to alleviate the unfa-
vourable effects of aluminium (Al), Mn and Fe (Nogueira
et al. 2004; Davies et al. 2005; Cardoso & Kuyper 2006;
Miransari et al. 2006) on plant growth, especially at high
concentrations. AM are able to decrease the availability of
Mn in shoots and hold Fe in roots. AM hyphae can absorb
high amounts of nutrients including heavy metals from the
soil and transfer them to the shoots in specific plants, result-
ing in decreased concentrations of heavy metals in the soil.
The rate of uptake is very much dependent on AM species
and plant genotype (Marschner 1995; Sudova et al. 2008).

The role of AM in enhancing plant tolerance to heavy met-
als is very important and differs between different plant and
AM species, depending on the metal species in the soil. For
example, according to Joner & Leyval (1997), because of
uptake and immobilisation of Cd by extraradical hyphae of
Glomus mosseae, Cd transfer to the plant decreases. Khan
et al. (2000) observed similar results for Zn, and stated that
Zn absorbed by AM hyphae is crystallised in these hyphae
and cortical cells of mycorrhizal roots. The large specific
surface area of AM hyphae allows the fungus to absorb high
levels of nutrients, even beyond the growing zone of the plant
roots. This process is called phytostabilisation, by which AM
increase plant ability to immobilise heavy metals in the soil
through absorbing such metals in their hyphae and conse-
quently decreasing translocation from plant roots to shoots
(Leyval et al. 2002). Using plants with the ability to absorb
high amounts of heavy metals and in symbiosis with AM
provides a favourable environment for reduction of heavy
metal concentration in soils. Such ability is very important
for phytoextraction of heavy metals from the soil, producing
a more favourable environment for plant growth and crop
production. The combination of these abilities can contribute
highly to establishment of a healthy and productive soil
(Pawlowska et al. 2000; Christie et al. 2004).

Plants produce organic root exudates such as malic and
citric acids and ⁄or acid phosphatase when P is deficient,
resulting in enhancement of nutrient uptake (Marschener
1998; Khan et al. 2000). In addition, the interactive effects of
plant roots and microbial populations in the rhizosphere
increase root exudation of organic products and hence activ-
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ity of soil microorganisms, and eventual plant nutrient
uptake (Meharg 1994; Burleigh & Harrison 1997; Khan et al.
2000). There are many microorganisms in the soil that can
enhance the solubility of different P sources (such as rock
phosphate) by producing organic acids, including AM, Asper-
gillus sp., Bacillus sp., Enterobacter sp., Pseudomonas sp.
Accordingly, in addition to enhancement of nutrient avail-
ability, addition of soil microorganisms including AM can
also decrease heavy metals concentration in the soil (Khan et
al. 2000).

The combined effects of soil bacteria and AM can enhance
plant tolerance to heavy metals through promoting plant
growth, e.g., by production of the phytohormone, IAA, and
increasing AM activity in soils containing heavy metals (Vivas
et al. 2003). In addition, other researchers have also indicated
the positive effects of co-inoculation with AM fungi and soil
bacteria on removal of heavy metals from soils (Barea et al.
2002, 2005; Azcón et al. 2009).

AM AND SOIL COMPACTION

Another important role of AM is improving soil structure
(Ryan & Graham 2002). Soil properties, root architecture and
agricultural practices determine the stability of the soil struc-
ture. For example, unsuitable agricultural practices can
adversely influence soil structure by decreasing aggregation
stability and hence movement of soil particles, particularly
clay particles, resulting in reduction of macropores and a
partial increase of micropores. These factors are the main
reason for increasing soil bulk density (Cardoso & Kuyper
2006; Miransari et al. 2007, 2008, 2009a,b) when soil is com-
pacted under heavy traffic, especially at unfavourable levels of
fertiliser and moisture. AM fungi affect soil structure
through: (i) binding soil particles on extraradical hyphae, (ii)
entanglement of microaggregates by hyphae into macroaggre-
gates, and (iii) providing a C source for plants and microor-
ganisms after AM degradation in the soil (Jastrow et al. 1998;
Cardoso & Kuyper 2006). Additionally, production of the
glycoprotein, glomalin, by AM hyphae, quantified by measur-
ing soil-related proteins, can greatly contribute to enhance-
ment of soil structure (Rillig 2004).

Glomalin affects soil stability more than AM hyphae alone,
because its persistence in the soil is higher (6 to more than
40 years) than AM hyphae (from a few days to a few
months) (Rillig et al. 2001). According to Steinberg & Rillig
(2003), 40–75% of AM hyphae and glomalin can, respec-
tively, be detected in soil 150 day after the onset of symbiosis.
High amounts of glomalin are available in the soil, ranging
from 12 to 60 mgÆcm)3 in different soils, including forest
soils (Rillig et al. 2001).

Between 3% and 5% of total soil C and N in rain forest
soils (Cardoso & Kuyper 2006) and 5% and 4% of soil C
and N stock, respectively, were found in the form of glomalin
(Rillig et al. 2001). Also, AM hyphae and glomalin account
for 15% of soil organic C in grassland (Cardoso & Kuyper
2006). Because glomalin is hydrophobic, it is able to coat the
AM hyphae and related soil particles, resulting in enhanced
AM tolerance at gas–water interfaces and reduce disruption
of macro-aggregates during wetting and drying cycles in the
soil (Rillig 2004). Moreover, production of glomalin in the
soil increases C storage and affects aggregate stability and,

hence, soil structure (Cardoso & Kuyper 2006). Wright et al.
(1999) found that the concentration of glomalin was posi-
tively correlated with soil structural stability after replacement
of conventional tillage with a no-tillage system under corn
production. Glomalin production can also affect the soil
microbial population as it provides a source of C available to
microorganisms (Bai et al. 2009).

Crop rotation can also influence glomalin production and
soil structural stability (Wright & Anderson 2000). Hence,
consideration of tillage practices affecting production and
protection of hyphae and glomalin can be of great signifi-
cance for soil structural stability and, thus, reduced soil ero-
sion. AM have been found to increase plant growth under
compaction stress through the enhancement of root growth
and nutrient uptake (Miransari et al. 2007, 2008, 2009a,b).

AM AND SALINITY

Agricultural soils that are salty or subject to salinity limit
crop production and account for more than 7% of all agri-
cultural soils worldwide (Jain et al. 1989). The existence of
AM in salt-laden crop soils is very common (Juniper &
Abbott 1993). AM are able to biologically enhance plant
growth and crop production in such salty soils (Al-Karaki
et al. 2001; Daei et al. 2009). The different interactions
between AM and host plants under different conditions has
received much attention for selection of the most efficient
isolates, especially when AM and host plants are subjected to
different stresses, and also for evaluation of AM functionality
and ecology (Johnson et al. 1997; Ruiz-Lozano & Azcón
2000). Different species of AM differ in their tolerance to
stress. For example, although under stress there are fewer
species, those that are more tolerant to the stress can survive
and enhance plant ability to grow more efficiently (Tian et al.
2004; Daei et al. 2009).

The adverse effects of salinity on AM symbiosis are caused
by inhibition of spore germination (Hirrel 1981; Juniper &
Abbott 2006) and hyphal growth and development
(McMillen et al. 1998), as well as reduced production of
arbuscules (Pfeiffer & Bloss 1988). Although increased salinity
reduces AM colonisation of plant roots, the dependency of
plants on AM symbiosis is increased, indicating the signifi-
cance of AM to alleviate salinity stress on plant growth (Tian
et al. 2004). When subjected to salinity stress, plants absorb
less P (Munns 1993), but plants can alleviate this stress using
different mechanisms (Al-Karaki 2000, 2006; Al-Karaki et al.
2001; Tian et al. 2004). Resistant and non-resistant AM
species utilise different mechanisms to enhance plant growth
and production under salinity stress. Mechanisms of salt
tolerance in non-resistant AM species include improvement
of nutrient (N and P) uptake by host plants, while resistant
AM species cause enhanced leaf respiration and transpiration,
which increases the exchange of carbon dioxide and water
through stomatal activity and eventually affects water use
efficiency of host plants. AM salt-tolerant species can also
alleviate salinity stress on plant growth through increasing
the concentration of osmolytes, such as carbohydrates and
electrolytes in plant roots (Ruiz-Lozano et al. 1996; Feng
et al. 2002; Tian et al. 2004; Boomsma & Vyn 2008; Daei
et al. 2009). Other related mechanisms stimulate root devel-
opment and enhance nutrient uptake via both resistant and
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non-resistant AM species, respectively (Ruiz-Lozano & Azcón
2000), as well as enhancing root hydraulic conductivity
(Rosendahl & Rosendahl 1991; Giri et al. 2003).
Plant morphological changes when subjected to salinity

include decreased root and shoot growth, although under dif-
ferent stresses plant allocate more C to their roots (Hause
et al. 1996; Wang et al. 2001; Miransari & Smith 2007, 2008,
2009). The adverse effects of sodium (Na) on leaf chlorophyll
content have been attributed to the inhibiting effects of Na
on magnesium (Mg) absorption. However, since AM are able
to increase Mg uptake (Marschner & Dell 1994; Giri et al.
2003; Giri & Mukerji 2004; Miransari et al. 2009a,b), which
is necessary for chlorophyll formation, they can alleviate the
adverse effects of Na on photosynthesis in addition to the
other beneficial effects of AM on photosynthesis (see above).
Adjustment of the K ⁄Na ratio is another interesting effect of
AM on plant growth under salinity conditions as a result of
increased K uptake (Giri et al. 2003; Daei et al. 2009).

AM AND WATER STRESS

Under arid and semi-arid conditions, drought or water defi-
ciency states constitute one of the most common stresses
affecting plant growth and yield (Kramer & Boyer 1997; Feng
et al. 2002). Similar to salinity stress, drought also affects
plant growth through affecting osmotic potential (Ruiz-
Lozano 2003). To alleviate osmotic stress, plants respond
using anatomical, physiological and cellular mechanisms
(Bray 1997). Mycorrhizal plants are able to grow much better
under such conditions compared with non-mycorrhizal
plants (Auge 2001; Subramanian et al. 2006). Drought
tolerance of plants, including corn (Sylvia et al. 1993;
Subramanian et al. 1995), soybean (Bethlenfalvay et al. 1988)
wheat, onion, lettuce (Subramanian et al. 2006) and other
species of agricultural interest (Auge 2001), increases in sym-
bioses with AM.
In addition to higher nutrient uptake of mycorrhizal plants

under stress, the substantial enhancement of root surface area
and dense growth of roots also improve tolerance of mycor-
rhizal plants under stress (Auge et al. 1994; Subramanian
et al. 2006). Under drought stress, AM affect water movement
into the plant, influencing plant hydration and physiological
processes (Auge 2001). Hence, mycorrhizal plants are able to
have higher water potential (higher water use efficiency) and
can enhance growth at a faster rate when irrigation is
restored.
Moreover, under water stress, mycorrhizal plants can

absorb forms of N that are unavailable to non-mycorrhizal
plants, resulting in higher growth under stress (Subramanian
et al. 2006). Adjustment of osmotic potential by AM is prob-
ably one of the most important reasons for the improved
ability of the host plant to grow under water stress. Through
the higher accumulation of organic products, e.g., proline,
glycine betaine, carbohydrates such as sucrose and mannitol
and non-organic ions including K and Cl, mycorrhizal plants
can enhance biomass production under stress relative to non-
mycorrhizal plants (Azcón et al. 1996; Goicoechea et al. 1998;
Ruiz-Lozano 2003; Ruiz-Lozano et al. 2006). It is also note-
worthy that AM can influence plant growth under water
stress through affecting soil structure. AM hyphae can
enhance soil structure by binding soil particles and through

production of glomalin, which affect soil moisture retention
(Auge 2001; Ruiz-Lozano 2003; Auge et al. 2004; Rillig 2004).

AM symbiosis enhances plant tolerance to drought stress
through altering plant physiology and gene expression (Ruiz-
Lozano et al. 2006; Aroca et al. 2008; Boomsma & Vyn
2008). In addition, production of antioxidant enzymes by
mycorrhizal plants when subjected to drought stress is
another important reason for the enhanced growth of the
host plant under such stress (Ruiz-Lozano 2003).

CONCLUSION

This review indicates the important roles of symbiotic AM in
the soil, especially when soil is subjected to some kind of
stress. The effects of AM can improve the overall efficiency
of an ecosystem and may also result in development of
new ideas for the more productive and efficient agricultural
strategies.
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Wang B., Lüttge U., Ratajczak R. (2001) Effects of salt treatment

and osmotic stress on V-ATPase and V-PPase in leaves of the

halophyte Suaeda salsa. Journal of Experimental Botany, 52,

2355–2365.

Weiersbye I.M., Straker C.J., Przybylowicz W.J. (1999) Micro-PIXE

mapping of elemental distribution in arbuscular mycorrhizal

roots of the grass, Cynodon dactylon, from gold and uranium

mine tailings. Nuclear Instruments, Methods of Physical Research,

Section B, 158, 335–343.

Wright S.F., Anderson R.L. (2000) Aggregate stability and glomalin

in alternative crop rotations for the central Great Plains. Biology

and Fertility of Soils, 31, 249–253.

Wright S.F., Starr J.L., Paltineanu I.C. (1999) Changes in aggregate

stability and concentration of glomalin during tillage manage-

ment transition. Soil Science Society of America Journal, 63,

1825–1829.

Wulf A., Manthey K., Doll J., Perlick A., Franken P., Linke B.,

Meyer F., Kuster H., Krajinski F. (2003) Transcriptional changes

in response to arbuscular mycorrhiza development in the model

plant Medicago truncatula. Molecular Plant-Microbe Interactions,

16, 306–314.

Miransari Contribution of arbuscular mycorrhizae to plant growth

Plant Biology 12 (2010) 563–569 ª 2010 German Botanical Society and The Royal Botanical Society of the Netherlands 569


