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Abstract This paper proposes an efficient parallel algorithm for computing Lagrange
interpolation on k-ary n-cube networks. This is done using the fact that a k-ary
n-cube can be decomposed into n link-disjoint Hamiltonian cycles. Using these n

link-disjoint cycles, we interpolate Lagrange polynomial using full bandwidth of the
employed network. Communication in the main phase of the algorithm is based on an
all-to-all broadcast algorithm on the n link-disjoint Hamiltonian cycles exploiting all
network channels, and thus, resulting in high-efficiency in using network resources.
A performance evaluation of the proposed algorithm reveals an optimum speedup
for a typical range of system parameters used in current state-of-the-art implementa-
tions.
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1 Introduction

The n-dimensional torus network (or nD torus for short), including the k-ary n-cube,
has been the most popular multicomputer interconnection network due to its desir-
able properties [5, 8, 9, 11, 12] such as ease of implementation, recursive structure
and ability to exploit communication locality found in many parallel applications
[2] to reduce message latency [1]. The torus has been used as the underlying topol-
ogy of many practical systems, such as the Intel/CMU iWarp [18], Cray T3E [14],
and Cray T3D [4]. Since many computation problems can be naturally mapped into
meshes and tori, the torus network (so called mesh with wraparounds) can be effi-
ciently employed [11]. A cycle including all nodes of a given network and a subset of
its links is called a Hamiltonian cycle of that network. Hamiltonian cycles are widely
used in many graph algorithms [7] including collective communication routing strate-
gies [16].

Existence of multiple link-disjoint Hamiltonian cycles in networks is very impor-
tant in fault-tolerant parallel computing as it permits, for example, designing com-
munication algorithms (including collective communication) in the presence of link
failure. The problem of finding link-disjoint Hamiltonian cycles has widely been ad-
dressed for k-ary n-cubes in the literature. The fact that a 2D torus contains two link-
disjoint Hamiltonian cycles has widely been addressed in the literature. For instance,
in [6], it has been shown that any km × k torus, k > 2, m = 1,2, . . . , contains two
link-disjoint Hamiltonian cycles while in [15] a general k1 × k2 torus, k1, k2 > 2, has
been considered and decomposed into two link-disjoint Hamiltonian cycles. A k-ary
n-cube, where n = 2l (l = 1,2, . . .) has been shown to have n link-disjoint Hamil-
tonian cycles [6]. Latifi and Zheng [15] have shown that any nD torus where the
size of each dimension is a multiple of 4, i.e., ki = 4mi , 1 ≤ i ≤ n, can be decom-
posed into n link-disjoint Hamiltonian cycles. In their conclusion, they have conjec-
tured the existence of n link-disjoint Hamiltonian cycles in any nD torus leaving it
as an open problem to be proved in future research. However, through a thorough
search in the literature, we noticed that this problem was addressed in [3], where
it is proven that an nD torus can be decomposed into n link-disjoint Hamiltonian
cycles.

Polynomial interpolation techniques are of great importance in science and engi-
neering. Many polynomial interpolation techniques have been proposed in the past of
which Lagrange interpolation method is of the most known and used ones. For this
interpolation technique, we must first calculate Lagrange polynomials build on the
input points. When there are a large number of points, a large storage capacity and
long computation time may be required to carry out the interpolation polynomials.
To overcome this, several authors have recently proposed parallel implementations
for Lagrange interpolation. For instance, Goertzel [13] has introduced a parallel al-
gorithm suitable for a tree topology with N processors, augmented with ring connec-
tions. The algorithm requires N/2 + O(logN) steps, each composed of two subtrac-
tions and four multiplications. Capello, Gallopoulos, and Koc [10] have described
another algorithm using 2N − 1 steps on N/2 processors, where each step requires
two subtractions, two multiplications and one division.
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Since k-ary n-cube networks have been the underlying topology of a number of
practical parallel machines, more recently in [20], a parallel algorithm has been pro-
posed to realize Lagrange interpolation on a k-ary n-cube. The algorithm is optimal
but due to inefficient use of channels, its performance is very sensitive to network
communication latency.

In this paper, we first review the problem of finding link-disjoint Hamiltonian cy-
cles in the nD torus. We then use the n link-disjoint Hamiltonian cycles of a k-ary
n-cube multicomputer to efficiently compute an nkn-point Lagrange interpolation.
This algorithm relies on broadcast communication at some stages during computa-
tion, as will be shown later. This is achieved by concurrently using the n link-disjoint
Hamiltonian cycles embedded in the host k-ary n-cube to ensure the best possible
utilization of network channels.

The rest of the paper is organized as follows. Section 2 introduces the preliminar-
ies and background required to understand the next sections. In Sect. 3, we review the
problem of decomposing an nD torus (and thus, a k-ary n-cube as a special example
of nD torus) into n link-disjoint Hamiltonian cycles. Section 4 introduces the par-
allel algorithm based on the embedded link-disjoint Hamiltonian cycles. In Sect. 5,
the performance of the proposed algorithm is evaluated. Finally, Sect. 6 draws some
conclusions from this study.

2 Preliminary and background

This section gives some definitions and notations that help better understanding the
next section. The related work in this line of research is also briefly surveyed.

2.1 The nD torus and k-ary n-cube

An nD k1 × k2 × · · · × kn torus, Tk1,k2,...,kn , has N = ∏n
i=1 ki nodes arranged in n di-

mensions with ki node at dimension i, 1 ≤ i ≤ n. Node A in Tk1,k2,...,kn is labeled with
a distinct n-digit mixed-radix vector [a1, a2, . . . , an], where ai,0 ≤ ai ≤ ki − 1,1 ≤
i ≤ n, indicates the position of the node in the ith dimension. In a torus Tk1,k2,...,kn ,
defined over radix vector K = [k1, k2, . . . , kn], two nodes A = [a1, a2, . . . , an] and
B = [b1, b2, . . . , bn] are interconnected if and only if there is an i,1 ≤ i ≤ n such
that ai = bi ± 1 (modki ) and aj = bj for 1 ≤ j ≤ n, j �= i. Thus, in Tk1,k2,...,kn

each node is adjacent with two nodes in each dimension, hence 2n nodes in total.
A k-ary n-cube, Cn

k , is a variation of torus where each dimension i, 1 ≤ i ≤ n, is of
size k; i.e., Cn

k = Tk,k, . . . , k
︸ ︷︷ ︸

n

. Figure 1 shows some examples of torus and k-ary n-cube

networks.

2.2 Lagrange interpolation

Lagrange interpolation for a given set of points (xm, ym) (0 ≤ m ≤ N − 1) and value
x is carried out using the formula [21]

f (x) =
N−1∑

m=0

Lm(x)ym (1)
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Fig. 1 Examples of tori, (a) 5 × 3 torus T5,3, and (b) 4-ary 3-cube, C3
4

where Lm(x) is called Lagrange polynomial, and is given by

Lm(x) = (x − x0) · · · (x − xm−1)(x − xm+1) · · · (x − xN−1)

(xm − x0) · · · (xm − xm−1)(xm − xm+1) · · · (xm − xN−1)
. (2)

3 Hamiltonian decomposition of the nD torus

In this section, we review the results reported in the literature on the Hamiltonian
decomposition of the nD torus (and consequently, any k-ary n-cube). We then use
it to propose a communication-efficient parallel algorithm for computing Lagrange
interpolation polynomials on k-ary n-cubes, in Sect. 4.

Let G = (V ,E) be an undirected graph of N nodes defined over vertex set V and
edge set E. G is called Hamiltonian if it contains a Hamiltonian cycle.

Hamiltonian cycle: Let H = {A1,A2, . . . ,Ar } be a sequence of node addresses in
network G. H is called a cycle (or ring) of length r if (a) Ai �= Aj for 1 ≤ i, j ≤ r ,
(b) D(Ai,Ai+1) = 1 for 1 ≤ i ≤ (r − 1), and (c) D(A1,Ar) = 1, where D(Ai,Aj )

gives the distance (i.e., the number of hops) between two nodes with addresses Ai

and Aj . If r = N , where N is the number of nodes in G, then H is called a Hamil-
tonian cycle (or ring) of G. It is clear that H = (VH ,EH ) is a sub graph of G and we
have VH = V , EH ⊆ E, and |EH | = N .

Link-disjoint Hamiltonian cycles: Suppose H1 = (V1,E1),H2 = (V2,E2), . . . , and
Hm = (Vm,Em) are m different Hamiltonian cycles of G. Hi = (Vi,Ei),1 ≤ i ≤ m,
are link-disjoint if Ei ∩ Ej = φ for all 1 ≤ i, j ≤ m, i �= j , and

⋃m
i=1 Ei ⊆ E.

It is easy to see that the upper bound for m, the number of link-disjoint Hamil-
tonian cycles in a network G = (V ,E), is |E|

|V | . When G is decomposed into the max-
imum possible number of link-disjoint Hamiltonian cycles M = |E|/|V |, we have a
perfect Hamiltonian decomposition where Ei ∩ Ej = φ for all 1 ≤ i, j ≤ M,i �= j ,
and

⋃M
i=1 Ei = E. Hereafter in this paper, by Hamiltonian decomposition we mean a

perfect Hamiltonian decomposition.
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Note that the maximum possible number of link-disjoint Hamiltonian cycles, M ,
for the nD torus (hence, the k-ary n-cube) is n.

Theorem 1 [3] Any nD torus, Tk1,k2,...,kn , ki > 2,1 ≤ i ≤ n, can be decomposed into
n link-disjoint Hamiltonian cycles.

A straightforward and clear proof for Theorem 1 based on product networks was
also given in [19].

Since Cn
k = Tk,k, . . . , k

︸ ︷︷ ︸
n

, the following corollary can be directly resulted from

Theorem 1.

Corollary 1 [19] A k-ary n-cube, Cn
k , can be decomposed into n link-disjoint Hamil-

tonian cycles.

4 The proposed parallel algorithm

The proposed algorithm consists of three phases. In the initialization phase, the reg-
isters in each processor are set to their initial values. In the main phase, the La-
grange polynomials, Lm(x),0 ≤ m ≤ nN − 1, are computed on an N(= kn)-node
k-ary n-cube network. In the final phase, the sum of the terms Lm(x) × ym is calcu-
lated to produce the final result y = f (x) using (1). Before describing each phase in
more detail, let us introduce some useful notation.

Let the n link-disjoint Hamiltonian cycles embedded in the host k-ary n-cube be
denoted as H0,H1, . . . ,Hn−1. Let each processor have a register R1 and n set of
3 registers, where set i,0 ≤ i < n, used for communication and calculation within
Hamiltonian cycle Hi . Let the 3 registers used in set i be Ri,2,Ri,3 and Ri,4. Reg-
isters R1 and Ri,2 are used to compute the terms required for evaluating Lagrange
polynomial Lm(x) while registers Ri,3 and Ri,4 are used as buffers during an all-
to-all broadcast communication in the network. Let Pi1,i2,...,in (Ri,m) denote the con-
tent of register Ri,m,2 ≤ m ≤ 4, in processor Pi1,i2,...,in .Pi1,i2,...,in is the processor
located at position i1 in dimension 1, i2 in dimension 2, . . . , and in in dimen-
sion n. Also, let Ai1,i2,...,in indicate the linear address of the processor Pi1,i2,...,in ,
i.e.,

Ai1,i2,...,in =
n∑

j=1

ij k
j−1. (3)

Also let symbol ‘←’ indicate data movement inside a processor and symbol ‘⇐’
indicates communication operation between two adjacent processors.

4.1 The initialization phase

Each processor Pi1,i2,...,in , 0 ≤ im ≤ k −1, 1 ≤ m ≤ n, holds the values x and n points
(xnAi1,i2,...,in+i , ynAi1,i2,...,in+i ), 0 ≤ i < n. The distribution of points (xnAi1,i2,...,in+i ,
ynAi1,i2,...,in+i ), 0 ≤ i < n and x to the processors is not discussed here for brevity.
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This can be realized in a pipelined fashion in N communication steps using the n

embedded Hamiltonian cycles of N processors. In this phase, registers Ri,m of each
processor are initialized using the following sequence of instructions:

4.2 The main phase

Examining the communication pattern inherent in the interpolation algorithm reveals
that a given processor at some point during computation (as we will see later) needs
to broadcast the x-co-ordinate of the points that it holds (i.e.,xnAi1,i2,...,in+i , 0 ≤ i < n)

to all the other processors. To ensure efficient communication, this all-to-all broad-
cast operation is best performed according to the ring topology [7]. To achieve this,
the algorithm uses in the main phase, n Hamiltonian rings that are embedded in the
host k-ary n-cube. Let the functions Nexti and Previousi when applied to processor
Pi1,i2,...,in denote its next and previous processors, respectively, in the embedded ring
Ci , 0 ≤ i < n.

The terms Lm(x) and partial products Lm(x)×ym, 0 ≤ m ≤ nN −1, are computed
during this phase. To do this, all the processors first perform the following instruction
sequence simultaneously.
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At this point during this phase, registers R1 and R2 in each processor hold the
partial results

Pi1,i2,...,in (R1) =
n−1∑

i=0

ynAi1,i2,...,in+iLnAi1,i2,...,in+i .

4.3 The final phase

In this phase, the contents of registers R1 in all the processors are added together
to obtain the final result. This is carried out in n sub-phases, each requiring �k/2	
additions. Starting at dimension n, the content of R1 in the k processors in that di-
mension are added together in the following fashion. To increase concurrency, the
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processors in that dimension are divided into two groups where the partial summa-
tions can be carried out in parallel. The first group contains the processors 0 to k/2
and the second one contains processors k/2 + 1 to k − 1. After �k/2	 steps, each
consisting of one data communication and one addition, the result of summation of
the all processors in both groups is held in R1 of the processor whose address is 0
along the dimension n. The same “summation” process is repeated for the subsequent
dimension i = n − 1, n − 2, . . . ,1. In the subphase n − i + 1, the result is held in R1

of the processor whose address is 0 along dimension i. After the nth subphase, the
final result is accumulated in register R1 of processor P0,0,...,0. The following parallel
code shows subphase s (1 ≤ s ≤ n − 1).

After subphase n in this phase, we have P0,0,...,0(R1) = ∑nN−1
m=0 Lm(x)ym.

5 Performance analysis

Speedup has often been used to evaluate the performance gains achieved through a
parallelisation of a given problem [20]. Speedup is defined as the ratio of the execu-
tion time of a program on a single processor to the elapsed time when employing N

processors. Hence,

SN = T1

TN

. (4)

For the purpose of our present discussion, let the subtraction and addition operations
have the same latency and λM and λD be the normalized latencies of the multiplica-
tion and division operations with respect to that of the addition operation. Consider-



Parallel Lagrange interpolation on k-ary n-cubes with maximum 9

ing (1) and (2), the execution time of an nN-point Lagrange interpolation on a single
processor can be written as

T1 = nNλD + (2n2N2 − 3nN)λM + (n2N2 + nN − 1) (5)

where the term 2nN(nN − 1)λM + n2N2 + nNλD in the above equation accounts
for computing Lagrange polynomials (given by (2)) during the main phase and the
term nNλM + nN − 1 accounts for computing y = f (x) (according to (1)) during
the final phase.

When a k-ary n-cube is used for performing parallel interpolation, as discussed
in Sect. 4, the communication overhead to exchange data between processors should
also be taken into account. The communication latency in the proposed algorithm is
mainly due to the transmission latency of data between neighboring nodes as there is
no extra latency due to message blocking in the network given that all interprocessor
communication in the algorithm are contension-free. If λC is the transmission latency
normalized to that of an addition operation, the total execution time for an N -point
interpolation is given by

TN =
(

2

⌊
N

2

⌋

(n + n2) + 2n2 − n

)

λM +
(⌊

N

2

⌋

+ n

⌈
k

2

⌉)

λC + nλD

+ 2

⌊
N

2

⌋

(n + n2) + 2n2 − n + n

⌈
k

2

⌉

(6)

where the term (2
N
2 �(n + n2) + 2n2 − n)λM + 
N

2 �λC + nλD + 2
N
2 �(n + n2) +

2n2 − n accounts for the main phase and the term n� k
2	 + n� k

2	λC accounts for the
final phase.

A floating-point addition takes 2–3 cycles in the current implementation technol-
ogy [17]. A floating-point multiplication is about 1.5 times slower than the addition
operation, ranging from 3 to 6 cycles [17]. The latency of a floating-point division
depends on the actual algorithm used. When the SRT (a subtract-based) algorithm
[17] is used, the latency is about 35 cycles (for 64-bit operands). For multiplicative
methods (Newton Raphson or binomal series) [17], on the other hand, the latency
varies from 12 to 15 cycles. For the purpose of our discussion, we can assume that
1 ≤ λM ≤ 3 and 4 ≤ λD ≤ 18. Given the transmission, latency differs from one im-
plementation technology to another and depends also to the channel bandwidth (or
width), a wide range of values have been adopted for the parameter λC , 1 ≤ λC ≤ 30.

We have investigated the effects of the parameters λD , λM , and λC on the resulting
performance using (1–6).1 To this end, we have assessed the achieved speedup when
the algorithm is run on the k-ary 3-cube (or 3D-dimensional torus) since such low-
dimensional k-ary n-cubes are widely used in practical multicomputers including

1Please note that the proposed algorithm is synchronous and does not generate unwanted traffic, meaning
that the mathematical performance expression derived above are exact and there is no need for validating
them.
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Fig. 2 The effect of Division latency on overall speed up as a function of polynomial degree, n, when
λC = 1 and λM = 2

Itel/CMU iWarp, and Cray T3E/T3E [4, 14, 18]. Figure 2 shows performance results
against the network size where λD = 4,8,12, and 18, and the other parameters are
fixed as λC = 1 and λM = 2. The figure reveals that λD has hardly any effects on
performance.

Figures 3 and 4 assess the impact on performance when the parameters λM and λC

are varied. While Fig. 3 shows that multiplication latency, λM , has small effects on
performance, Fig. 4 reveals that speed up is sensitive to communication latency, λC .
For instance, the achieved speedup drops from more than 0.8 when λC = 1 to about
0.6 when λC = 30. It is noteworthy that the algorithm proposed in [20] very much
sensitive to the communication latency as a result of its lower network utilization. The
performance drop for the algorithm proposed in [20] is from about 0.8 for λC = 1 to
about 0.2 when λC = 30.

Figure 5 shows the relative performance of the two algorithms (the one proposed
here and the one introduced in [20]) as a function of the number of input points
for different communication latency factors. As can be seen in the figure, the new
algorithm always exhibits a better performance. This superiority is better noticeable
when communication latency λC is large. This is due to the higher network channel
utilization gained by the new algorithm. Figure 6 shows channel utilization for the
new algorithm and the one introduced in [20] for different communication latencies
λC = 10,20 and 30. As can be seen in the figure, the new algorithm utilizes the
network channels much better than the algorithm introduced in [20].
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Fig. 3 The effect of Multiplication latency on overall speed up as a function of polynomial degree, n,
when λC = 1 and λD = 8

Fig. 4 The effect of Communication latency on overall speed up as a function of polynomial degree, n,
when λM = 2 and λD = 8
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Fig. 5 The effect of Communication latency on relative speed up for the proposed algorithm and the
algorithm introduced in [20] as a function of polynomial degree, n, when λM = 2 and λD = 8

Fig. 6 Channel utilization for the proposed algorithm and the algorithm introduced in [20] as a function
of polynomial degree, n, for different communication latency factors, λM = 2 and λD = 8
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6 Conclusion and future work

K-ary n-cubes have been widely used in practice due to their desirable properties,
such as ease of implementation and ability to exploit communication locality. This
paper has proposed a parallel algorithm for Lagrange interpolation on these networks.
The algorithm computes an nkn-point interpolation, requiring O(n2kn) multiplica-
tions, O(n2kn) additions/subtractions and n divisions, without taking into account
any parallelisation in the internal computing architecture of the processors, and over-
lap between computation and communication steps in each node.

Our performance results have revealed that the proposed algorithm has a better
performance compared to the latest algorithm introduced in [20]. The new algorithm,
proposed here, is less sensitive to the communication latency and can utilize network
channels effectively, thus resulting in a superior overall performance. This is done
using n link-disjoint Hamiltonian cycles embedded in the host k-ary n-cube network.

Future work in this line can focus on proposing new algorithms for multiple point
Lagrange interpolation, and multi-variable (more than one-dimensional) Lagrange
interpolation. Developing similar algorithms for other important interpolation tech-
niques using link-disjoint Hamiltonian cycles in k-ary n-cubes and other important
network topologies can also be a challenging future research.
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