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Abstract 
Independency of observations is one of the fundamental assumptions in control charts. 

However, in some processes this assumption is violated and data are auto-correlated. 
Also, it is assumed that the measurement errors are absent in measurement system while, 
this assumption is usually violated. The existence of the auto-correlation and 
measurement errors causes the poor performance of the control charts. In other words, 
the average run length in the case of out-of-control (OC) situations increases in the 
presence of auto-correlation and measurement errors. In this paper, the effect of auto-
correlation and measurement errors on the performance of Hotelling’s T2 control charts 

in Phase II in multivariate normal processes is investigated in terms of average run length 
(ARL) criterion. The first order auto-regressive model as auto-correlation structure 
between observations within each sample is discussed in this paper. To decrease the 
effect of auto-correlation and measurement errors on the performance of the Hotelling’s 
T2 control chart, jump strategy and multiple measurements methods are applied, 
respectively. The effect of auto-correlation and measurement errors, individually and 
simultaneously, as well as the performance of the suggested methods to address these 

effects is appraised through simulation studies and a numerical example. The effect of 
number of measurements and jumps on the ARL values of the proposed control chart is 
also evaluated. Results show the acceptable performance of the multiple measurements 
and jumps methods in diminishing the effect of measurement errors and auto-correlation, 
respectively. At last, a real case is presented to show the application of the proposed 
scheme. 

Keywords: Average run length, jump strategy, measurement errors, multiple 

measurements, multivariate control chart, the first order auto-regressive model 

1-Introduction 
   In recent years, with the advancement of technology and data collection methods, the time between 
successive sampling of products has been decreased and as a result the independency of observations is 
violated and become auto-correlated. On the other hand, in some processes, the measurement system is not 
accurate enough and causes measurement errors in the collected observations. The presence of auto-

correlation and measurement errors greatly affects the performance of control charts and increases the false 
alarm rate of control charts, which leads to misleading results.  
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   For example, Lina and Woodall (2001) demonstrated that when the observed values have the 

measurement errors, the control limits of the 𝑋 control chart are affected and the power of the control chart 
decreases. Maravelakis et al. (2004) also checked the performance of the exponentially weighted moving 
average (EWMA) control chart in the existence of measurement errors and demonstrated that the observed 
values in the presence of the measurement errors affect the control limits. They introduced multiple 
measurements method to neutralize the negative effect of the measurement errors. Abbasi (2010) also 
checked the effect of the two-component measurement errors on the performance of the EWMA control 
chart and demonstrated that applying multiple measurements decreases the effect of measurement errors. 
Maravelakis (2012), checked the effect of measurement errors on the performance of Cumulative Sum 

control chart. Noorossana and Zerehsaz (2015) investigated the effect of the measurement errors on the 
performance of the EWMA-3 control charts for monitoring the profiles and demonstrated that the 
measurement errors affect the IC and OC ARL of the control chart in Phase II. Lina et al. (2001) examined 
the effect of measurement errors on the performance of multivariate control charts and demonstrated that 
the measurement errors affect the performance of the chi-squared control chart. Ding and Zeng (2015) also 
investigated the effect of measurement errors in multi-stage processes. Regarding the fact that the quality 
characteristics were adjusted in different stages of production with the regression model, they demonstrated 

that the measurement errors influence the estimated parameters of the regression model.  

   Maragah and Woodal (1992) studied effect of auto-correlated data on the performance of the 𝑋 control 
chart and showed that auto-correlation results in increasing the rate of false alarm. Franco et al. (Franco et 

al., 2014)used the jump strategy to ameliorate the performance of the 𝑋 control chart and demonstrated that 

using the jump strategy can improve the performance of the 𝑋 control chart in the presence of auto-
correlation. Goswami and Dutta (2014) applied EWMA control chart for monitoring the auto-correlated 
data processes. Leoni et al. (2015) investigated the jump strategy to address the effect of auto-correlation 

on the performance of  𝑇2control chart. Kalgondaand and Kulkarni (2004) monitored the multivariate auto-
correlated processes. Soleimani and Noorossana (2014) studied the multivariate simple linear profiles 
monitoring when auto-correlation exists between profiles. Also, Soleimani et al. (2009) and Soleimani et 
al. (2014), Khedmati and Niaki(2016), Kazemzadeh et al. (2010)studied simple linear and polynomial 

profiles monitoring in the existence of auto-correlation as well.  
   Costa and Castagliola (2011) checked the effect of auto-correlation and measurement errors on the 

performance of the 𝑋 control chart and demonstrated that the performance of 𝑋 control chart is influenced 
by the auto-correlation structure as well as measurement errors. Xiaohong and Zhaojun (2009) checked the 
effect of auto-correlation and measurement errors on the performance of the CUSUM control chart. 

Sabahno et al. (2019a) appraised the performance of variable sampling intervals Hotelling’s T2 control chart 
in the presence of measurement errors. Sabahno et al. (2019b) studied the effect of measurement errors on 

the performance of variable parameters (VP) 𝑋 control chart. Sabahno et al. (2018) investigated the effect 
of measurement errors on the performance of variable sample size Hotelling’s T2 control chart. Amiri et al. 
(2016) appraised the effect of measurement errors on the performance of EWMA control chart for 

simultaneous monitoring of mean and variability of multivariate normal processes. Maleki et al. (2017) 
provided a review paper in the field of measurement errors in statistical process monitoring (SPM). 
Ghasghaei et al. (2016) investigated the effect of measurement errors on the performance of control chart 
for simultaneous monitoring of mean and variability of the process by using ranked set sampling (RSS). 
   Shishebori and Hamedani (2010) evaluated the effect of gauge measurement capability and dependency 
measure of process variables on the MCp. Chattinnawat and Belin (2017) assessed the performance of the 
Hotelling’s T2 control chart for monitoring individual observations in Phase II under multivariate normal 

inspection errors. Rakhmawati et al. (2020) compared the performance of the generalized confidence 
interval (GCI) and the modified sampling distribution (MSD) methods for assessing process capability in 
the presence of gauge measurement. 
   Most of the papers, which discussed the effect of measurement errors on the performance of different 
control charts, assumed that the observations within each sample are independent. However, when the time 
between successive sampling collapse, the observations are auto-correlated. As mentioned before, the auto-
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correlation and measurement errors lead to negative performance of control charts. We discuss a 
multivariate normal process and investigate the effect of the auto-correlation and measurement errors on 
the in-control(IC) and OC ARL performance of chi-square control charts, in this paper. In other words, the 
effect of measurement errors on chi-square chart performance for monitoring auto-correlated multivariate 

normal process, is investigated.  
    In particular, the first-order auto-regressive (AR(1)) time series is applied for modeling the auto-
correlation structure, in this paper. Also, to decrease the effect of measurement errors, multiple 
measurements method has been used. Moreover, the jump strategy is applied to address the auto-correlation 
effect. The structure of the paper is as follows:  In section 2, the effect of measurement errors on the 

performance of the chi-square chart is appraised. In section 3, the auto-correlation effect on the performance 

of the chi-square chart is evaluated under the AR(1) model. Also, in this section, the jump strategy is 
presented to neutralize the negative effect of auto-correlation structure. In Section 4, the performance of 

the chi-square chart under multiple measurements and jump strategy is examined. In Section 5, simulation 
studies are executed to appraise the performance of chi-square control chart in the existence of auto-
correlation and measurement errors individually and simultaneously. In section 6, a real case study is 
presented.  Conclusion and a suggestion for future research are given in the final section. 

2-The effect of auto-correlation on the performance of chi-square control chart 
   Time series is a sequence of observations, usually arranged in terms of time, especially at equal intervals, 
but sorting may be due to other dimensions such as distance. The inherent nature of time series is the auto-
correlation of its observations. Therefore, the order of observation is important. In this section, we suppose 
that the measurement procedure is precise, and there are no measurement errors at each sampling. The 

replication is equal to one. The time series, which is investigated in this section, is a static time series model, 
which means that the distribution and corresponding parameters are constant over time. 

Often with a finite number of observations, a parametric pattern of finite order is made to express a time 

series process. In this section, the AR(1) model is discussed. Suppose that in time i  (i=1,2,…), the 

successive observations in kth quality characteristic ,1, ,2, , ,, ,...,i k i k i n kx x x  are modeled by the AR(1) model.  

, , 0, ,( 1), 0, , ,( ) , 1,2,3,..., 1,2,..., , 1,2,..., .i j k k i j k k i j kx x i j n k p                                     (1) 

, ,i j kx is the actual value of the jth observation in kth quality characteristic at time i . 0,k is the mean of the 

kth quality characteristic, ijk is the error term of jth (j=1,2,…,n) observation in kth quality characteristic at 

time i  ,which follows an independent normal distribution with  mean zero and variance 
2

k , and k  is the 

auto-correlation coefficient  of the AR(1) model in kth quality characteristic. Note that samples at different 

times are independent. The variance of ijkx , var( )ijkx , is computed as equation (2): (Alwan and Radson, 

1992)    

2

2
var( ) .

1

k
ijk

k

x






                                                                                                                                                         (2) 

Also, the standard deviation of mean sample is equal to: 

 
2

x , 1,2,..., ,k
ik

k

k p
nC


                                                                                                                                           (3) 

where x ik is the mean sample and it is computed as  ,1, ,n,x x ... xik i k i k n   , 

and C
2k

 related to kth quality characteristic is equal to equation (4): 
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                                                                                                                 (4) 

The proposed statistic for monitoring the mean process vector is as follows: 

   0 0 ,
t

i i iT   xx Σ x
2 1                                                                                                                                      (5) 

where 1 2(x ,x ,..., x )T

i i i ipx , 0 1 2( , ,..., )p    . 

The variance- covariance matrix of ix vector is as below: 

1 1 2 1

2 1 2 2

1 2

x x x x x

x x x x x

x x x x x

...

.

p

p

p p p

  
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  

 
 
 

  
 
  
 

xΣ
L

M M O M

L

2

2

2

                                                                                                                   (6) 

Note that in this paper, it is assumed that k  (k=1,2,…,p) values are equal to  . 

Values of 
1 2

,...,
p px x x x   can be obtained by using equation (7). 

, 2 2 1 1

2
cov( , ) ( ( 1) ( 2) ... ),k lx x n n

k l k l k l k lx x n n n
n


                            (7) 

where h  and l , respectively, are the auto-correlation coefficients related to the hth and lth quality 

characteristics.  
   The UCL of the proposed statistic in equation (5) is determined by simulation such that the IC ARL of 

the control chart equals to 200 is obtained. The value of 
2kC , corresponding to the positive values of k , is 

placed in the (0,1] interval.  

   In table 1, the values of 
2kC  are given for {1,2,...,7}, {0.1,0.2,...,0.7}n   . According to the results 

of the table, it is clear that the value of 
2kC  approaches to one by increasing n or decreasing . As 

2kC  

values are decreasing, the power of control chart to detect the shift in the mean of process reduces for auto-

correlated data. To reduce the auto-correlated data effect on the performance of the 𝑇2control chart, samples 
with non-neighboring items are used. In other words, one jump or two jumps or more before the next 

sampling can remove the influence of auto-correlation and the performance of 𝑇2control chart. A process 
with p quality characteristics discussing the AR(1) auto-correlation between observations within a sample 
with no measurement errors is shown schematically in figure 1. Note that the p quality characteristics are 

also correlated. 
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Table 1. The values of C2k for different values of n and f 

  C2k   
n=4 n=3 n=2 n=1 Φ 

1.0000 1.0000 1.0000 1.0000 0.0 
0.9283 0.9366 0.9535 1.0000 0.1 

0.8626 0.8793 0.9129 1.0000 0.2 

0.8023 0.8276 0.8771 1.0000 0.3 

0.7470 0.7809 0.8452 1.0000 0.4 

0.6963 0.7385 0.8165 1.0000 0.5 

0.6498 0.7001 0.7906 1.0000 0.6 

0.6073 0.6652 0.7670 1.0000 0.7 

n=10 n=7 n=6 n=5  
1.0000 1.0000 1.0000 1.0000 0.0 
0.9120 0.9179 0.9202 0.9234 0.1 
0.8214 0.8419 0.8464 0.8528 0.2 
0.7213 0.7710 0.7777 0.7874 0.3 
0.6108 0.7042 0.7135 0.7267 0.4 
0.4934 0.6411 0.6532 0.6704 0.5 
0.3771 0.5814 0.5967 0.6182 0.6 
0.2672 0.5250 0.5440 0.5699 0.7 

 
 
 
 
 

 

Fig 1. A p-variate normal process discussing AR(1) auto-correlation within each sample 
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The auto-regressive model with the jump strategy is given as: 

 1

, , 0, , 1, 0,x x , 1, ,..., 1s

i j k k k i j s k k ijk i j = ,...,n, k = 1,2,..., p, s = 1,2,...   

 
     2           (8) 

The error term ijk  , is equal to ( 1) ( )

s

ijk ijk k i j k k i j s k      
     . As a result, the observations of the kth 

quality characteristic{ },1, ,2s 3,, , , ,...i k i,s+2,k i k i,3s+4,kx x x x+
is proportional to the AR (1) model with the parameter

1s  . While the number of jumps increases in sampling, the values of 
2kC close to one, and as a result, the 

auto-correlation of the data decreases and the performance of the control chart improves.  

3- Effect of measurement errors on the performance of control chart 
   The measured values corresponding to the real value of , ,i j kx  with m replications is as the set of 

, , ,1 , , ,2 , , ,{ , ,..., }i j k i j k i j k my y y , m≥1. Therefore, the observed values are equal to equation (9): 

, , , , , , , , .i j k h i j k i j k hy x e                                                                                                                                   (9) 

i, j,k,he  is the independent error term of kth quality characteristic with the mean zero and known variance. A 

process with p quality characteristics in the existence of measurement errors is schematically shown in 

figure 2.Note that the p quality characteristics are also correlated and , , ,i j k hy  is the hth replication for the kth 

quality characteristic at time i. 

 

Fig 2. A p-variate normal process discussing measurement errors 

The sample mean of observations for kth quality characteristic is as follows: 
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The standard deviation of the mean sample of the kth quality characteristic at time i  is: 

,

1

2
21

( ) .km k
i k k

k

y
n m nC

 
 

 
   
 
 

                                                                                                                     (11) 

In the equation (12), 
2

kσ  is the variance of the actual values of kth quality characteristic and 
2

k
mσ  is the 

variance of the of the measurement error term. 1kC  is calculated as 

1 2 2
.

( )
k

k

m k k

m m
C

m m  
 

 
                                                                                                                      (12) 

It is assumed that 2

kσ  and 
2

k
mσ  for all quality characteristic are the same. In other words, 

2 2 2 2

2 p1
m m mσ =σ = ...=σ =σ and 

2 2 2 2

1 2 pσ = σ = ....= σ = σ . 

 In equation (12), if measurement errors exist, 0
km k     and as a result, (0,1]1kC  . According to 

table 2, 1kC  values are given for {1,2,3,4,5,10,15}, {0,0.1,0.2,...,1}.m     

Table 2. The values of C1k  for different values of the   and m 

 1kC   

m=3 m=2 m=1  
1.0000 1.0000 1.0000 0.0 

0.9983 0.9975 0.9950 0.1 

0.9934 0.9901 0.9806 0.2 

0.9853 0.9782 0.9578 0.3 

0.9744 0.9623 0.9285 0.4 

0.9608 0.9428 0.8944 0.5 

0.9449 0.9206 0.8575 0.6 

0.9271 0.8962 0.8192 0.7 

0.9078 0.8704 0.7809 0.8 

0.8874 0.8436 0.7433 0.9 

0.8660 0.8165 0.7071 1.0 

m=15 m=10 m=5  
1.0000 1.0000 1.0000 0.0 

0.9997 0.9995 0.9990 0.1 

0.9987 0.9980 0.9960 0.2 

0.9970 0.9955 0.9911 0.3 

0.9947 0.9921 0.9844 0.4 

0.9918 0.9877 0.9759 0.5 

0.9882 0.9825 0.9658 0.6 

0.9841 0.9764 0.9543 0.7 

0.9793 0.9695 0.9416 0.8 

0.9740 0.9618 0.9277 0.9 
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   It is clear from the results of the table 2 that the value of 1kC increases by increasing m and decreasing 

. The performance of the control chart increases by increasing m (replications). The proposed statistic for 

monitoring the mean process vector is as  

   0 0 ,
T

i i iT    yy y
2 - 1                                                                                                                     (13) 

where 1 2( , ,..., )T

i i i ipy y yy , 1 2( , ,..., ).p  0μ  

Also, the variance-covariance matrix of vector y is equal to equation (14): 

2

2 2 2

2

1 1 1

1

1

2

y y y y y

2

y y y y y

2

y y y y y

.

...

p

p

p p p

  
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  

 
 
 

   
 
 
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y

L

L

M M O M
                                                                                                                         (14) 

The values of y y y y,...,
p p

 
1 2

 can be calculated as 

  ,cov , .l hmh l

1k

h l
n mnC

 

 

  
  

y y
1

                                                                                                               (15) 

   Also, the UCL of the proposed statistic in Equation (5) is determined by simulation such that the IC-ARL 

of the control chart equals to 200 is obtained. Therefore, if 
km k   , the control chart performance in 

detecting the shift in the mean of the process is decreased. In order to neutralize the effect of the 
measurement errors, the multiple measurements strategy is used, and in Section 5.1 it is shown that the 
more the replications (m), the better performance of the suggested control chart. 

4- Effect of both measurement errors and auto-correlation on the control chart 
   We discussed the effect of both auto-correlation and measurement errors on the performance of 

Hotelling’s T2 control chart. For this goal, we consider the model which is represented as follows: 

, , 0, ,( 1), 0, , ,

, , , , , , , ,

( ) , 1,2,3,..., 1,2,..., , 1, 2,..., .

.

i j k k i j k k i j k

i j k h i j k i j k h

x x i j n k p

y x e

         


 

                               (16) 

In the above model, we suppose that there is the AR(1) model between observations within a sample for 
each quality characteristic. 

   In this condition, the standard deviation of the sample mean for kth quality characteristic at time i ,  yik

is equal to: 

 
2 2 2

2 2

2 2 3

1 1
y ( ) ( ) , 1,2,..., 1,2,..., ,k m k m k

ik

k k k

i k p
n C m C mn nC

    
                     (17) 

 where C3k is computed as follows: 

1

2

3 2 2

1 2

1 1
1 .k

k k

C
C C



 
   
 

                                                                                                                                              (18) 
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And C1k and 2kC are defined in equations (12) and (4), respectively.   

If the measurement system is exact then 
1 1kC  , and if the data are uncorrelated, then 

2 1kC  , hence, the 

value of 
3kC  is equal to one. Also, 1kC  and 2kC , 

3 (0,1]kC  . As the 
3kC value decreases, the performance 

of the T2 control chart in detecting shifts in the mean of process deteriorates.  

In table 3, the values obtained for 
3kC  are given for, {3,5}, {1,2,4},n m 

{0,0.1,0.3,0.5,1}, {0,0.2,0.5,0.7}   . It is clear that the values of 
3kC  increases by increasing m or n and 

by decreasing 𝛾 or  . A process with p quality characteristics discussing the AR(1) model auto-correlation 

structure between observations within a sample with measurement errors is shown schematically in Figure 

3. Note that the p quality characteristics are also correlated. 
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Table 3. The values of C3k for different values of n,   and m 

𝑛 = 5  𝑛 = 3   

Φ = 0.7 Φ = 0.5 Φ = 0.2 Φ = 0.0  Φ = 0.7 Φ = 0.5 Φ = 0.2 Φ = 0.0   

0.5699= 2kC 0.6704= 2kC 0.8528= 2kC 1.0000= 2kC  0.6652= 2kC 0.7385= 2kC 0.8793= 2kC 1.0000= 2kC 1kC  

          m=1 

0.5699 0.6704 0.8528 1.0000  0.665 0.7385 0.8793 1.0000 1.0000 0.0 

0.5690 0.6689 0.8497 0.9950  0.6637 0.7365 0.8759 0.9950 0.9950 0.1 

0.5618 0.6572 0.8262 0.9578  0.6523 0.7211 0.8502 0.9578 0.9578 0.3 

0.5481 0.6356 0.7845 0.8944  0.6312 0.6928 0.8050 0.8944 0.8944 0.5 

0.4952 0.5568 0.6489 0.7071  0.5538 0.5941 0.6603 0.7071 0.7071 1.0 

          m=2 

0.6599 0.6704 0.8528 1.0000  0.6652 0.7385 0.8793 1.0000 1.0000 0.0 

0.5694 0.6696 0.8512 0.9975  0.6645 0.7375 0.8776 0.9975 0.9975 0.1 

0.5698 0.6637 0.8392 0.9782  0.6587 0.7296 0.8644 0.9782 0.9782 0.3 

0.5587 0.6523 0.8165 0.9428  0.6475 0.7145 0.8397 0.9428 0.9428 0.5 

0.5286 0.6058 0.7303 0.8165  0.9019 0.6546 0.7467 0.8165 0.8165 1.0 

          m=4 
0.5699 0.6704 0.8528 1.0000  0.6652 0.7385 0.8793 1.0000 1.0000 0.0 

0.5697 0.6700 0.8520 0.9988  0.6648 0.7380 0.8785 0.9988 0.9988 0.1 

0.5679 0.6670 0.8459 0.9889  0.6619 0.7341 0.8718 0.9889 0.9889 0.3 

0.5642 0.6612 0.8340 0.9701  0.6662 0.7243 0.8588 0.9701 0.9701 0.5 

0.5481 0.6356 0.7845 0.8944  0.6312 0.6928 0.8050 0.8944 0.8944 1.0 
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Fig 3. A p-variate normal process discussing AR(1) auto-correlation within each sample and measurement errors 

The proposed statistic for monitoring the process mean vector is: 

   2 -1 .
T

i i iT   0 y 0y μ Σ y μ                                                                                                                                 (19) 

   The UCL of the Hotelling’s T2 statistic in Equation (19) is determined by simulation such that the ICARL 
of the control chart equals to 200 is obtained.  Also, the covariance between sample means of hth and lth 
quality characteristics at time i is calculated as follows: (Refer to Appendix A for proof). 

, 2 2 3 3 1 1 2

2
cov( , ) ( ( 1) ( 2) ( 3) ... ( ( 1)) ) .h lx x n n

h l h l h l h l h l m

n
y y n n n n n n

n m


                                                (20) 

5- Numerical example 
   In this example, the quality of a product is influenced by both auto-correlation and measurement errors. 
To appraise the effect of the measurement errors on the performance of the chi-square control chart for 
monitoring auto-correlated normal processes, it is assumed that a sample of five observations and bivariate 
normal process with a known mean vector and covariance matrix according to the first-order auto regressive 
model and auto-correlation coefficients equal to 0, 0.1 and 0.5 are generated according to the AR(1) model. 

The error vector 𝛆𝑗 (j = 1,2, ..., 5) for each sample, which is a bivariate normal random variable, is generated 

with the mean vector  0 0 and with the known variance-covariance matrix 
0.54 0.09

0.09 0.54

 
 
 

.The mean 

vector 0μ is equal to  4.3 4.2 and the covariance matrix is equal to
0.9 0.1

0.1 0.8

 
 
 

 and the number of  

simulation runs is 5000. 
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5-1- Performance evaluation of chi-square control chart in the presence of auto-correlation  
   We assumed that for each quality characteristic, five consecutive samples are generated at each sampling 
time and the replication is equal to 1. Also, the auto-correlation coefficients of 0.1 and 0.5 are discussed for 

quality characteristics. Assume that for i (i=1,2,...), the sequence of observations  ,1, ,2, , ,, ,...,i k i k i n kx x x  

according to the AR(1) model is generated. According to Table 2, by increasing auto-correlation 
coefficients, the covariance value between quality characteristics also increases. The OC ARLs for the shifts 
in the mean vector of quality characteristics in units of standard deviation are given in table 4. Based on the 
results shown in table 4, the statistical performance of control chart is affected by auto-correlated data. To 
counteract this effect, the jump strategy has been proposed to improve the performance of the chart. To 
evaluate the performance of the proposed method, for monitoring multivariate normal processes, random 
vectors are generated based on jump strategy. The algorithm of jump strategy is such that samples are 

generated with non-neighboring items; in other words, in the sampling process, non-neighboring items 
should be used, that is, one can ignore the sampled data, namely, one jump or two jumps or more before 
the next sampling to eliminate the auto-correlation effect. In this case, the observed values are generated 
according to the AR(1) model using jump strategy. Through 5000 simulation runs, the UCL of the proposed 
control chart is specified by simulation such that the IC ARL is obtained equal to 200. In order to appraise 
the performance of the suggested control chart in the detection of OC situation, OC ARLs of control chart 
for different shifts in the mean of quality characteristics are reported in table 4. According to Table 4, it can 

be seen that the proposed control chart can detect the OC states satisfactory. Also, the proposed control 
chart significantly ameliorates the power of the control chart in detecting the OC shifts. 
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Table 4. The values of OC ARL simulated under changes in the mean of the first quality characteristic and the second quality characteristic for p=2, taking into 

account the auto-correlation structure (ARL0 =200) 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0   

2.52 3.40 5.03 7.6 11.14 19.71 29.34 60.34 99.60 160.33 200 m=2,   p=2, n=5, UCL=7.48 
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3.25 4.64 6.36 9.58 14.43 23.72 38.42 68.49 117.15 165.69 200 m=2, 𝛷=0.1, UCL=7.58 

11.71 14.36 22.15 28.32 41.43 58.34 85.54 113.08 158.44 190.79 200 m=2, 𝛷 =0.5, UCL=9.57  

10.87 13.68 19.58 26.22 38.36 54.09 80.47 112.29 156.94 188.23 200 One jump , UCL=12.58 

3.91 5.32 7.58 11.72 17.94 28.97 48.30 77.32 118.62 173.50 200 
 3 jumps , UCL=9.337  

2.13 2.94 4.04 5.71 8.99 15.08 25.71 51.80 91.65 154.15 200 m=2,   p=2, n=5, UCL=7.48 
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2.76 3.55 5.18 7.79 12.30 19.11 33.57 57.45 100.47 163.26 200 m=2, 𝛷 =0.1 , UCL=7.58 

9.01 12.48 18.05 24.93 35.68 50.07 75.08 104.79 151.69 182.30 200 m=2, 𝛷 =0.5, UCL=9.57 

8.41 11.06 16.43 21.86 31.97 47.81 69.35 101.23 137.66 180.27 200 One jump , UCL=12.58 

3.89 4.39 6.56 9.29 14.35 23.05 38.44 63.18 117.40 161.89 200 3 jumps , UCL=9.337 

1.29 1.50 2.04 2.79 4.18 7.18 13.34 26.79 59.53 133.28 200 m=2,   p=2, n=5, UCL=7.48 
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1.47 1.84 2.50 3.70 5.32 9.12 18.14 34.61 72.55 147.26 200 m=2, 𝛷 =0.1 ,UCL= 7.58 

4.99 6.29 9.23 13.31 21.25 32.18 52.13 84.17 127.40 175.33 200 m=2, 𝛷 =0.5, UCL=9.57 

4.34 6.04 8.06 21.02 18.53 30.83 51.98 83.41 124.04 171.35 200 One jump , UCL=12.58 

1.71 2.30 3.10 4.51 7.24 11.72 22.02 41.35 82.58 145.86 200 3 jumps, UCL=9.337 
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5-2- Performance evaluation of chi-square control chart in the presence of measurement 

errors 
   We supposed that at each sampling time five consecutive samples with 2, 4 or 15 replications on the 

product is performed. ijkx is the real values of quality characteristics, generated by the AR(1) model. Also, 

the measured values corresponding to ijkx with 2, 4 or 15 replications as the set of 

, , ,1 , , ,2 , , ,{ , ,..., }i j k i j k i j k my y y are considered. Therefore, the observed values , , ,i j k hy  are generated according to 

equation (9). The residual values i, j,k,he , for each replication, which follows a bivariate normal random 

variable, generated with the mean vector  0 0 and known variance-covariance matrix
0.4 0.1

.
0.1 0.3

 
 
 

  

   According to table 5, the UCL of the suggested control chart based on two quality characteristics and 
without the effect of the measurement errors is equal to 7.48 to attain the IC ARL of 200. Also, for the 
control chart that is influenced by the measurement errors, with a sample of 5 consecutive observations and 
two replications, the UCL (m = 2, p = 2, n = 5) is 7.98. The OC ARL for different shifts in the mean of 
quality characteristics is given in table 5. The auto-correlation coefficient is considered zero in this case; in 
other words, the effect of auto-correlation is not considered in this subsection. The results show that the 

multiple measurements strategy significantly improves the power of the control chart in detecting the OC 
state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



207 
 

Table 5. The values of OC ARL simulated under changes in the mean of the first quality characteristic and the second quality characteristic for the existence of 

measurement error (ARL0 = 200) 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0   

2.52 3.40 5.03 7.60 11.41 19.71 34.92 60.34 99.60 160.33 200 
No measurement errors 

m=2, n=5, UCL=7.48 
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3.52 4.80 7.14 10.50 16.91 27.08 44.76 71.95 118.73 172.20 
200 

m=2, n=5, UCL=7.98  

3.15 4.16 6.16 9.23 14.08 23.91 39.32 67.15 114.66 170.25 
200 

m=4, n=5, UCL=7.811 

2.65 3.72 4.92 7.81 12.35 21.55 34.46 63.51 110.93 168.12 200 m=15, n=5, UCL=7.611 

2.13 2.94 4.04 5.71 8.99 15.08 25.71 51.80 91.65 154.15 200 
No measurement errors 

m=2, n=5, UCL=7.48 

C
h

an
g

es
 i

n
 t

h
e 

m
ea

n
 o

f 

th
e 

se
co

n
d

 q
u

al
it

y
 

ch
ar

ac
te

ri
st

ic
 

2.84 3.80 5.59 7.95 13.03 19.93 34.39 59.73 106.81 166.53 
200 

m=2, n=5, UCL=7.98 

2.51 3.34 4.89 7.05 11.42 18.87 32.52 57.25 101.32 163.22 
200 

m=4, n=5, UCL=7.811 

2.19 3.30 4.31 6.21 9.57 16.43 29.98 52.71 98.91 160.91 
200 

m=15, n=5, UCL=7.611 

1.29 1.50 2.04 2.79 4.18 7.18 13.34 26.79 64.53 133.28 200 
No measurement errors 

m=2, n=5, UCL=7.48 
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1.65 2.08 2.71 4.08 6.47 11.50 19.35 39.61 74.07 149.42 200 m=2, n=5, UCL=7.98 

1.47 1.83 2.42 3.59 5.31 9.31 17.52 35.37 72.12 145.62 
200 

m=4, n=5, UCL=7.811 

1.30 1.59 2.16 3.09 4.66 7.69 14.69 30.00 70.83 139.65 
200 

m=15, n=5, UCL=7.611 
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5-3- Performance evaluation of chi-square control chart for both auto-correlation and 

measurement errors 
   We supposed that for each quality characteristic, five consecutive samples are taken at each sampling 
time and 2 or 15 measurements are done on the product. Also, the auto-correlation coefficients of 0.1 and 

0.5 are considered for quality characteristics. Moreover, the consecutive observations  ,1, ,2, , ,, ,...,i k i k i n kx x x  

are generated according to the AR(1) model, and the observed values , , ,i j k hy  are generated according to 

Equation (9). As noted in subsections 5.1 and 5.2, to neutralize the effect of the measurement errors and 
auto-correlation, multiple measurements and jump strategy are used, respectively. According to table 6, the 
UCL of the suggested control chart based on two quality characteristics and without the effect of both 
measurement errors and auto-correlation is equal to 7.48 to attain the IC ARL of 200. Also, for the control 
chart that is influenced by both measurement errors and auto-correlation, with a sample of 5 consecutive 
observations and two replications and 𝛷 =0.5 , the UCL (m = 2, p = 2, n = 5) is 9.57. The OC ARL for 

different shifts in the mean of quality characteristics is given in table 6. 
   Generally, the existence of the auto-correlation and measurement errors causes the poor performance of 
the control charts and increases OC ARL. To diminish the effect of auto-correlation and measurement errors 
on the performance of the proposed control chart, jump strategy and multiple measurements methods are 
used, respectively. Results show the acceptable performance of the multiple measurements and jumps 
methods in decreasing the negative effect of measurement errors and auto-correlation, because the control 
charts can detect changes faster by applying the abovementioned strategies. 
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Table 6. The values of OC ARL under changes in the mean of the first quality characteristic and the second quality characteristic for p=2 , n=5 taking into 

account the existence of  measurement errors and auto-correlation structure(ARL0 = 200) 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0   

2.52 3.40 5.03 7.60 11.41 19.71 34.29 60.34 99.60 160.33 200 
No measurement errors 

m=2, UCL=7.48 
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4.48 5.90 8.82 12.63 20.26 36.08 52.47 80.33 126.92 178.91 200  𝛷=0.1, UCL=8  

13.44 18.32 25.20 33.98 46.06 63.92 89.27 125.32 158.96 193.63 200 𝛷 =0.5, UCL= 9.57  

12.45 16.85 21.92 31.35 44.22 60.45 86.26 122.32 152.68 188.51 200 m=15, 𝛷 =0.5, UCL=9.6  

5.24 7.18 10.26 15.71 23.19 35.12 55.78 87.50 123.26 176.15 200 3 jumps 𝛷 =0.5 , UCL=9.545  

4.16 5.79 8.10 12.42 18.93 30.16 51.03 80.13 117.48 172.21 200 m=15, 3 jumps 𝛷 =0.5  , UCL=9.4  

2.13 2.94 4.04 5.71 8.99 15.08 25.71 51.80 91.65 154.15 200 
No measurement errors 

m=2, UCL=7.48 
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3.57 5.02 7.17 10.37 15.37 24.74 40.31 69.38 111.51 160.82 200  𝛷=0.1, UCL=8  

10.37 14.54 19.52 27.06 40.51 55.10 78.20 105.28 152.79 183.22 200  𝛷 =0.5, UCL= 9.57  

9.32 12.72 16.21 25.32 37.87 51.65 73.32 98.22 147.56 178.53 200 m=15, 𝛷 =0.5, UCL=9.6  

4.27 5.65 7.74 11.52 18.05 29.66 44.07 71.74 114.17 160.84 200 3 jumps, 𝛷 =0.5 , UCL=9.545  

3.54 4.62 6.59 9.58 14.83 23.58 37.95 68.79 109.15 158.95 200 m=15, 3 jumps, 𝛷 =0.5  , UCL=9.4  

1.29 1.50 2.04 2.79 4.18 7.18 13.34 26.79 59.53 132.28 200 
No measurement errors 

m=2, UCL=7.48 
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1.99 2.40 3.44 5.15 8.37 14.57 23.15 44.22 93.90 149.32 200  𝛷=0.1, UCL=8 

5.26 7.50 10.15 15.10 22.47 32.90 55.07 85.19 123.78 180.54 200 𝛷 =0.5, UCL= 9.57  

4.54 6.29 9.28 13.32 19.28 29.78 51.25 80.84 119.28 176.45 200 m=15, 𝛷 =0.5, UCL=9.6  

2.21 3.14 4.29 6.20 10.18 17.06 30.39 53.71 99.40 155.44 200 3 jumps, 𝛷 =0.5 , UCL=9.545  

1.83 2.26 3.34 4.69 7.29 12.45 22.81 42.55 92.95 148.98 200 m=15, 3 jumps,  𝛷 =0.5  , UCL=9.4  
 

 

 

 

 



210 
 

5-4- Managerial Insights 
   As the results of numerical example showed, the existence of the auto-correlation and measurement errors 
lead to poor performance of the Hotelling’s T2 control chart in terms of ARL1. Hence, it is important to 

address these effects through suitable strategies such as multiple measurements for measurement errors and 
jump strategy for auto-correlation. 
For this aim, the proposed Hotelling’s T2 control chart should be applied in practice to overcome the 
negative effects of both measurement errors and auto-correlation, through the following steps: 
 

1. Estimate the model by which the process works. 

2. Obtain a control limit using simulation. 

3. Plot the Hotelling’s T2 statistics on the control chart. 

4. Implement the proposed strategies (Multiple measurements and jump strategy). 

6- Case study 
   For industrial application, we adopt the case presented by Aparisi (1996). In this case, a mechanical part 
with three main quality characteristics is available as it is shown in figure 4. The quality characteristics are 

the width X1, the inner diameter X2 and the length X3. Beside the in-control mean vector 0μ and the 

variance-covariance matrix 0Σ  of the quality characteristics which are used in Aparisi (1996), we also 

assume the following variance-covariance matrix of measurements errors mΣ :  

0 0

0.2 0.054 0.162

(7,3,15), 0.054 0.09 0.042

0.162 0.042 0.31

 
 

 
 
  

μ Σ ,

0.16 0 0

0 0.05 0 .

0 0 0.25

m

 
 


 
  

Σ  

 

Fig 4. A mechanical part with three quality characteristics (Aparisi , 1996) 
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Fig 5. The proposed Hotteling’s T2 control chart  

   Based on the following in-control model and through simulation runs, UCL is set equal to 10.04 to achieve 

in-control ARL of roughly 200 where i, j,k,he  is the independent error term of kth quality characteristic with 

the mean zero and known variance and AR(1) model between observations within a sample for each quality 

characteristic is assumed. Note that 0.5  is considered. 
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         
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 
 

   After generating 15 in-control samples from the above in‐control model, a shift equals to 0.5 is imposed 

in the process mean values of all three quality characteristics from sample #16. As it can be seen in figure 

5, the proposed Hotteling’s T2 chart was able to find an out-of-control alarm in sample #17. After finding 

an out-of-control situation, quality engineers should investigate the source of variation, detect the assignable 

cause and eliminate it. 

7- Conclusion and a suggestion for future research 
   In this paper, we considered a multivariate normal process and evaluated the effect of the auto-correlation 
and measurement errors on the IC and OC ARL performance of Hotelling’s T2 control charts. In particular, 
the first-order autoregressive time series model was used to model the auto-correlation structure. Also, to 
reduce the effect of measurement errors, multiple measurements method was used. Moreover, the jump 
strategy was applied to address the auto-correlation effect. Then, a numerical example was presented to 
appraise the performance of control chart influenced by the measurement errors and auto-correlation 

structure. The results of simulation studies, in terms of ARL criterion, demonstrated that the performance 
of the Hotelling’s T2 control chart is affected by measurement errors as well as auto-correlation structure. 
The multiple measurements as well as jumping strategy were used to improve the negative effects of 
measurement errors and auto-correlation structure on the performance of the Hotelling’s T2 control chart, 
respectively. Future research might be proposing an adaptive multivariate control charts by discussing 
measurement errors and auto-correlation simultaneously.  
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Appendix A: The proof for equation (20) 

Here we will provide the detailed proof of Equation (20). Let us consider auto-correlation and 

measurement errors simultaneously. So we have; 

, , 0, ,( 1), 0, , ,

, , , , , , , ,

( ) , 1,2,3,..., 1,2,..., , 1, 2,..., .

.

i j k k i j k k i j k

i j k h i j k i j k h

x x i j n k p

y x e

         


 
 

The sample mean for hth quality characteristic at time i , ihy , is equal to: 

1 1 1 1 1

1 1 1
( ), 1,2,..., .

n m n n m

ih ijkh ijh ijkh

j k j j k

y y x e h p
mn n m    

       

  Also, sample means of hth quality characteristic is 

1 1 1

1 1
( ).

n n m

h ih ijh ijkh

i i j i j k

y y x e
n m  

      

The covariance between sample means of hth and lth quality characteristics is as follows: 

1 1 1 1 1 1

1 1 1 1
cov( , ) cov( ( ), ( ))

n n m n n m

h l ijh ijkh ijl ijkl

i j i j k i j i j k

y y x e x e
n m n m     

       

2 2
1 1 1 1 1 1

1 1
cov( , ) cov( , ).

n n n m n m

ijh ijl ijkh ijkl

i j i j i j k i j k

x x e e
n m     

      

Now, the covariance between sample means of hth and lth quality characteristics is calculated in two parts. 

In the first part, the covariance between the actual value of the jth observation in hth and lth quality 

characteristics at time i , ijhx and ijlx , is calculated which are modeled by the AR(1) model and the auto-

correlation parameters are h and l , respectively. Hence, the calculations are such that in n  states, 

the lag of the observations is equal to zero. In this case, the covariance between them is equal to  
0 0

,h lx x h ln   . In ( 1)n  states, the lag of the observations is equal to one, in this case, the covariance 

between them is equal to ,( 1)
h lx x h ln    and so on. In ( ( 1))n n  state the lag of the observations 

is equal to ( 1)n   where in this case, the covariance between them is equal to 

1 1

,( ( 1))
h l

n n

x x h ln n      . As a result, sum of the above expressions is the value calculated from the 

first part, which leads to 

, 2 2 3 3 1 1

2
( ( 1) ( 2) ( 3) ... ( ( 1)) ).h lx x n n

h l h l h l h ln n n n n n
n


                   
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In the second part, the covariance of ijkhe and ijkle is calculated. Since the summation is on k  and j , 

there are mn  states that each of which has a covariance equal to 2

m . Then, as a result the 

covariance of the second part is equal to 

2 2

2 2

1 1
cov( , ) .ijkh ijkl m m

n
mn e e mn

m m m
       

Hence, the covariance in Equation (20) can be calculated by: 

, 2 2 3 3 1 1 2

2
cov( , ) ( ( 1) ( 2) ( 3) ... ( ( 1)) ) .h lx x n n

h l h l h l h l h l m

n
y y n n n n n n

n m


                      

 

 


