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Abstract

Independency of observations is one of the fundamental assumptions in control charts.
However, in some processes this assumption is violated and data are auto-correlated.
Also, itis assumed that the measurement errors are absent in measurement system while,
this assumption is usually violated. The existence of the auto-correlation and
measurement errors causes the poor performance of the control charts. In other words,
the average run length in the case of out-of-control (OC) situations increases in the
presence of auto-correlation and measurement errors. In this paper, the effect of auto-
correlation and measurement errors on the performance of Hotelling’s TZ control charts
in Phase Il in multivariate normal processes is investigated in terms of average run length
(ARL) criterion. The first order auto-regressive model as auto-correlation structure
between observations within each sample is discussed in this paper. To decrease the
effect of auto-correlation and measurement errors on the performance of the Hotelling’s
T2 control chart, jump strategy and multiple measurements methods are applied,
respectively. The effect of auto-correlation and measurement errors, individually and
simultaneously, as well as the performance of the suggested methods to address these
effects is appraised through simulation studies and a numerical example. The effect of
number of measurements and jumps on the ARL values of the proposed control chart is
also evaluated. Results show the acceptable performance of the multiple measurements
and jumps methods in diminishing the effect of measurement errors and auto-correlation,
respectively. At last, a real case is presented to show the application of the proposed
scheme.

Keywords: Average run length, jump strategy, measurement errors, multiple
measurements, multivariate control chart, the first order auto-regressive model

1-Introduction

In recent years, with the advancement of technology and data collection methods, the time between
successive sampling of products has been decreased and as a result the independency of observations is
violated and become auto-correlated. On the other hand, in some processes, the measurement system is not
accurate enough and causes measurement errors in the collected observations. The presence of auto-
correlation and measurement errors greatly affects the performance of control charts and increases the false
alarm rate of control charts, which leads to misleading results.
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For example, Lina and Woodall (2001) demonstrated that when the observed values have the
measurement errors, the control limits of the X control chart are affected and the power of the control chart
decreases. Maravelakis et al. (2004) also checked the performance of the exponentially weighted moving
average (EWMA) control chart in the existence of measurement errors and demonstrated that the observed
values in the presence of the measurement errors affect the control limits. They introduced multiple
measurements method to neutralize the negative effect of the measurement errors. Abbasi (2010) also
checked the effect of the two-component measurement errors on the performance of the EWMA control
chart and demonstrated that applying multiple measurements decreases the effect of measurement errors.
Maravelakis (2012), checked the effect of measurement errors on the performance of Cumulative Sum
control chart. Noorossana and Zerehsaz (2015) investigated the effect of the measurement errors on the
performance of the EWMA-3 control charts for monitoring the profiles and demonstrated that the
measurement errors affect the IC and OC ARL of the control chart in Phase 1l. Lina et al. (2001) examined
the effect of measurement errors on the performance of multivariate control charts and demonstrated that
the measurement errors affect the performance of the chi-squared control chart. Ding and Zeng (2015) also
investigated the effect of measurement errors in multi-stage processes. Regarding the fact that the quality
characteristics were adjusted in different stages of production with the regression model, they demonstrated
that the measurement errors influence the estimated parameters of the regression model.

Maragah and Woodal (1992) studied effect of auto-correlated data on the performance of the X control
chart and showed that auto-correlation results in increasing the rate of false alarm. Franco et al. (Franco et
al., 2014)used the jump strategy to ameliorate the performance of the X control chart and demonstrated that
using the jump strategy can improve the performance of the X control chart in the presence of auto-
correlation. Goswami and Dutta (2014) applied EWMA control chart for monitoring the auto-correlated
data processes. Leoni et al. (2015) investigated the jump strategy to address the effect of auto-correlation
on the performance of TZcontrol chart. Kalgondaand and Kulkarni (2004) monitored the multivariate auto-
correlated processes. Soleimani and Noorossana (2014) studied the multivariate simple linear profiles
monitoring when auto-correlation exists between profiles. Also, Soleimani et al. (2009) and Soleimani et
al. (2014), Khedmati and Niaki(2016), Kazemzadeh et al. (2010)studied simple linear and polynomial
profiles monitoring in the existence of auto-correlation as well.

Costa and Castagliola (2011) checked the effect of auto-correlation and measurement errors on the
performance of the X control chart and demonstrated that the performance of X control chart is influenced
by the auto-correlation structure as well as measurement errors. Xiaohong and Zhaojun (2009) checked the
effect of auto-correlation and measurement errors on the performance of the CUSUM control chart.
Sabahno et al. (2019a) appraised the performance of variable sampling intervals Hotelling’s T?control chart
in the presence of measurement errors. Sabahno et al. (2019b) studied the effect of measurement errors on
the performance of variable parameters (VP) X control chart. Sabahno et al. (2018) investigated the effect
of measurement errors on the performance of variable sample size Hotelling’s T?control chart. Amiri et al.
(2016) appraised the effect of measurement errors on the performance of EWMA control chart for
simultaneous monitoring of mean and variability of multivariate normal processes. Maleki et al. (2017)
provided a review paper in the field of measurement errors in statistical process monitoring (SPM).
Ghasghaei et al. (2016) investigated the effect of measurement errors on the performance of control chart
for simultaneous monitoring of mean and variability of the process by using ranked set sampling (RSS).

Shishebori and Hamedani (2010) evaluated the effect of gauge measurement capability and dependency
measure of process variables on the MCp. Chattinnawat and Belin (2017) assessed the performance of the
Hotelling’s T2 control chart for monitoring individual observations in Phase 1l under multivariate normal
inspection errors. Rakhmawati et al. (2020) compared the performance of the generalized confidence
interval (GCI) and the modified sampling distribution (MSD) methods for assessing process capability in
the presence of gauge measurement.

Most of the papers, which discussed the effect of measurement errors on the performance of different
control charts, assumed that the observations within each sample are independent. However, when the time
between successive sampling collapse, the observations are auto-correlated. As mentioned before, the auto-
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correlation and measurement errors lead to negative performance of control charts. We discuss a
multivariate normal process and investigate the effect of the auto-correlation and measurement errors on
the in-control(IC) and OC ARL performance of chi-square control charts, in this paper. In other words, the
effect of measurement errors on chi-square chart performance for monitoring auto-correlated multivariate
normal process, is investigated.

In particular, the first-order auto-regressive (AR(1)) time series is applied for modeling the auto-
correlation structure, in this paper. Also, to decrease the effect of measurement errors, multiple
measurements method has been used. Moreover, the jump strategy is applied to address the auto-correlation
effect. The structure of the paper is as follows: In section 2, the effect of measurement errors on the
performance of the chi-square chart is appraised. In section 3, the auto-correlation effect on the performance
of the chi-square chart is evaluated under the AR(1) model. Also, in this section, the jump strategy is
presented to neutralize the negative effect of auto-correlation structure. In Section 4, the performance of
the chi-square chart under multiple measurements and jump strategy is examined. In Section 5, simulation
studies are executed to appraise the performance of chi-square control chart in the existence of auto-
correlation and measurement errors individually and simultaneously. In section 6, a real case study is
presented. Conclusion and a suggestion for future research are given in the final section.

2-The effect of auto-correlation on the performance of chi-square control chart

Time series is a sequence of observations, usually arranged in terms of time, especially at equal intervals,
but sorting may be due to other dimensions such as distance. The inherent nature of time series is the auto-
correlation of its observations. Therefore, the order of observation is important. In this section, we suppose
that the measurement procedure is precise, and there are no measurement errors at each sampling. The
replication is equal to one. The time series, which is investigated in this section, is a static time series model,
which means that the distribution and corresponding parameters are constant over time.

Often with a finite number of observations, a parametric pattern of finite order is made to express a time
series process. In this section, the AR(1) model is discussed. Suppose that in time i (i=1,2,...), the

successive observations in k™ quality characteristic {Xi,l,k 1 Xig ki Xi,n,k} are modeled by the AR(1) model.
X ik~ Hox = Kk — Hox) T € o1 =123, J=12,..,n,k =1,2,..., p. 1)

X; j « Is the actual value of the j™ observation in k™ quality characteristic at time i . My is the mean of the
k™ quality characteristic, & Is the error term of i (j=1,2,...,n) observation in k™ quality characteristic at

time i ,which follows an independent normal distribution with mean zero and variance o} , and ¢, is the
auto-correlation coefficient of the AR(1) model in k™ quality characteristic. Note that samples at different
times are independent. The variance of X, , var(xy ), is computed as equation (2): (Alwan and Radson,

1992)
var(X;,) = f—". 2)

Also, the standard deviation of mean sample is equal to:

Ok

e,

where X, is the mean sample and it is computed as X, =(x;, +...+X,,)/n,

k=12,..,p, 3)

and C,, related to k™ quality characteristic is equal to equation (4):

195



c | n 4
\]n+ 2(@pt = na? + (n-1)a, /(0 ~1)°)

The proposed statistic for monitoring the mean process vector is as follows:
Ti2 :()_(i _”o)t Z;l(ii _uo)1 ()
where X; = (X, Xipeon Xip)' s g = (1, g soes 11,) -

The variance- covariance matrix of X; vector is as below:

Ox, Ox%,x, O%Xp
2
Oy Oy L oy
Y = X2Xy X2 X2Xp (6)
- .
M M O M
2
Ox,%, x,x, L Ox,

Note that in this paper, it is assumed that ¢, (k=1,2,...,p) values are equal to ¢ .

Values of oy 5 e Oy x, Can be obtained by using equation (7).

o

COV(X, %) =—5-(N+(N-Dhd + (N =2 H +...+ 4 ¢"), @)

n

where ¢ and ¢, respectively, are the auto-correlation coefficients related to the h™ and 1™ quality

characteristics.

The UCL of the proposed statistic in equation (5) is determined by simulation such that the IC ARL of
the control chart equals to 200 is obtained. The value of C_ , corresponding to the positive values of ¢, , is
placed in the (0,1] interval.

In table 1, the values of C,, are given forn={1,2,...,7},¢={0.1,0.2,...,0.7}. According to the results

of the table, it is clear that the value of C,, approaches to one by increasing n or decreasing¢ . As C,,

values are decreasing, the power of control chart to detect the shift in the mean of process reduces for auto-
correlated data. To reduce the auto-correlated data effect on the performance of the T2control chart, samples
with non-neighboring items are used. In other words, one jump or two jumps or more before the next
sampling can remove the influence of auto-correlation and the performance of T2control chart. A process
with p quality characteristics discussing the AR(1) auto-correlation between observations within a sample
with no measurement errors is shown schematically in figure 1. Note that the p quality characteristics are
also correlated.

2k !
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Table 1. The values of Cy for different values of n and f

Cax

D n=1 n=2 n=3 n=4

0.0 1.0000 1.0000 1.0000 1.0000
0.1 1.0000 0.9535 0.9366 0.9283
0.2 1.0000 09129 0.8793 0.8626
0.3 1.0000 0.8771 0.8276 0.8023
04 1.0000 0.8452 0.7809 0.7470
0.5 1.0000 0.8165 0.7385 0.6963
0.6 1.0000 0.7906 0.7001 0.6498
0.7 1.0000 0.7670 0.6652 0.6073

n=5 n=6 n=7 n=10
0.0 1.0000 1.0000 1.0000 1.0000
0.1 0.9234 09202 0.9179 0.9120
0.2 0.8528 0.8464 0.8419 0.8214
0.3 0.7874 07777 0.7710 0.7213
04 0.7267 0.7135 0.7042 0.6108
0.5 0.6704 0.6532 0.6411 0.4934
0.6 0.6182 05967 05814 0.3771
0.7 0.5699 05440 05250 0.2672
- - =3 =
Ying Y } X =

P-th Quality
Characteristic

s -~

/
= Z

AR(1) "~

N

‘r”/f AR(1) T

/
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Fig 1. A p-variate normal process discussing AR(1) auto-correlation within each sample
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The auto-regressive model with the jump strategy is given as:

Xi ik~ Hox =B (X joan — Moy )+ i =12, j=1,nk=1,2,..,p,5=1,2,... (8)

The error term &, , isequal to &, = &, + G &k + -+ B () - As aresult, the observations of the k™
quality characteristic {X, , . X,.au» X 25+ 3+ Xiassax+-- 1S Proportional to the AR (1) model with the parameter
¢°**. While the number of jumps increases in sampling, the values of C,, close to one, and as a result, the
auto-correlation of the data decreases and the performance of the control chart improves.
3- Effect of measurement errors on the performance of control chart

The measured values corresponding to the real value of x;;, with m replications is as the set of

WYiikar Yiiikazr Vi jmts M>1. Therefore, the observed values are equal to equation (9):

©)

Yiikn =X ik T € jxn-

& xn IS the independent error term of k™ quality characteristic with the mean zero and known variance. A

process with p quality characteristics in the existence of measurement errors is schematically shown in
figure 2.Note that the p quality characteristics are also correlated and Y, ;. ,, is the h' replication for the k™

quality characteristic at time i.
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Fig 2. A p-variate normal process discussing measurement errors

The sample mean of observations for k™ quality characteristic is as follows:
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1L 1< I1¢w
Yik Z%ZZ Yiikon :H[;Xi,j,k +Ezzei,;,k,hj’ (10)

j=1 h=1 j=1 h=1
i=12...j=12,...,n,h=12...mk=12.,p.
The standard deviation of the mean sample of the k™ quality characteristic at time i is:

(11)

In the equation (12), af is the variance of the actual values of k™ quality characteristic and G,ik is the

variance of the of the measurement error term. C,, is calculated as

m m
Cu z\/m+(0'mk /0'k)2 =\/m+7k2_ (12)

It is assumed that o7 and afnk for all quality characteristic are the same. In other words,

2 _ 2 _ _ 2 _ 2 2_ 2_ _ 2 _ 2
Op =Op, = =0y =0 and 0, =0, =...=0,=0".

In equation (12), if measurement errors exist, y = oy, /ak >0 and as a result, C;, < (0,1]. According to
table 2, C,, values are given form={1,2,3,4,5,10,15}, » ={0,0.1,0.2,...,1}.

Table 2. The values of Cy for different values of the } and m

Cik
7 m=1 m=2 m=3
0.0 1.0000 1.0000 1.0000
0.1 09950 0.9975 0.9983
02 09806 0.9901 0.9934
03 09578 0.9782 0.9853
04 09285 09623 0.9744
05 0.8944 0.9428 0.9608
06 08575 0.9206 0.9449
0.7 08192 0.8962 0.9271
0.8 0.7809 0.8704 0.9078
0.9 0.7433 0.8436 0.8874

1.0 0.7071 0.8165 0.8660

7 m=5 m=10 m=15
0.0 1.0000 1.0000 1.0000
0.1 0.9990 0.9995 0.9997
02 09960 0.9980 0.9987
03 09911 0.9955 0.9970
04 09844 0.9921 0.9947
05 09759 0.9877 0.9918
06 09658 0.9825 0.9882
0.7 09543 0.9764 0.9841
0.8 0.9416 0.9695 0.9793
0.9 0.9277 0.9618 0.9740
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It is clear from the results of the table 2 that the value of C,, increases by increasing m and decreasing
. The performance of the control chart increases by increasing m (replications). The proposed statistic for
monitoring the mean process vector is as

:(yi —Ho )T Zyl (7, _Ho)’ (13)
where'y, :(yil'in"'”yip)T s Mo = () ty e 1),

Also, the variance-covariance matrix of vector Y is equal to equation (14):

O-yl O-yl)/z L 0-3717;)
2
y - % % L oy, _ (14)
"I'M M O M
2
Oy9 9y, %y,
The values of oy ,...,0y ; can be calculated as
1y2! pYp
o o 1| ono  ©
cov(¥y, Y, ) e SRR § (15)
Fdhc,

Also, the UCL of the proposed statistic in Equation (5) is determined by simulation such that the IC-ARL
of the control chart equals to 200 is obtained. Therefore, if o, > o, , the control chart performance in

detecting the shift in the mean of the process is decreased. In order to neutralize the effect of the
measurement errors, the multiple measurements strategy is used, and in Section 5.1 it is shown that the
more the replications (m), the better performance of the suggested control chart.

4- Effect of both measurement errors and auto-correlation on the control chart

We discussed the effect of both auto-correlation and measurement errors on the performance of
Hotelling’s T control chart. For this goal, we consider the model which is represented as follows:
{ ik~ Mo = B pw — Hox) ¥ €01 =12,3,.,=12,..,n,k=12,..., p.

Yiiikon = Xk T6jkn

(16)

In the above model, we suppose that there is the AR(1) model between observations within a sample for
each quality characteristic.

In this condition, the standard deviation of the sample mean for k™ quality characteristic at time i, o (Vi)
is equal to:

= 1 0'k 1y o,
O- yl m) + I 12! lk=1!21"'lpl (17)
A LT ot (o oot
where Cskis computed as follows:
1
1 1 2
Cy=| —+— : (18)
A&
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And Ciand C,, are defined in equations (12) and (4), respectively.

If the measurement system is exact then C;, =1, and if the data are uncorrelated, then C,, =1, hence, the
value of C,, isequal to one. Also, C,, and C,,, C, €(0,1]. Asthe C;, value decreases, the performance
of the T2 control chart in detecting shifts in the mean of process deteriorates.

In table 3, the wvalues obtained for C, are given for,n ={3,5}, m=4{, 2,4},
7={0,0.1,0.3,0.5,1},¢={0,0.2,0.5,0.7}. It is clear that the values of C,,increases by increasing m or n and
by decreasing y or ¢ . A process with p quality characteristics discussing the AR(1) model auto-correlation

structure between observations within a sample with measurement errors is shown schematically in Figure
3. Note that the p quality characteristics are also correlated.

201



Table 3. The values of C for different values of n, 7 and m

n=3 I n=>5
®=0.0 ® =02 ® =05 ®=0.7 I ®=0.0 ® =02 ®=0.5 ®=0.7
Y Cwk  Cx=1.0000 Cx=0.8793 Cx=0.7385  Cx =0.6652 Cx =1.0000 Cx =0.8528 Cx =0.6704 Cx =0.5699
mO_%) 1.0000 1.0000 0.8793 0.7385 0.665 1.0000 0.8528 0.6704 0.5699
0.1 0.9950 0.9950 0.8759 0.7365 0.6637 0.9950 0.8497 0.6689 0.5690
0.3 0.9578 0.9578 0.8502 0.7211 0.6523 0.9578 0.8262 0.6572 0.5618
05 0.8944 0.8944 0.8050 0.6928 0.6312 0.8944 0.7845 0.6356 0.5481
10 0.7071 0.7071 0.6603 0.5941 0.5538 0.7071 0.6489 0.5568 0.4952
m=2
0.0 1.0000 1.0000 0.8793 0.7385 0.6652 1.0000 0.8528 0.6704 0.6599
0.1 0.9975 0.9975 0.8776 0.7375 0.6645 0.9975 0.8512 0.6696 0.5694
0.3 0.9782 0.9782 0.8644 0.7296 0.6587 0.9782 0.8392 0.6637 0.5698
0.5 0.9428 0.9428 0.8397 0.7145 0.6475 0.9428 0.8165 0.6523 0.5587
1.0 0.8165 0.8165 0.7467 0.6546 0.9019 0.8165 0.7303 0.6058 0.5286
m(iO 1.0000 1.0000 0.8793 0.7385 0.6652 1.0000 0.8528 0.6704 0.5699
0.1 0.9988 0.9988 0.8785 0.7380 0.6648 0.9988 0.8520 0.6700 0.5697
0.3 0.9889 0.9889 0.8718 0.7341 0.6619 0.9889 0.8459 0.6670 0.5679
0.5 0.9701 0.9701 0.8588 0.7243 0.6662 0.9701 0.8340 0.6612 0.5642
1.0 0.8944 0.8944 0.8050 0.6928 0.6312 0.8944 0.7845 0.6356 0.5481
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Fig 3. A p-variate normal process discussing AR(1) auto-correlation within each sample and measurement errors

The proposed statistic for monitoring the process mean vector is:

:(yi _uo)T Z_yl(yi _“0)'

The UCL of the Hotelling’s T? statistic in Equation (19) is determined by simulation such that the ICARL
of the control chart equals to 200 is obtained. Also, the covariance between sample means of h™ and I"

quality characteristics at time i is calculated as follows: (Refer to Appendix A for proof).

cov(yy, y) = a,:héx' (+(-Dgd + (-2)g ¢ + (=3’ +...+ (- (-D)g 4" + %O—;'

5- Numerical example

In this example, the quality of a product is influenced by both auto-correlation and measurement errors.
To appraise the effect of the measurement errors on the performance of the chi-square control chart for
monitoring auto-correlated normal processes, it is assumed that a sample of five observations and bivariate
normal process with a known mean vector and covariance matrix according to the first-order auto regressive
model and auto-correlation coefficients equal to 0, 0.1 and 0.5 are generated according to the AR(1) model.
The error vectorg; (j=1,2, ..., 5) for each sample, which is a bivariate normal random variable, is generated

) 0.09
with the mean vector [0 0] and with the known variance-covariance matrix { } . The mean

0.09 0.54

0.9
vector W, is equal to [4.3 4.2] and the covariance matrix is equal to{O 1 08

simulation runs is 5000.
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5-1- Performance evaluation of chi-square control chart in the presence of auto-correlation
We assumed that for each quality characteristic, five consecutive samples are generated at each sampling
time and the replication is equal to 1. Also, the auto-correlation coefficients of 0.1 and 0.5 are discussed for

quality characteristics. Assume that for i (i=1,2,...), the sequence of observations {Xi,l,k'xi,z,k""’ Xi,n,k}

according to the AR(1) model is generated. According to Table 2, by increasing auto-correlation
coefficients, the covariance value between quality characteristics also increases. The OC ARLs for the shifts
in the mean vector of quality characteristics in units of standard deviation are given in table 4. Based on the
results shown in table 4, the statistical performance of control chart is affected by auto-correlated data. To
counteract this effect, the jump strategy has been proposed to improve the performance of the chart. To
evaluate the performance of the proposed method, for monitoring multivariate normal processes, random
vectors are generated based on jump strategy. The algorithm of jump strategy is such that samples are
generated with non-neighboring items; in other words, in the sampling process, non-neighboring items
should be used, that is, one can ignore the sampled data, namely, one jump or two jumps or more before
the next sampling to eliminate the auto-correlation effect. In this case, the observed values are generated
according to the AR(1) model using jump strategy. Through 5000 simulation runs, the UCL of the proposed
control chart is specified by simulation such that the IC ARL is obtained equal to 200. In order to appraise
the performance of the suggested control chart in the detection of OC situation, OC ARLSs of control chart
for different shifts in the mean of quality characteristics are reported in table 4. According to Table 4, it can
be seen that the proposed control chart can detect the OC states satisfactory. Also, the proposed control
chart significantly ameliorates the power of the control chart in detecting the OC shifts.
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Table 4. The values of OC ARL simulated under changes in the mean of the first quality characteristic and the second quality characteristic for p=2, taking into
account the auto-correlation structure (ARL, =200)

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0

E m=2, p=2,n=5, UCL=7.48 200 16033 9960 6034 2934 1971 1114 76 503 340 252
é:z% m=2, =0.1, UCL=7.58 200 16569 117.15 6849 3842 2372 1443 958 636 464 325
% §§ m=2, ¢ =0.5, UCL=9.57 200 19079 15844 113.08 8554 5834 4143 2832 2215 1436 1171
é“;‘cf One jump , UcL=12.58 200 18823 15694 11229 8047 5409 3836 2622 1958 1368 10.87
& 3 jumps , UCL=9.337 200 17350 11862 77.32 4830 2897 1794 1172 758 532 301
5 m=2, p=2,n=5, UCL=7.48 200 15415 9165 51.80 2571 1508 899 571 404 294 213
§§ £l m=2,#=0.1, ucL=7.58 200 16326 10047 5745 3357 1911 1230 779 518 355 276
ég % m=2, & =0.5, UCL=9.57 200 18230 15169 10479 7508 5007 3568 2493 1805 1248 901
gg%‘ One jump , UCL=12.58 200 18027 13766 10123 6935 4781 3197 2186 1643 1106 841
57 |a jumps , UcL=9.337 200 161.89 11740 63.18 3844 2305 1435 929 656 439  3.89
5 _ 4 m=2, p=2,n=5, UCL=7.48 200 13328 5953 2679 1334 718 418 279 204 150 129
§ §§ m=2, ¢ =0.1 ,UCL= 7.58 200 14726 7255 3461 1814 912 532 370 250 184 147
% é ‘; m=2, ¢ =0.5, UCL=9.57 200 17533 12740 8417 5213 3218 2125 1331 923 629 4.99
%E :% One jump, UCL=12.58 200 17135 12404 8341 5198 3083 1853 2102 806 604 434
A jumps, UcL=9.337 200 14586 8258 4135 2202 1172 724 451 310 230 171
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5-2- Performance evaluation of chi-square control chart in the presence of measurement
errors

We supposed that at each sampling time five consecutive samples with 2, 4 or 15 replications on the
product is performed. X, is the real values of quality characteristics, generated by the AR(1) model. Also,

the measured values corresponding to X with 2, 4 or 15 replications as the set of
Yiikar Yiijkzr- Vi jxmyare considered. Therefore, the observed values 'y, ;. , are generated according to
equation (9). The residual values e,;,,,, for each replication, which follows a bivariate normal random

04 0.1
variable, generated with the mean vector [O O] and known variance-covariance matrix{O 10 3}.

According to table 5, the UCL of the suggested control chart based on two quality characteristics and
without the effect of the measurement errors is equal to 7.48 to attain the IC ARL of 200. Also, for the
control chart that is influenced by the measurement errors, with a sample of 5 consecutive observations and
two replications, the UCL (m =2, p = 2, n = 5) is 7.98. The OC ARL for different shifts in the mean of
quality characteristics is given in table 5. The auto-correlation coefficient is considered zero in this case; in
other words, the effect of auto-correlation is not considered in this subsection. The results show that the
multiple measurements strategy significantly improves the power of the control chart in detecting the OC
state.
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Table 5. The values of OC ARL simulated under changes in the mean of the first quality characteristic and the second quality characteristic for the existence of
measurement error (ARL, = 200)

0 0.1 02 03 04 05 06 07 08 09 10
g _ mfzf“ne:a;“&rzigt:gors 200 160.33 99.60 6034 3492 1971 1141 760 503 340 252
é‘?}‘é m=2, n=5, UCL=7.98 200 17220 11873 7195 4476 2708 1691 1050 714 480 352
= Zs

égg m=4, n=5, UCL=7.811 200 17005 11466 6715 23932 2391 1408 923 616 416 3.15
5 | mets.nes, ucL7en 200 16812 11093 6351 3446 2155 1235 781 492 372 265

No measurement errors

5 | mo s, Uctor a8 200 15415 9165 5180 2571 1508 899 571 404 294 213
g = o 200
E S 3| m=2,n-5,uCL-7.98 16653 10681 5973 3439 1993 1303 795 559 380 284
=T 2
£§8 200
2 © 8| m=4, n=5, UCL=7.811 16322 10132 5725 3252 1887 1142 705 489 334 251
g £" 200
S m=15, n=5, UCL=7.611 16091 9891 5271 2998 1643 957 621 431 330 219
. | Nomeasurement errors 200 13328 6453 2679 1334 718 418 279 204 150 1.29
2'2,5 m=2, n=5, UCL=7.48

S B
$ 25| m=2, n=5, ucL=7.98 200 14942 7407 3961 1935 1150 647 408 271 208 165
2B E 200
< < 5| m=4,n=5 ucL=7.811 14562 7212 3537 1752 931 531 359 242 183 147
2= >
£2s 200
£ = 3| m=15,n=5, UCL=7.611 13965 7083 3000 1469 769 466 309 216 159 1.30
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5-3- Performance evaluation of chi-square control chart for both auto-correlation and
measurement errors

We supposed that for each quality characteristic, five consecutive samples are taken at each sampling
time and 2 or 15 measurements are done on the product. Also, the auto-correlation coefficients of 0.1 and

0.5 are considered for quality characteristics. Moreover, the consecutive observations {Xi 1k K2k Xink }

are generated according to the AR(1) model, and the observed values Y, ;,, are generated according to

Equation (9). As noted in subsections 5.1 and 5.2, to neutralize the effect of the measurement errors and
auto-correlation, multiple measurements and jump strategy are used, respectively. According to table 6, the
UCL of the suggested control chart based on two quality characteristics and without the effect of both
measurement errors and auto-correlation is equal to 7.48 to attain the IC ARL of 200. Also, for the control
chart that is influenced by both measurement errors and auto-correlation, with a sample of 5 consecutive
observations and two replications and @ =0.5 , the UCL (m =2, p =2, n = 5) is 9.57. The OC ARL for
different shifts in the mean of quality characteristics is given in table 6.

Generally, the existence of the auto-correlation and measurement errors causes the poor performance of
the control charts and increases OC ARL. To diminish the effect of auto-correlation and measurement errors
on the performance of the proposed control chart, jump strategy and multiple measurements methods are
used, respectively. Results show the acceptable performance of the multiple measurements and jumps
methods in decreasing the negative effect of measurement errors and auto-correlation, because the control
charts can detect changes faster by applying the abovementioned strategies.
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Table 6. The values of OC ARL under changes in the mean of the first quality characteristic and the second quality characteristic for p=2 , n=5 taking into
account the existence of measurement errors and auto-correlation structure(ARL, = 200)

0 01 0.2 03 04 05 06 07 08 09 10
£ g | No measurement errors 200 160.33 99.60 60.34 3429 1971 1141 760 503 340 252
55 m=2, UCL=7.48
28 | =01 ucL=8 200 17891 12692 8033 5247 3608 2026 1263 882 590 4.48
%i; =05, UCL= 9.57 200 193.63 15896 12532 8927 6392 4606 3398 2520 1832 1344
25 | m=15,0 =05 ucL=9.6 200 18851 152.68 12232 8626 6045 4422 3135 2192 1685 1245
£% | 3jumps® =05, ucL=0.545 200 176.15 12326 8750 5578 3512 2319 1571 1026 7.18 524
©" | m=15, 3 jumps » =0.5 , UcL=9.4 200 17221 117.48 8013 51.03 3016 1893 1242 810 579 4.16
2g | Nomeasurement errors 200 15415 9165 5180 2571 1508 899 571 404 294 213
£E |m2uci=148
58 | #=01,ucL=8 200 160.82 11151 6938 4031 2474 1537 1037 7.17 502 357
Eé ®=0.5,UCL= 9.57 200 183.22 152.79 10528 7820 5510 4051 27.06 1952 1454 10.37
£ | m=15,4=05, ucL=9.6 200 17853 14756 9822 7332 5165 37.87 2532 1621 1272 9.32
gé’ 3 jumps, ® =0.5 , UCL=0.545 200 160.84 11417 7174 4407 2966 1805 1152 774 565 427
G & |m=15,3jumps, ®=05 .ucL=0.4 200 158.95 109.15 6879 3795 2358 1483 958 659 462 354
2 No measurement errors 200 13228 5953 2679 1334 718 418 279 204 150 129
g 2 m=2, UCL=7.48
s 38 | #=0.1,ucL=8 200 149.32 9390 4422 2315 1457 837 515 344 240 199
EEZ | 2-05,ucL=957 200 18054 12378 8519 5507 3290 2247 1510 1015 750 526
238 | m=15,0 =05, ucL=9.6 200 17645 11928 8084 5125 2978 1928 1332 928 629 454
855 | 3jumps, 0 =0.5, UCL=0.545 200 155.44 99.40 5371 3039 1706 1018 620 429 314 221
5% | m=15,3jumps, ®=0.5 ,UcL=0.4 200 148.98 9295 4255 2281 1245 729 469 334 226 183
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5-4- Managerial Insights

As the results of numerical example showed, the existence of the auto-correlation and measurement errors
lead to poor performance of the Hotelling’s T? control chart in terms of ARL1. Hence, it is important to
address these effects through suitable strategies such as multiple measurements for measurement errors and
jump strategy for auto-correlation.
For this aim, the proposed Hotelling’s T? control chart should be applied in practice to overcome the
negative effects of both measurement errors and auto-correlation, through the following steps:

1. Estimate the model by which the process works.

2. Obtaina control limit using simulation.

3. Plot the Hotelling’s T?statistics on the control chart.

4. Implement the proposed strategies (Multiple measurements and jump strategy).

6- Case study
For industrial application, we adopt the case presented by Aparisi (1996). In this case, a mechanical part
with three main quality characteristics is available as it is shown in figure 4. The quality characteristics are

the width Xi, the inner diameter Xz and the length Xs. Beside the in-control mean vector p,and the
variance-covariance matrix X, of the quality characteristics which are used in Aparisi (1996), we also
assume the following variance-covariance matrix of measurements errors X

0.2 0.054 0.162 016 0 O
n, =(7,315),x,=|0.054 0.09 0.042|,X =|0 0.05 0].
0.162 0.042 0.31 0 0 0.25

X3

=3

|-—— X, =7 =

Fig 4. A mechanical part with three quality characteristics (Aparisi , 1996)
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Fig 5. The proposed Hotteling’s T? control chart

Based on the following in-control model and through simulation runs, UCL is set equal to 10.04 to achieve
in-control ARL of roughly 200 where €, ;,,, is the independent error term of k™ quality characteristic with

the mean zero and known variance and AR(1) model between observations within a sample for each quality
characteristic is assumed. Note that ¢ = 0.5 is considered.

{xi,j,k — o = PK (ke — Moy )+ &1 =123, ]=12,..,n,k=12,..., p,

Yijkn =X ik T jxne

After generating 15 in-control samples from the above in-control model, a shift equals to 0.5 is imposed
in the process mean values of all three quality characteristics from sample #16. As it can be seen in figure
5, the proposed Hotteling’s T? chart was able to find an out-of-control alarm in sample #17. After finding
an out-of-control situation, quality engineers should investigate the source of variation, detect the assignable
cause and eliminate it.

7- Conclusion and a suggestion for future research

In this paper, we considered a multivariate normal process and evaluated the effect of the auto-correlation
and measurement errors on the IC and OC ARL performance of Hotelling’s T? control charts. In particular,
the first-order autoregressive time series model was used to model the auto-correlation structure. Also, to
reduce the effect of measurement errors, multiple measurements method was used. Moreover, the jump
strategy was applied to address the auto-correlation effect. Then, a numerical example was presented to
appraise the performance of control chart influenced by the measurement errors and auto-correlation
structure. The results of simulation studies, in terms of ARL criterion, demonstrated that the performance
of the Hotelling’s T? control chart is affected by measurement errors as well as auto-correlation structure.
The multiple measurements as well as jumping strategy were used to improve the negative effects of
measurement errors and auto-correlation structure on the performance of the Hotelling’s T2 control chart,
respectively. Future research might be proposing an adaptive multivariate control charts by discussing
measurement errors and auto-correlation simultaneously.
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Appendix A: The proof for equation (20)

Here we will provide the detailed proof of Equation (20). Let us consider auto-correlation and
measurement errors simultaneously. So we have;

{Xi,j,k — Hox :¢(Xi,(i—1),k _:uo,k)"'gi,j,kvi =123,.., J =12,.,nk=12,., P
Yiiikn =Xk € ik

The sample mean for h" quality characteristic at time i, Y, , is equal to:

yih Zz yukh (quh + Zzeukh) h 1 2

j=1 k=1 j=1 k=1
Also, sample means of h" quality characteristic is
Y = Z Yin = (Zz Xijn + Zzzeukh)
i i i j=1 k=1

The covariance between sample means of h™ and 1™ quality characteristics is as follows:

COV(yh, yl) COV( (zzxuh + Zzz |th) (zzxul + Zzzeukl ))

i j=1 k=1 ij=l i j=1 k=1

=— COV(ZZ Xijn zz Xiji )+— COV(ZZZeukh : Zzze”k' )

i j=1 i j=1 i j=1 k=1 i j=1 k=1
Now, the covariance between sample means of h™ and I™ quality characteristics is calculated in two parts.

In the first part, the covariance between the actual value of the j" observation in h" and 1™ quality

characteristics at time i, X;;, and X, , is calculated which are modeled by the AR(1) model and the auto-

correlation parameters are ¢ and ¢, respectively. Hence, the calculations are such that inn states,
the lag of the observations is equal to zero. In this case, the covariance between them is equal to
no, . (4%0 .In (n—1)states, the lag of the observations is equal to one, in this case, the covariance
between them is equal to (n-1)o, , ¢4 and so on. In (n—(n-1))state the lag of the observations
is equal to (n—1) where in this case, the covariance between them is equal to
(n—(n —1))O'XM¢§:'_144”_1. As a result, sum of the above expressions is the value calculated from the
first part, which leads to

T (0 (=Dl + (V=D + (=3 +.or (= (D)) ).
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In the second part, the covariance of e;,, and e, is calculated. Since the summationison k and j,
there are mn states that each of which has a covariance equal to 2. Then, as a result the

covariance of the second part is equal to

i><mncov(e.. e. ):ixmnx(jz _N e
m2 ijkh * “ijkl m2 m m m

Hence, the covariance in Equation (20) can be calculated by:

(o}

S+ (1-Dheh + (-2 + (=R .t (1= (=D ) + o

cov(Yy, Y1) =
n
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