
Discrete Applied Mathematics 158 (2010) 876–881

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Szeged index, edge Szeged index, and semi-star trees

Ardeshir Dolati ∗, Imaneh Motevalian, Akram Ehyaee
Department of Mathematics, Shahed University, Tehran, PO Box: 18151-159, Iran

a r t i c l e i n f o

Article history:

Received 4 July 2009

Received in revised form 17 January 2010

Accepted 18 January 2010

Available online 18 February 2010

Keywords:

Semi-star tree

Szeged index

Edge Szeged index

Palm semi-star tree

Uniform semi-star tree

a b s t r a c t

A semi-star tree is a star tree whose some edges may be replaced by paths of length more

than one. In this paper we present some increasing and decreasing transformations for

Szeged index of the semi-star trees. Then we introduce palm semi-star tree and uniform

semi-star tree and show that they are extremal with respect to the Szeged index and edge

Szeged index. In addition, we investigate the relation between the Szeged index and edge

Szeged index for all trees.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In theoretical chemistry molecular structure descriptors – also called topological indices – are used to understand
physico-chemical properties of chemical compounds. By now there exist a lot of different types of such indiceswhich capture
different aspects of the molecular graphs associated with the molecules considered.

A topological index of a graph G is a numerical invariant of G. The Wiener index is the first topological index defined by
Wiener [15]. Mathematical properties and chemical applications of the Wiener index have been intensively studied in the
past 30 years [1,2,6,4].

The Szeged index is another topological index introduced by Ivan Gutman [7]. In [12] the vertex PI index and Szeged
index of bridge graphs have been determined [13]. In [11], the edge Szeged index of the Cartesian product of graphs has
been computed. In [10] a matrix method to obtain exact formulae for computing the Szeged index of join and composition
of graphs has been applied. In [2] an introduction to the theory of the Wiener index and a systematic survey of various
Wiener-type topological indices and their interrelations have been provided. In [14] some extensions of the Szeged index,
which account for fragments and their chemical nature as well as for their 3D geometry have been presented. For more
information about the Szeged index and its mathematical properties one should refer the articles [3,5,9]. In this paper, we
investigate the Szeged index and edge Szeged index on semi-star trees. The rest of this paper is organized as follows. After
some preliminaries in Section 2, we present an increasing and a decreasing transformation in Section 3. In Section 4, we find
the lower bound and the upper bound of the Szeged index and edge Szeged index of semi-star trees in SSmn . In addition, we
characterize the semi-star trees in SSmn whose indices are equal to the mentioned bounds.

2. Preliminaries

In this section, we introduce some definitions and notations which we use throughout this paper. Let G = (V (G), E(G))
be a simple connected graph. Suppose that x and y are two vertices of G, by d(x, y) we mean the number of edges of the
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Fig. 1. Transformation.

shortest path connecting x and y. We call two vertices u and v to be neighbors if they are the endpoints of an edge e and
we denote it by e = uv. The degree of vertex v is the number of its neighbor vertices. Suppose that e = uv is an edge of
G connecting the vertices u and v, the distance of e to a vertex w ∈ V (G) is the minimum of the distances of its ends to w,
that means d(e, w) := min{d(w, u), d(w, v)}. Suppose that W ⊆ V (G) by d(e,W ) we mean min{d(e, w) : w ∈ W }. The
number of vertices of G whose distance to the vertex u is smaller than the distance to the vertex v is denoted by nu(e). We
also denote the number of edges of G whose distance to the vertex u is smaller than the distance to the vertex v by mu(e).
In the other words, nu(e) := |{x ∈ V (G)|d(x, u) < d(x, v)}| and mu(e) := |{f ∈ E(G)|d(f , u) < d(f , v)}|. The vertices and
the edges of G with the same distance to u and v are not counted. The Szeged index of the graph G is defined as

Sz(G) =
∑

e=uv∈E

nu(e)nv(e).

The edge Szeged index of the graph G is defined as

Sze(G) =
∑

e=uv∈E

mu(e)mv(e).

A path in a graph is a sequence of distinct vertices P : v0v1 · · · vk (k ≥ 1), such that vivi+1 ∈ E for each i = 0, . . . , k − 1. A
leaf is a vertex of degree one.

A semi-star tree is a star tree whose some edges may be replaced by paths of length more than one. By SSmn we mean the
set of semi-stars of order n with maximum degree m (m ≥ 3). Obviously each tree T of SSmn has only one vertex of degree
m. We call this vertex the center of T . If a path of a semi-star tree connects the center vertex to a leaf, we call it a pendant
path. Let T be semi-star tree in SSmn . We call it a uniform semi-star tree if the length of its pendant paths are equal to

⌊

n−1
m

⌋

or
⌈

n−1
m

⌉

. We denote it by Un,m and we call it a palm semi-star tree if it has a pendant path of length n − m. We denote it by
Pn,m. Obviously Pn,m has m − 1 pendant paths of length one.

In this paper, we investigate the Szeged index on semi-star trees. We shall present some increasing and decreasing
transformations of Szeged index and edge Szeged index for semi-star trees. Then we shall find the upper bound and lower
bound of Szeged index and edge Szeged index of semi-star trees in SSmn . Finally, we characterize the extremal semi-star trees
in SSmn with respect to the Szeged index and edge Szeged index.

Let G1 = (V (G1), E(G1)) and G2 = (V (G2), E(G2)) be two graphs such that V (G1) ∩ V (G2) = ∅. Suppose that u ∈ V (G1)
and v ∈ V (G2). By G1 ⊲ u = v ⊳ G2 we mean the obtained graph of identifying u and v. Suppose that v is a vertex of path
P : v1 · · · vr . We define dl(v, P) := min{d(v, v1), d(v, vr)} and call it the leaf distance of v with respect to P .

3. Transformations

In this section, we present a lemma that plays an important role in the main results of this paper. we may call this
lemma as an increasing or a decreasing transformation, according to the leaf distance of the selected vertices of path for
identifying.

Lemma 1. Let G = (V , E) be a connected graph and u ∈ V (G). Suppose that Pr be a non-trivial path graph, whose vertex set is

disjoint from V (G). Let v and w be two distinct vertices of Pr . If dl(v, Pr) < dl(w, Pr) then Sz(G ⊲ u = v ⊳ Pr) > Sz(G ⊲ u =
w ⊳ Pr) (see Fig. 1).

Proof. Let us denote the difference between dl(v, Pr) and dl(w, Pr) by t . We assume without loss of generality that

dl(v, Pr) = d(v, v1) = k − t (1)

and

dl(w, Pr) = d(w, v1) = k. (2)

By the above assumptions, v = vk−t and w = vk. Obviously,
∑

uv∈E(G)

nu(e|G1)nv(e|G1) =
∑

uv∈E(G)

nu(e|G2)nv(e|G2),
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we denote this value by x. Suppose that |V (G − u)| = m. Therefore,

Szv(G ⊲ u = w ⊳ Pr) = 1 × (r + m − 1) + 2(r + m − 2) + · · · + (k − t − 1)(r − k + t + m + 1)
+ (k − t)(r − k + t + m) + (k − t + 1)(r − k + m + t − 1) + · · ·
+ (k − 1)(r − k + m + 1) + (k + m)(r − k) + · · · + (r − 1 + m) × 1 + x.

Szv(G ⊲ u = v ⊳ Pr) = 1 × (r + m − 1) + 2(r + m − 2) + · · · + (k − t − 1)(r − k + t + m + 1)
+ (k − t + m)(r − k + t) + (k − t + 1 + m)(r − k + t − 1) + · · ·
+ (k + m − 1)(r − k + 1) + (k + m)(r − k) + · · · + (r − 1 + m) × 1 + x.

Szv(G ⊲ u = v ⊳ Pr) − Szv(G ⊲ u = w ⊳ Pr)

= (k − t + m)(r − k + t) + (k − t + m + 1)(r − k + t − 1) + · · · + (k + m − 1)(r − k + 1)

− [(k − t)(r − k + t + m) + (k − t + 1)(r − k + m + t − 1) + · · · + (k − 1)(r − k + m + 1)]

=

t−1
∑

i=0

(k − t + i + m)(r − k + t − i) −

t−1
∑

i=0

(k − t + i)(r − k + t − i + m)

=

t−i
∑

i=0

((k − t + i + m)(r − k + t − i) − (k − t + i)(r − k + t − i + m)). (3)

By assumptions (1), (2), we have

r − k ≥ k − 1. (4)

Now if 0 ≤ i ≤ t − 1 we conclude that:

r − k + t ≥ k − 1 + t ≥ k + i ⇒

r − k + t − i ≥ k. (5)

According to the different values of i (0 ≤ i ≤ t − 1), we have at most four cases for the parentheses of Relation (3) which
are listed below. For each case we test if it is valid.

Case 1 k − t + m + i ≤ r − k + t − i and k − t + i ≤ r − k + m + t − i:

For the second inequality, if k− t + i = r − k+m+ t − i thenm ≤ −m, and this is a contradiction. Therefore the second
inequality is always strict.

Case 2 k − t + i + m ≥ r − k + t − i and k − t + i ≤ r − k + t − i + m:

The last inequality equivalent to k − t + i − m ≤ r − k + t − i. Therefore, by this inequality and the first one we have

k − t + i − m ≤ r − k + t − i ≤ k − t + i + m.

Case 3 k − t + i + m ≥ r − k + t − i and k − t + i ≥ r − k + t − i + m:

Therefore, in this casewe have r−k+ t− i ≤ k− t+ i−m. By this fact and Inequality (5), we conclude that k ≤ k−m−1.
Sincem > 0 this is a contradiction. That means this case never occur.

Case 4 k − t + i + m ≤ r − k + t − i and k − t + i ≥ r − k + t − i + m:

Therefore, we have k − t + i + m ≤ r − k + t − i ≤ k − t + i − m, or m ≤ −m. This case is also a contradiction. That
means this case never occur too.

Note that, the product of two integer variables with given their sum increases if their difference decreases.

If we show that in the valid Cases 1 and 2 the value of the Summation (3) is greater than zero. To this end, we show that
each termof summation is greater than zero. The proof is completed. It is sufficient to show that (k−t+i+m)(r−k+t−i) >
(k − t + i)(r − k + t − i + m) for each i = 0, . . . , t − 1.

On the other hand, the sum of two parentheses in the left side of this inequality is equal to the sum of two parentheses
in the right side is equal to r + m. Therefore it is sufficient to show that the difference between two left side parentheses is
smaller than difference between two right side parentheses. In the following, it is done for Cases 1 and 2, separately.

We now turn to Case 1:

(r − k + t − i) − (k − t + i + m) = r − 2k + 2t − 2i − m (6)

(r − k + t − i + m) − (k − t + i) = r − 2k + 2t − 2i + m. (7)

By the above argument, for completion the proof in this case, we only need to show that r − 2k + 2t − 2i − m <
r − 2k + 2t − 2i + m, which is clear.

We now turn to Case 2:

(k − t + i + m) − (r − k + t − i) = m − (r − 2k + 2t − 2i) (8)

(r − k + t − i + m) − (k − t + i) = m + (r − 2k + 2t − 2i). (9)



A. Dolati et al. / Discrete Applied Mathematics 158 (2010) 876–881 879

Fig. 2. A semi-star tree whose ith pendant path (i = 1, . . . ,m) is a path of length ri = ki − ji + 1. In Un,m the length of ith pendant path ri =
⌊

n−1
m

⌋

or
⌈

n−1
m

⌉

for i = 1, . . . ,m.

The proof is also completed in this case by showing thatm− (r +2t −2k−2i) < m+ (r +2t −2k−2i). From (4) we have:

r − 2k ≥ −1. (10)

Since 0 ≤ i ≤ t − 1 it follows that:

2t − 2i ≥ 2. (11)

From (10) and (11) we have r − 2k+ 2t − 2i ≥ 1. Therefore,m− (r − 2k+ 2t − 2i) < m+ (r − 2k+ 2t − 2i). That means
Sz(G ⊲ u = v ⊳ Pr) > Sz(G ⊲ u = w ⊳ Pr). �

Corollary 1. Let G = (V , E) be a connected graph and u ∈ V (G). If Pr : v1, . . . , vr is a path graph whose vertex set is disjoint

from V (G) then for each k = 1, . . . , r, Sz(G ⊲ u = v⌈ r
2⌉

⊳ Pr) ≤ Sz(G ⊲ u = vk ⊳ Pr).

4. Extremal semi-star trees and the bounds

In this section, we find the lower bound and the upper bound of the Szeged index and edge Szeged index of semi-star
trees in SSmn . In addition, we characterize the semi-star trees in SSmn whose indices are equal to the mentioned bounds.

Szeged index

By the following lemma one can compute the Szeged index of a semi-star tree.

Lemma 2. If T is a semi-star in SSmn whose kth pendant path (k = 1, . . . ,m) is a path of length rk then

Sz(T ) =

m
∑

k=1

rk
∑

i=1

i(n − i).

By the following theorem we characterize the semi-star tree in SSmn with the smallest Szeged index. We show that Un,m

is the only smallest tree in SSmn with respect to the Szeged index (see Fig. 2).

Theorem 1. If T is a semi-star in SSmn then Sz(T ) ≥ Sz(Un,m) with equality holding if and only if T ∼= Un,m.

Proof. For the sake of a contradiction we assume that T 6= Un,m is the smallest semi-star tree in SSmn with respect to the
Szeged index whose center vertex is v.

It follows immediately that there exist two pendant paths Q ′ : v = u1u2 · · · ur and Q ′′ : v = w1w2 · · · ws in T , where
r − s > 1. Let P ′ = Q ′ − v, P ′′ = Q ′′ − v and let G = T − {u2, u3, . . . , ur , w2, w3, . . . , ws}.

We add a new vertex w (w 6∈ V (T )) and two new edges wu2 and ww2. In this case, (P ′ ∪ P ′′ + w) + {wu2, ww2} is the
path wsws−1 · · · w2wu2u3 · · · ur which we denote it by P . Obviously, V (P) ∩ V (G) = ∅ and T = G ⊲ v = w ⊳ P and by
Lemma 1, Sz(T ) > Sz(G ⊲ v = u2 ⊳ P). This is a contradiction . �

Corollary 2. If T is a semi-star in SSmn then

Sz(T ) ≥ 2m/3

⌊

n − 1

m

⌋3

+ 1/2(−nm + 3m − 2n + 2)

⌊

n − 1

m

⌋2

+ 1/6(6n2 − 3mn + 5m − 18n + 12)

⌊

n − 1

m

⌋

+ (n − 1)2

with equality holding if and only if T ∼= Un,m.
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m-1

n-m+1

Fig. 3. The palm tree Pn,m .

Proof. By Lemma 2 one can show that

Sz(Un,m) = 2m/3

⌊

n − 1

m

⌋3

+ 1/2(−nm + 3m − 2n + 2)

⌊

n − 1

m

⌋2

+ 1/6(6n2 − 3mn + 5m − 18n + 12)

⌊

n − 1

m

⌋

+ (n − 1)2

then according to Theorem 1 the claim follows. �

By the following theorem we characterize the semi-star tree in SSmn with the largest Szeged index. We show that Pn,m is
the only largest tree in SSmn with respect to the Szeged index (see Fig. 3).

Theorem 2. If T is a semi-star in SSmn then Sz(T ) ≤ Sz(Pn,m) with equality holding if and only if T ∼= Pn,m.

Proof. For the sake of a contradictionwe assume that T 6= Pn,m is the largest semi-star tree in SSmn with respect to the Szeged
index whose center vertex is v.

It follows immediately that there exist two pendant paths Q ′ : v = u1u2 · · · ur and Q ′′ : v = w1w2 · · · ws in
T , where r, s ≥ 2. Let us assume without loss of generality that r ≤ s. Let P ′ = Q ′ − v, P ′′ = Q ′′ − v and let
G1 = T − {u2, u3, . . . , ur , w2, w3, . . . , ws}.

We add a new vertex w(w 6∈ V (T )) and two new edges wu2 and ww2. In this case, (P ′ ∪ P ′′ + w) + {wu2, ww2} is the
path wsws−1 · · · w2wu2u3 · · · ur which we denote it by P . Obviously, V (P) ∩ V (G) = ∅ and T = G ⊲ v = w ⊳ P and by
Lemma 1, Sz(T ) < Sz(G ⊲ v = u2 ⊳ P). This is a contradiction. �

Corollary 3. If T is a semi-star in SSmn then

Sz(T ) ≤ 1/6(2m3 + n3 − 3m2n − 3m2 + 9mn − 5m − 7n + 6)

with equality holding if and only if T ∼= Pn,m.

Proof. By Lemma 2 one can show that

Sz(Pn,m) = 1/6(2m3 + n3 − 3m2n − 3m2 + 9mn − 5m − 7n + 6)

then according to Theorem 2 the claim follows. �

Edge Szeged index

In the rest of this section we characterize the extremal semi-star trees with respect to the edge Szeged index. Moreover,
we determine the lower bound and the upper bound of the edge Szeged index of semi-star trees.

Remark 1 ([8]). Assume that T is a tree, for any edge e = (u, v) of E(T ), mu(e|T ) = nu(e|T ) − 1. Therefore

Sze(T ) =
∑

e=uv∈E(T )

[nu(e|T ) − 1][nv(e|T ) − 1].

In the following lemma, we show that the difference between Sz(T ) and Sze(T ) is fixed for every T in SSmn .

Lemma 3. If T is a tree, then Sz(T ) − Sze(T ) = (n − 1)2.

Proof. There are n − 1 edges in E(T ). Therefore by Remark 1, we have

Sz(T ) − Sze(T ) =
∑

e=uv∈E(T )

nu(e|T )nv(e|T ) −
∑

e=uv∈E(T )

[nu(e|T ) − 1][nv(e|T ) − 1]

=
∑

e=uv∈E(T )

(nu(e|T ) + nv(e|T ) − 1)

=
∑

e∈E(T )

(n − 1) = (n − 1)(n − 1) = (n − 1)2. �
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The extremal semi-star trees with respect to the edge Szeged index are characterized by the following theorems.

Theorem 3. If T is a semi-star in SSmn then

Sze(T ) ≥ 2m/3

⌊

n − 1

m

⌋3

+ 1/2(−nm + 3m − 2n + 2)

⌊

n − 1

m

⌋2

+ 1/6(6n2 − 3mn + 5m − 18n + 12)

⌊

n − 1

m

⌋

with equality holding if and only if T ∼= Un,m.

Proof. By Theorem 1 and its corollary and Lemma 3 the assertion follows. �

Theorem 4. If T is a semi-star in SSmn then

Sze(T ) ≤ 1/6(2m3 + n3 − 3m2n − 3m2 + 9mn − 5m − 7n + 6) − (n − 1)2

with equality holding if and only if T ∼= Pn,m.

Proof. By Theorem 2 and its corollary and Lemma 3 the assertion follows. �
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