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Abstract — This paper proposes a two-level suboptimal control using fuzzy prediction to control large-
scale systems. A class of large-scale linear systems composed of interconnected subsystems is
investigated. The overall control problem that is posed as a minimization of overall objective function,
which is considered to be of quadratic form, is reduced to some optimization problems of lower order
(sub) systems. The control input of each subsystem is composed of two signals. The first represents the
local control signal (first level) and the second is the prediction signal (second level). In fact, the second
signal is the prediction of interaction of other subsystems. It applies to each subsystem at every specified
i sample time (coordination sample times). The fuzzy logic theory is used for interaction prediction, where
} the prediction signal is constructed by a set of fuzzy sets with respect to state variables in an appropriate
’ inference engine manner. The number of fuzzy sets and their interval deviations vary with time. Finally,
!

the proposed method is applied to a three-area power system for designing a power system stabilizer
(PSS).
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1. INTRODUCTION

Hierarchical structures in large-scale systems such as complex industrial systems, management

systems and power systems are theoretically investigated by Mesarovic et al. [1]. The development of
\ ! hierarchical control has grown by leaps and bounds in recent decades ([2-5]). This paper proposes a
two-level suboptimal control using fuzzy prediction to control large-scale systems. It is a special case
of multilevel control where the complexity of large-scale control problems can be relaxed by solving
a family of sub-problems that are of smaller dimensions and are more easily handled. Most of the
above hierarchical control schemes do not have the capability of on-line implementation. The control
scheme used in this paper can be applied to the whole system in an on-line fashion. Because the fuzzy
logic theory can be used to coordinate the large-scale systems [6], this paper employs the fuzzy logic
theory to predict the interactions at the second level [7-10].
! Consider the following large-scale linear system composed of N interconnected subsystems of the

form
%, ()= 4x,(0) + B, () +.2,(0)

? 0= Z4x,0 =1..N (1)
J#
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where, ;e R” x,,z. € R™ arg respectively the control vector, state vector and interaction input signal,
and A, B and A, are matrices of appropriate dimensions.
Assume that the overall performance index is of a quadratic form

7= (ol ol ®

where Q and R are symmetric matrices of appropriate dimensions. The main problerh can be stated as
follows: ' '
Find a state feedback control law such that the objective function J be minimized subject to (1), i.e.;

min = [*(koff + ]2 Ja
St X, (1) = 4;x; (t) + Bu; (1) + z,(¢) (3)

N
z,(t)= ZA;x,(0) Jori=1..N.

J#i
2. DECOMPOSITION

Write the Lagrangian of overall optimization problem (3) as

Lz{ J:E”x"“’"fz% bl <007 (0-28,,4,5,0)
: 4)

+P() (%) + Apx; () + By () + 2,(1)) Jdt}

where p,(1) (i=1, 2, .., N) is Lagrangian multiplier vector and  B(¢) (=1, 2, .. N) is the adjoint
vector. The Lagrangian in (4) can be decomposed as the sum of N sub-Lagrangians, L; , i. ¢.

By I:B""f ol + _21-"”!' Ol + 2.6 2 -"J%_p O 4,%,(6) .
+P (O (= %) + 4,%,(t) + Bu, () + 2, ®) }4:

fori=1, 2, .., N. It is clear that the vectors z; (t) and p, (l) play the coupling role among the N sub-
Lagrangians. At this moment assume that these vectors represent constant vectors; therefore all the N
sub-Lagrangian problems can be solved independently. By defining the Hamiltonian of the ith
subsystem as - '

" ol o
H, = %”x,. (r)]|é + -;—Ilu,- (‘)"fg +2i07 2,00~ Zp,O7 4,x,0+ P) (= £, + A%, (1) + B, (t) + 2, (1)) (6)
; J=i

The necessary conditions for the solution to be optimal imply that

. T N 7T
FM)=-0,;x,(t)- 4" P,(t) + XA, p,(0)
o @)

u;(r)= ‘R:'_IB:'TP;‘(I)

Iranian Journal of Science & T echnology, Volume 27, Number B4 Autumn 2003



Two-level fuzzy control of large-scale... 813

The above problem is similar to a tracking problem in optimal control theory. Assume that the
adjoint vector P.(f) is of the following form

F()=Kx;(1)+g; t))
By substituting (7) into (8), we have
-KA -A"K, +K,BR'B'K, -0, =0 (%a)
- (A-T —K-B-R,-_IB-T)g- - K..z.(r)+ %A Tp()=0 (9b)
i i~ i i b | ot Ji )

3. FIRST AND SECOND LEVEL PROBLEM FORMULATION

As one may see in the last section, the control input of the ith subsystem is

 wu0=-R7BTKx®+g) ~(10)
where g; and K; come from (9). The necessary conditions for the optimality also imply that
N
7, (=40,  pO=-F@O)=-(K;x,()+g,) a1
J#i .

In [2, 3], the bounds [0, T] were considered for the integral of cost function (2); g was assumed to
vary with time, then an off-line control procedure was proposed. It should be noted that if g were
varying with time then Eq. (9) would be rewritten as

&0=-4 -KBRBT g, (0-K,z,00+ £4,7 0,0 (12)
J#i

Since the — (AT-1F = K,-BJQ[’BJ) is an unstable matrix, using the above equation in the on-line control
structure will cause the overall instability. Therefore, in this paper g is considered fixed for each
coordination sample time and Eq. (9b) is used in an on-line control structure. Equation (9b) can be
simplified as follows:

By substituting z,(#) and p,(t) from (11) into (9b), we have

N N
(A,.T - K,B,R, lB,.T)g,. +XK, J'_E_,«i,ﬂ:} )+ JE_A. j,T(K 50+ g ):- 0

and then

N N N
(A,.T -K;B,R'B k,. +K, SAx, )+ 24,7 g, + XA, K;x,()=0, i=I, .., N
J#i J#i . J#i

By combining the above équations, we may derive the following equation

(4-BRBTK) g+ (47K + K4, ) =0 (13)
where
A Mg ue g 0 Ay . Am; 8 x|
e O e il NP Ll I L
Avi Ayz - Ay Ay Ayz - O 4% e
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K =diag{K,} and B =diag{B,}
From the above it is easily seen that vector g is related to the state vector x as
g=--BRBTK) (47K + K4, ) (14)

It is clear that g is dependent on time varying state vector x, however it is assumed that g is fixed
in ach coordination sample time. It is not practical to implement Eq. (14) because x is not available.
Therefore the prediction of x , % , is used in (14), i. €. ;

g=-(4-BrBK) (4,7 K + Ka, ) (15)

So prediction of x is done at the second level, then vector g is constructed and will be sent to the local
units. Local controllers generate the control input of each subsystem by Eq. (10). This structure is
shown in Fig. 1.

Second Level; Fuzzy Predictor

2 Z 5 Zy

g, g, 9y
i Local Local Local

First Level: Control 1 Control 2| ™ ® ® | Control N
u,| % u,| %2 u,| X~
W
Large_Scale System

Fig. 1. Hierarchical control structure of the proposed scheme

4. FUZZY PREDICTION

Assume that x, is the state vector at time 7. The goal is to find a fuzzy-based prediction X, from x,
and x,, . Fori=-k, .., 0, ..,k let the fuzzy terms E, , F, and G, be considered for variables x, ,
X,y and Xx,,,, respectively with the following triangular membership functions shown in Fig. 2.

B ®
'y
i>zm\ X /E><Ekv
ks=-L 2 -5 s 2s ks=L X

Fig. 2. Membership functions of x,
Let x; and x,_; belong to the interval [-L L]. If we assume that the values of vector x vary
approximately linearly, we may estimate of x as
X =2% - X,

-

In the fuzzy case, if x, belongs to E; and x, , belongs to F; then x,,, will belong to G,,_, . The
areas R, to Ry with respect to x, and x,_, may be partitioned as shown in Fig. 3.
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Fig 3. Different areas with respect to x, and x,_,
a) Area R,

In this area it is obvious that any x, (or X,_, ) intersects with two fuzzy sets E, and E,,, (or F, and
F,,, ). Therefore only the following four rules are used in this area

LIf x is E,, and x,_, is F,,, then x,, is Gy ju
2.If x,is E,, and x,_, is F; then x,,, is G,_;,,
3.If x,is E and x,_, is F,, then x,,, is G,

j+1 i—j—1
4.1f x,is E, and x,, is F; then x,,, is Gy,

For convenience, consider two functions f, and f, as follows:
fl(x,i)=£+l—i and fz(x,i)=—£+l+i
s s

If the membership value of x, to E; is equal to 1, and the membership value of x,_, to F, is equal to
H,, then the corresponding output fuzzy set, G,,_ j» Will be multiplied by @ =min(y;,4,) and the
prediction is done by defuzzification of the overall output fuzzy set. Let

) =min{f, (x,,i "'Ilfl(xr-bf"'l)} aid - B =min{f, (x,,1), £,(x,_y, j + D}
oy =min{f1(x,,z‘+l),f2 (x,_l,j)} Q4 =min{f2 (x,,i), S (xr-lsf)}

then the output fuzzy set G,,, becomes
Gour = 01Gyi 4 @ @, Gyy 293Gy ;1 Gy,

- where @ represents the sum operation in fuzzy sets. After applying the center of gravity
defuzzification to the fuzzy set G,,,, we will have

_ a, (2 — j +1)s? +a,(2i - j+2)s? +a;(2i - j - 1)s? +a,(2i - j)s?

Xt
5+ 08 + a8 +ays
o a, +2a, -«
=|2i—j+—2L 23
al+a2+a3+a4
b) Other areas

Similar to section a the following results can be derived for other areas

elnarea R,: % =2L-x,,
elnarcaR,: «x,,=L

elnarea Ry :  x,,,=-L+2x,
elnarca R,: x,,=-3L

e Inarea R; : X =—2L+2x,,
elnareaR;: x,,,=-L
elnara R,: x,,,=L+2x,
elnareaR;: x,,,=3L
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Therefore, the fuzzy prediction of x,,, is obtained from the above equations. As stated before, for
i=-k,.,0,..k, the fuzzy terms E,, F, and G, are considered for variables x,, x, , and X007
respectively. k is an arbitrary number which specifies the fuzzy sets, for example k=4 specifies the
fuzzy sets of zero, small, medium, large, and very large. Also, the value of L is considered as a
multiplicative of x, (ie., L =ox,, where « is an arbitrary scalar, for example a =12), this
consideration reduces the error of prediction. The reason for the error reduction can be stated as
follows. If the value of L is very high (with respect to x, and x,_,) then the prediction error will
increase because the variation of x,, with respect to fuzzy set domains is very low and its effect will
not be observed for error reduction. Note that the above fuzzy inference is applied independently to
each element of vector x. '

In addition to the above rules, the following two improving rules are considered as follows:

R1: If 'xt| <e and |x,_|] <g then x,,, is0 :

R2: If "x: ‘xr—1||<71 then x.; =y,

Rule R1 prevents the prediction of states from oscillation about zefo when the system tends to its
steady state (e is an arbitrary small positive real number), and rule R2 conducts the system to its

VYveee UMy U W T ALE G UVOWAGLIL 1aVIWUL [ WU UG DLALG VAaLlauIey,

& SIMULATION RESULTS

The proposed scheme is used to design a PSS for a three-area power systcm The specifications of
each machine are listed in Table 1.

Table 1. Power system data

Machine 1 Machine 2 Machine 3 Parameters

0.1 0.3 0.2 * | Damping constant D

64.56 55.2 70.46 Inertia constant M (J.s)

100 17100 100 AVR gain

0.02 0.02 0.02 AVR time constant (s)

0.175 ] 0.3030 - ' 0.1675 - __| Synchronous reactance x,; (J.s)
0.044 0.056 0.0208 Transient reactance x); (pu)
0.1023 | 0.282 0.1675 Synchronous reactance x, (pu)
0.2969 [ 0.1969 - 10195 - | Transient reactance x, (pu)
6.1 535 9 Transient time constant T}, (s)
0.01 0.01 0.01 Governor time constant 7, (s)
0.01 0.01 0.01 Governor time constant 7 (s)

Network admittance matrix is considered as [11] in the form
0.846-2.988; 0.287 +1.513j 0.210+1.226j
Y ={0.287+1513j 0.420-2.724j 0.213+1.088;
0.210+1.226; 0.213+1.088j. 0.277 - 2.368)

The state variables of each machine are x, = Aw =A3 , = Ae;, x, equal to output
deviation of AVR , and x; and x, represent the state vanables of the governor Our goal is the design
of PSS where its inputs are frequency deviation (A® ) of each machine and its outputs are control
signals into governor and AVR. The system is lincarized as suggested by Yu [12]. Then the proposed
two level controller is constructed as described in the last sections.
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Two controllers are also used for comparison to the proposed method:

1. Centralized PSS (using optimal control.for overall system) [13, 14]
2. Decentralized PSS (using optimal control for each isolated subsystem)[13]

The Figs. 4 to 6 compare the torque angle deviations for three kinds of PSS for the following initial
state X,

X, =[-.03 .05 -.02 .020 -.02 -.05-.02 .05 .05 .03 .05.04 .025 -.05 .03 -.05 .02]

Note that the coordination sample time ( A ) is 100 ms.

The simulation results demonstrate the very effectiveness of the proposed method compared to
the decentralized PSSes. It should be noted that, although the centralized PSS is an optimal controller
for the overall system, it is useless in the large-scale power system applications because of the
computational and practical problems. However, the proposed controller achieves a good
performance and even it is comparable with the centralized PSS.

3

1. Centralred P55
* 2. Decentrakzed PSS
3. The proposed PSS

| S

13

481

e

B T R Y S Y T T T
Time

[} 1 L) 2 23 ¥ 3% - a% -3

Time

Fig. 4. Torque angle deviation of subsystem 1 for Fig. 5. Torque angle deviation of subsystem 2 for
three kinds of PSS for A =100ms three kinds of PSS for A7 =100ms
1. Centralized P55 3 4
e 1
(T SEEESE St T T T T e . o T X 5 T T Vints Sem | S v | S o |
Fig. 6. Torque angle deviation of subsystem 1 for Fig. 7. Prediction of load angle of subsystem 1

three kinds of PSS for Ar =50ms

As we can see from simulation results (compare Fig. 4 and Fig. 6) the performance of the
proposed controller may be enhanced by reducing the coordination sample time ( Af = 50 ms). Figure
7 shows how good the actual state can be predicted by the proposed fuzzy estimator. The same results

have been obtained for the other two subsystems and for the sake of brevity we didn’t show them
here.

6. CONCLUSION

In this paper a two-level sub-optimal control using fuzzy prediction was developed to control large-
scale systems. The proposed controller has been applied to a three-area power system. The results of
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our proposed controller have been compared with those of the other two PSS controllers frequently
cited in the literature known as decentralized and centralized controller. Simulation resuits eagily
highlight the merit of our method.

REFERENCES

1. Mesarovic, M. D., Macko, D. & Takahara, Y., (1970). Theory of hierarchical multilevel system. Academic
Press, New York.

. Jamshidi, M., (1983). Large-scale system modeling and control. North-Holland, New York.

3. Li, D, (1993). Hierarchical control for large-scale system with central multiple linear-quadratic structure.
Automatica, 29(6), 1451-1461.

4. Stufflebeam, J. & Prasad, N. R, (1999). Hierarchical fuzzy control. Fuzzy Systems Conference
Proceedings, IEEE International, 1, 498-503.

5. Gharieb, W. & Nagib, G., (1996). Fuzzy control to multivariable systems case study: helicopter model.
Fuzzy Systems, Proceedings of the Fifth IEEE International Conference, 1, 400-405.

6. Sadati, N. & Kazemi, M. H., (1995). Coordination of large scale systems with fuzzy interaction prediction
principle. Sixth IFSA World Congress, Brazil.

7. Khedkar, P. S. & Keshav, S., (1992). Fuzzy prediction of time series. Fuzzy Systems, IEEE International
Conference, 281-288.

8. Zhang, J. H, Jia, L. M. & Zhang, X. D., (1997). On a novel fuzzy predictive control. American Control
Conference, 2, 1251-1255.

9. Saez, D. & Cipriano, A., (1997). Design of fuzzy model based predictive controllers and its application to
an inverted pendulum. Fuzzy Systems, Proceedings of the Sixth IEEE International Conference, 2(915-
919).

10. Sousa, J. M., Kaymak, U., Verhaegen, M. & Verbruggen, H. B., (1996). Convex optimization in fuzzy
predictive control. Decision and Control, Proceedings of the 35th IEEE Conference on, 3, 2735-2740.

11. Anderson, P. M. & Fouad, A. A., (1981). Power system control and stability. Academic Press, New York.

12. Yu, Y., (1983). Electric power system dynamics. Academic Press.

13. Lunze, J., (1992). Feedback control of large-scale systems. Prentice Hall.

14. Aldeenn, M. & Crusca, F., (1995). Multi-machine power system stabilizer design based on new LQR
approach. IEE Proc., Gener. Transm. Distrib., 142(5), 494-502.

Iranian Journal of Science & Technology, Volunse 27, Number B4 Autumn 2003



