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Abstract— K-complexes like spindles are hallmark patterns of 
stage 2 sleep. Due to correlation between these patterns and some 
diseases, it is necessary to develop algorithms to detect them. In 
this study, a new method is used to detect K-complexes 
automatically. 10 time-series and chaotic features were used in 
order to extract the K-complex waves from stage 2 sleep. To use 
the most effective features, feature space dimension is reduced 
with Sequential Forward Selection method. The reduced feature 
space is classified using Generalized Radial Basis Function 
Extreme Learning Machine (MELM-GRBF) algorithm. GRBFs 
make the modification of the RBF possible by adjusting a new 
parameter ૌ . We’re applied this methodology to K-complex 
classification for the first time. The classifier gives noticeably 
better results compared to ELM-RBF method for sensitivity and 
accuracy૟૚. ૙૙ ± ૟. ૟ and ૢ૟. ૚૞ ± ૜. ૠ, respectively. 

Keywords-K-Complex; EEG; Sleep; Classifier, Extreme 

Learning Machine, Radial Basis Function 

I. INTRODUCTION 
 One of the well-known transient patterns of sleep EEG 

signals, which can occur in response to auditory stimuli is K-
Complex [1, 2]. According to American Academy of Sleep and 
Medicine (AASM), K-Complex is defined as a transient pattern 
with the following properties; a sharp negative transition which 
is immediately followed by a positive component. K-Complex 
duration should last more than 0.5 sec. The considered 
frequency is at 8-16 Hz which scored and elicited from the 
Central channels. Some researchers used slightly different 
definitions. For instance some researchers used the AASM 
definition along with minimum amplitude of 75 μV [3] as 
threshold or some used 100 μV pick to pick amplitude criterion 
[4]. Also, there are variations in time duration range for K-
Complex pattern definition, some investigators used 1 to 5 
second [5]. Another time limitation which is used is 1 to 3 
second [4,6]. High variation in K-complex time duration in 
different subjects has caused different definitions.  

Different methods are also used to detect K-complexes. Results 
are usually reported using three well-known statistical 
explanations including; accuracy, sensitivity and specificity. In 
short, an electronic system based on digital logic circuit was 
implemented by Bremer et al. [4], and 68% sensitivity for K-
complex detection was achieved. Another researcher used 
matched filter method with specific limitations for k-complexes, 
but according to their report the results were not satisfying [7,8]. 

Rosa and Paiva et al. used stochastic algorithms based on 
feedback loops of rhythms that is driven by white noise to 
simulate K-complex waves [5]. Jansen et.al [6] used Neural 
Networks as a classifier to identify K-complexes from non K-
complex waves. Bankman et al. [9] used both feature extraction 
and Neural Networks as a classifier, the reported results showed 
better performance. Due to different datasets used on each study, 
the reported results are not comparable. 

In this study, considering the acceptable results of Bankmen et 
al. [9], we used feature extraction with a MELM-GRBF 
classifier. Navarro et al. [10] applied this classifier to 15 datasets 
taken from the UCI repository [11]. This is the first time that 
such a classifier is utilized for K-complex classification. 
Features are a combination of some fractal dimensions as 
chaotic features and some time series features that are acquired 
based on the K-complex definition. 

II. DATASET 
12 healthy  subjects (average age: 22.4 (22-26 years)) were 

used to record sleep EEG signals using 10-20 system at Baharloo 
Hospital, Sleep Clinic, Tehran. Ten channels were used to record 
the sleep EEG signals which included; C4-M1, C3-M2, F4-M1, 
F3-M2, Cz-M1, Fz-M1, T3-M2, T4-M1 O2-M1, and O1-M2. 
Central channels (C3-M2, C4-M1) were used for K-complex 
analysis. The sampling frequency was set 200Hz. Subjects slept 
for afternoon naps on two consecutive days which the second 
day sleep was used to score the K-complexes manually by an 
expert. The K-complex patterns were scored according to the 
AASM standard. Finally 581 K-complexes data were extracted 
from stage 2 sleep. Fig. 1 shows a K-complex pattern extracted 
from recorded EEG manually. 

III.  PREPROCESSING 
Signals were filtered by a 50Hz Notch filter and a 0.1- 40Hz 

band-pass filter which was provided by the device, then a 16th 
order type two 8-16Hz Bandpass Chebyshev filter was applied. 
IIR filters cause phase distortion which was omitted by applying 
zero-phase digital filtering by processing the input signals in 
both forward and reverse directions [12]. Assuming EEG signals 
to be stationary, signals were segmented using a sliding one 
second window.  
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Figure 1. K-complex pattern extracted from recorded EEG manually. 

 

IV. METHODS 

A. Time Series Features 

Time series traits are the ones which are elicited from K-
complex definition. Time series features consist of; minimum 
amplitude, maximum amplitude, average, 75μv threshold, 
standard deviation (SD) and energy of signal. 

B. Fractal Dimension and nonlinear Features 

 Sevcik Fractal Dimension 

. Sevcik method is a fractal dimension that is approximated 
with N samples and is based on time axes normalization and 
EEG signals [13,14]. To compute the fractal dimension, it is 
suggested to normalize the metric space as [15]: 

 ݅ᇱ = ௜ே , ᇱ(݅ᇱ)ݍ = (݅)ݍ) − ௠௔௫ݍ)/(௠௜௡ݍ −  ௠௜௡) (1)ݍ

Where ݍ (݅ ) is the normalized EEG sample, q(i) is the ith 
EEG signal sample, ݍ௠௔௫ and ݍ௠௜௡are maximum and minimum 
values in EEG signal, respectively. Sevcik fractal dimension is 
formulated as:  

ܦܨ  = 1 + ୪୬(௅)୪୬ (ଶ(ேିଵ)) (2) 

Where L is the normalization length of the signal. 

 Higuchi Fractal Dimension 

Higuchi’s model is based on a different measure for the 
length of a signal which is slided. ݍ௠௞  is a new time series which 
is formulated as below [15]: 

௠௡ݍ  = ቄݍ(݉), ݉)ݍ + ݊), ݉)ݍ + 2݊), … , ݍ ቀ݉ +ቂேି௠௡ ቃ ݊ቁቅ ݉ = 1,2,3, … ݊ 
(3) 

Where n is the step parameter, m is an initial value and [.] is 
the bracket  operator. Finally, the length of the new time series 
(Lm(n)) is formulated as: 

(݊)௠ܮ  = {∑ |௤(௠ା௜௡)ି௤(௠ା(௜ିଵ)௡)|.ಿషభ೙[ಿష೘೙ ]೔సభ }ቂಿష೘೙ ቃ௡  (4) 

(ேିଵ)ቂಿష೘೙ ቃ.௡ is employed to normalize the values and ܮ௠(݊) is 

used to calculate the average length of the time series which 

means, that ܮ(݊) = ଵ௡ ∑ ௠(݊)௡௠ୀଵܮ  ,is equivalent to n-FD (݊)ܮ .
where FD is fractal dimension value. Finally, the Higuchi fractal 
dimension is obtained by using the slop of ((݊)ܮ)݃݋ܮversus [13]  (݊/1)݃݋ܮ. 

C. Entropy 

A nonlinear chaotic parameter which is based on phase space 
and considered as a nonlinear quantification is Entropy. This 
quantifier depicts the complexity of a system and quantifies the 
system tendency to chaos. Principals of this method is based on 
the trend of trajectory variations. More regularity means system 
is  driving  to less complexity and vice versa. In the other hand, 
higher complexity means system’s more tendency to chaos. For 
analyzing the entropy property, phase space should be 
reconstructed and let the trajectory  grow in the reconstructed 
phase space as much as it can. This phase space slides in to cells 
that are marked as a(n). After a specific lag the trajectory will 
migrate from a(0) cell to the next which is called a(1). All the 
cells are signed to construct a time series, a(0), a(1),…, a(N). 
This procedure is an ongoing process on the other trajectories. 
The initial values are not identical; hence various time series are 
constructed. At last, the Entropy is calculated as [16]:  

( ) ln ( )n

i

z S i S i  (5) ܵ(݅) is the number of appearance of the trajectory in the i-th cell. 

V. FEATURE SELECTION 
Among 10 features, Sequential Forward Selection (SFS) 

method was employed to select the best features. SFS method is 
a greedy procedure which starts with empty set as the first level. 
In this process, a new feature is added to the feature space and 
combined with the other features to optimize the objective 
function in every stage sequentially. As an evaluation function 
in SFS method, the difference of total Mahalanobis distances 
between first class data and the center of the second class is 
calculated. On the contrary, the difference of total Mahalanobis 
distances between second class data and the center of the first 
class is calculated. The higher distance results in higher weight 
assigned to the feature. Therefore, the features which can 
maximize the objective function, will be chosen as the most 
valuable features. By employing SFS method and considering 
the results, five features are selected as the most qualified 
features. These are; Sevcik fractal dimension, Entropy, Katz 
fractal dimension [17, 18], mean and Higuchi fractal dimension, 
respectively. 

VI. CLASSIFIER 
Our approach is focused on a new kernel which is based on 

probability distribution function of data in feature space. The 
kernel parameters are calculated in this section.  

RBF kernels are among the most popular kernels used in 
kernel based classifiers. But they have certain limitations [19-
21]. In order to avoid those limitations, a more generalized 
parametric model should be defined to have better description of 
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the statistical behavior of distributions. To this end, the modified 
density function is presented as follow:  

(6) ; , , exp( )12 Γ( )

X C
p X C r

r
r

 
Where C is the mean, ݎ > 0  and ߬ > 0are width and shape 
parameters of the distribution, respectively and, Γ is the Gamma 
function. 

Parameter ݎcontrols the descend rate of the density function and 
is proportional to the standard deviation, expressed with Eq. 7. 

ݎ (7) = ඩΓߪ ቀଵதቁΓ(ଷத)  

The described Generalized Gaussian Distribution (GGD) has 
more extensive capability for modeling and representing 
statistical behavior than Gaussian Distribution (GD). In GGD, 
parameter ݎ models the peak width. The new model is stable and 
is able to describe various statistical behaviors. The new kernel 
is presented in Eq. 8 

(8) ∅୨൫܆; ,ܒ۱ r୨, τ୨൯ = exp(− ฮ܆ − ฮதౠr୨தౠ࢐࡯ ) 

Where ࢏ࢄ = ௜ଵݔ) , … , ்(௜௞ݔ  is the input vector, ܭ  is the 
number of inputs, ݎ௝ is the GRBF width, ࢐࡯ = ( ௝ܿଵ, … ௝ܿ௞) is the 
center and ௝߬ is the i-th GRBF Shape parameter. 

Fig. 2 shows the variations of the basis function shape with 
parameter τ. This basis function makes a better match between 
the kernel and data distributions in the feature space. By 
adjusting parameter τ, the concavity and convexity of the kernel 
could be controlled, around its center [22]. 

A new classifier based on the new kernel is designed with 
following properties: the hidden layer is one Single Layer Feed 
Forward Neural Network (SLFN) with m neurons. The output 
layer neuron is set a linear function to guarantee linear training 
for parameters in the output which is explained in Eq. (11). 

Where β is the training weight matrix, ܶ is the desired output 
matrix, and ܪis the output of the hidden layer which is explained 
in the equations (9), (10) and (11). This training procedure is 
developed for SLFNs by Huang et al. [20-22] and was named as 
Extreme Learning Machine (ELM). In this study, the ELM 
kernel is modified to be able to choose input weights randomly, 
this classifier is named MELM-GRBF [10]. 

(9) 

ܪ  = (ℎଵ, ℎଶ, … , ℎ௠) =൭∅ଵ(ࢄଵ; ,ଵ࡯ ,ଵݎ ߬ଵ) … ∅௠(ࢄଵ; ,௠࡯ ௠ݎ , ߬௠)… … …∅ଵ(ࢄ௡; ,ଵ࡯ ,ଵݎ ߬ଵ) … ∅௠(ࢄ௡; ,௠࡯ ௠ݎ , ߬௠)൱௡×௠ 

ࢀ (10) = ,ଵݐ) ,ଶݐ … , ௡)௡×௃்ݐ  

ࢼ (11) = ,ଵߚ) ,ଶߚ … ,  ௠)௠×ଵߚ

In this system, training parameters are modifiedto minimize 
a squared error function, according to Eq. 12 [23]. 

ܧܵ (12) = ෍(݋௜ − ௜)ଶ௡ݐ
௜ୀଵ  

The SLFN configuration with generalized radial basis 
function is depicted in Fig. 3. Since our classification problem is 
a two class (K-complex and non K-complex) problem, a single 
neuron would be sufficient in the output layer and the 
classification can be done using a threshold on the output. 

 

Figure 2. Effect of the parameter ߬ on the kernel behavior with c =1 and r 
=1 
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Figure 3. Scheme of generalized radial basis function used in SLFN 

 

VII. CLASSIFIER PARAMETERS 

In the proposed SLFN, the single neuron in the output layer, 
makes a weighted sum of the outputs of the hidden neurons (Fig. 
1). In this network, centers of the hidden layer neurons are 
selected from the input patterns, randomly. For choosing ݎ in 
ELM-RBF, different methods based on maximum distance 
among input neurons, number of hidden layer neurons, K-
nearest neighbors and… are used. In MELM-GRBF method, 
width (ݎ) and shape (߬)  parameters are sensitive to the 
distribution of distances. 

In order to calculate kernel parameters, minimum and 
maximum values of the hidden layer should be determined. To 
this end, the minimum (S) and the maximum distance (ܮ) in the 
feature space are used to produce the lowest and highest value 
of the kernel, respectively. These two parameters are related to ߣ, which are defied in Eq. 13 and Eq. 14. 
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(13) exp ቆ− ൬ܮr൰தቇ = λ 

(14) exp ቆ− ൬rܵ൰தቇ = 1 − λ 

For calculating (ܮ) for each hidden layer neuron, according 
to Eq. 15, select minimum distance between the neuron and all 
its neighbor neurons. Since parameter ߬determines the tail of the 
kernel, so ܵ values for all neurons could be selected equally and 
be calculated from Eq. 16. 

(15) ௜ܵ = ฮܿ௜ − ௝ܿฮ 

Which j-th index is the nearest hidden layer neuron to the i-
th neuron. 

(16) ܵ = ඥߜଶ × ݇ 

δ is a very small distance in each dimension and ݇ is the 
number of the observations. In the employed classifier the δ is 
chosen as 0.1, experimentally. According to the distribution of 
distances in the feature space ߣ is obtained as 0.05, 
experimentally. By choosing the free parameter, proper values 
for τ and ݎ in each kernel of hidden layer neuron is calculated as 
in Eq. 17 and Eq. 18. 

)17( τ = ln ቀ ୪୬(஛)୪୬(ଵି஛)ቁln(௅ௌ)  

)18( r =  ଵ/த(ln(λ)−)ܮ

In short, in order to train the presented classifier, the number 
of hidden layer neurons ( ݉ ) and ߣ values should first be 
determined. Then, neuron centers should be selected among the 
input learning patterns, randomly. Using Eq. 15-18, S, L, τ and ݎ  parameters are then calculated, respectively. Therefore, the 
kernels are configured and the outputs of the hidden layer (H) 
is calculated. Using H and T matrixes, the training parameters 
can be obtained as follows (Eq. 19). 

መߚ (19) = [்ܪଵି(ܪ்ܪ)] × ܶ 

VIII. RESULTS 
In this part the results of the classifier for classifying EEG 

signals with K-Complex patterns from signals without K-
Complex patterns using ELM-RBF and MELM-GRBF methods 
is reported. We used Matlab 2013, on a Core i5 Intel CPU, 
2.53GHz PC with 4GB Ram. Since the number of free 
parameters in MELM-GRBF is more than ELM-RBF, the new 
method is more time consuming and costly. 

According to the training procedure, first step is to select ݉ 
and ߛ. After evaluating several values for ݉ including: 10, 15, 
20, … and 60, we selected 40 as the best one. In addition, several 
different values for ߛ such as 0.01, 0.02,… and 0.2, was tested 
and 0.05 was the best. Our algorithm calculates parameters ߬ 
and ݎ in the extent of 1.4 to 2.8 and 0.5 to 4.1, respectively. 

In this classifier, 70% of the data (814 observations) was 
allocated to the training set and the rest of the dataset (30% or 
348 observations) was used for testing set. The results of 
MELM-GRBF and ELM-RBF are presented in tables (1) and 
(2), respectively. Accuracy, sensitivity and their Standard 
Deviation (SD) are reported in percentage. These results are 
after 15 times train and test and then averaging. It’s clear that in 
MELM-GRBF accuracy and sensitivity are improved for 2.53% 
and 7.04%, respectively. In addition, standard deviation of the 
accuracy and sensitivity have decreased 1.2% and increased 
1.2%, respectively. These results proved MELM-GRBF 
matched better to K-complex patterns in comparison to ELM-
RBF methodology. 

 

TABLE I EVERY COLUMN IS THE MELM- GRBF RESULTS AVERAGE  (AVE%) 
AFTER 15 TIMES TRAIN AND TEST. 

Statistical 
Measurements 

Value in percentage 

Mean Accuracy 96.15 
Mean Accuracy SD 3.7 

Mean Sensitivity 61.00 
Mean Sensitivity SD 6.6 

TABLE II  EVERY COLUMN IS THE ELM- RBF RESULTS AVERAGE (AVE%) 
AFTER 15 TIMES TRAIN AND TEST. 

Statistical 
Measurements Value in percentage 

Mean Accuracy 93.62 
Mean Accuracy SD 4.9 

Mean Sensitivity 52.94 
Mean Sensitivity SD 5.4 

IX. DISCUSSION 
Sequential Forward Selection (SFS) method indicated that 

the information extracted from the nonlinear and fractal 
dimension features gives more valuable information than the 
time features. This can be due to the nonlinear behavior of brain 
as a signal generator. Since visual distinguishing of the 
nonlinear and dimensional information of K-complexes is 
impossible, the importance of this automatic K-Complex 
detection algorithm is doubled. 

Presented method is used in order to compensate some of 
the RBF limitations using a free parameter (߬). The parameter ߬ would adjust the convexity and concavity of the kernel tail. 
Hence, τ can match betterto the distribution of distances in the 
feature space. Obviously, better matching and more 
compatibility with the interested K-complex patterns drives the 
classifier to be more powerful and enhances the statistical 
evaluations. For training, modified ELM method is used which 
is proposed by Haung et al. [28] for single hidden layer feed 
forward neural networks. According to the applied 
modification, the method is named MELM-GRBF. This kind of 
classifier has not been used for K-complex classification, 
before. In this new method only two initial values namely the 
number of hidden layer neurons and ߛ  must be selected. As 
shown in the table. 1 and 2, MELM-GRBF has improved the 
performance of the K-Complex detection results. 
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