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Abstract

In this paper, a method based on Legendre or any orthogonal polynomials, is developed to

find numerical solutions of fractional Fredholm integro-differential equations (FFIDEs).
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1 Introduction

Fractional calculus is a branch of mathematical analysis which deals with derivatives and

integrals of arbitrary order. Fractional integral and differential equations are used to model

some practical problems in physics, engineering, economics and biology. In recent years, many

numerical methods have been developed for solving fractional integro-differential equations,

such as Adomian decomposition method [1], variational iteration method [2], wavelet method

[3], Operational Tau method [4] and so on.

In this paper, we study a class of FFIDEs as follows:

D
α
u(x)− λ

∫ 1

0

k(x, t)up(t)dt = f(x),

(1)

with initial conditions

u
(i)(0) = δi, i = 0, 1, ..., n− 1, n− 1 < α ≤ n, n ∈ N, (2)

where Dα is fractional derivative operator of order α in caputo sense, f(x) and k(x, t) are

known continious functions and u(x) is a solution to be determined.

Here, we replace the differential and integral parts of Eq.(1) and initial conditions (2) by their

operational matrix representation. Then we obtain a system of nonlinear equations and solve

it to obtain an approximate solution of the problem.
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2 Preliminaries and notations

In this section, we present some necessary definitions of the fractional calculus [5] which will

be used in this paper.

Definition 2.1. The Riemann-Liouville fractional integral operator Jα of order α is given by

J
α
u(x) =

1

Γ(α)

∫ x

0

(x− t)α−1
u(t)dt, α > 0,

J
0
u(x) = u(x).

One of important properties of the fractional integral operator is

J
α
x
ν =

Γ(ν + 1)

Γ(α+ ν + 1)
x
α+ν

, (3)

where α > 0 and ν > −1.

Definition 2.2. The fractional derivative of u(x) in the Caputo sense is defined as

D
α
u(x) = J

n−α
D

n
u(x) =

1

Γ(n− α)

∫ x

0

(x− t)n−α−1
u
(n)(t)dt, n− 1 < α ≤ n, n ∈ N.

(4)

3 Description of the method

In this section, we describe the method of this paper for solving fractional Fredholm integro-

differential equations by using shifted Legendre polynomials. we first need the following lemma.

Lemma 3.1. Let p(x) =
∑

∞

i=0 pix
i = PXx be a polynomial, then we have

D
r
p(x) =

dr

dxr
p(x) = Pη

r
Xx, r = 0, 1, 2, ..., (5)

where P = [p0, p1, p2, ...], Xx = [1, x, x2, ...]T and η = [ηij ]
∞

i,j=0, ηij = i δi,j+1.

Let {φi(x)}
N

i=0 be a set of Legendre polynomials, then one can write:

u(x) =

N
∑

j=0

ujφj(x) = uΦXx (6)

where u = [u0, u1, ..., uN ] is a (N + 1) vector of unknown coefficients, Xx = [1, x, x2, ..., xN ]T

and Φ is lower triangular matrix which converts Legendre base to standard base.

By using (4) and (5), we obtain an operational form of Dα as follows:

D
α
u(x) = J

n−α
D

n(uΦXx) = J
n−α(uΦηn

Xx) = uΦηn
J
n−α(Xx), (7)

and by (3), we have:

J
n−α(Xx) =

[

Γ(1)xn−α

Γ(n− α+ 1)
,
Γ(2)xn−α+1

Γ(n− α+ 2)
, ...,

Γ(N + 1)xn−α+N

Γ(n− α+N + 1)

]

= BΠ. (8)

where Π = [xn−α, xn−α+1, ..., xn−α+N ]T and B is an (N + 1)× (N + 1) diagonal matrix with

elements

Bi,i =
Γ(i+ 1)

Γ(n− α+ i+ 1)
, i = 0, 1, ..., N.

But xn−α+i can be approximated as:

x
n−α+i =

N
∑

j=0

ai,jφj(x) = aiΦXx, ai = [ai,0, ..., ai,N ], aij =

∫ 1

0

x
n−α+i

φj(x)dx, i, j = 0, ..., N.
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Therefore, we obtain

Π = [a0ΦXt,a1ΦXx, ...,aNΦXx]
T = AΦXx, (9)

where

A = [a0,a1, ...,aN ]T .

Substituting (8) into (7) and using (9), we get

D
α
u(x) = uΦηn

BΠ = uΦηn
BAΦXx. (10)

On the other hand, the functions f(x) and k(x, t) can be written as

f(x) =

N
∑

j=0

fjφj(x) = FΦXx, k(x, t) =

N
∑

j=0

N
∑

i=0

kijφi(x)φj(t). (11)

Now, we state the following lemma:

Lemma 3.2. If u(x) = uΦXx, then up(x) = uΦUp−1Xx where U is an upper triangular

matrix with elements

Uij =

∞
∑

r=0

urΦr,j−i, j ≥ i, i, j = 0, 1, 2, ... (12)

Then, by using Lemma 3.2, we can write

u
p(x) = CΦXx =

N
∑

j=0

cjφj(x) (13)

where C = uΦUp−1Φ−1.

By using (11) and (13), we have

∫ 1

0

k(x, t)up(t)dt =

∫ 1

0

(

N
∑

i=0

N
∑

j=0

kijφi(x)φj(t)

)

×

(

N
∑

r=0

crφr(t)

)

dt

=
N
∑

r=0

N
∑

i=0

N
∑

j=0

kijcrφi(x)

∫ 1

0

φj(t)φr(t)dt =
N
∑

r=0

N
∑

i=0

N
∑

j=0

kijcrφi(x)δrj

=

N
∑

i=0

N
∑

j=0

kijcjφi(x) = ΛΦXx, (14)

where Λ is an (N + 1) vector with elements

Λi =

N
∑

j=0

kijcj , j = 0, 1, ..., N.

Substituting (10), (11) and (14) into Eq.(1) implies

(uΦηn
BA− λΛ− F ) ΦXx = 0. (15)

Since ΦXx is a base vector, we obtain a system of nonlinear equations as

uΦηn
BA− λΛ = F. (16)

Now, we convert the conditions (2) to a system of equations. By using (5) and (6), we have

u
(i)(x)|x=0 = uΦηi

Xx|x=0. (17)

Substituting (17) into (2) yeilds

uΦηi
Xx|x=0 = δi, i = 0, 1, ..., n− 1. (18)

By solving the system of equations (16) and (18) simultaneously and determining the unknown

coefficients uj , approximate solution u(x) can be calculated from (6).
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4 Numerical example

Example 4.1. Let us consider the following FFIDE

D
1

2 u(x)−

∫ 1

0

xt u(t)dt =
8
3
x

3

2 − 2x
1

2

Γ( 1
2
)

+
x

12
, x ∈ [0, 1],

with the initial condition u(0) = 0. The exact solution of this problem is u(x) = x2 − x.

Applying this method for N = 2, we obtain the approximate solution which is the same as the

exact solution.

Example 4.2. As second example, consider the following nonlinear equation

D
3

4 u(x)−

∫ 1

0

xt u
2(t)dt =

4x
1

4

Γ( 1
4
)
−

x

4
, x ∈ [0, 1],

subject to u(0) = 0 with the exact solution u(x) = x. Table 1 shows the absolute errors (e(x))at

some points.

Table 1: absolute errors of Example 4.2 for N = 15.

x e(x)

0.2 0.4320e-15

0.5 0.2147e-14

0.8 0.4887e-14

1 0.7222e-14

Conclusion

In this work, a computational method based on shifted Legendre polynomials presented for

solving FFIDEs by converting it to an algebraic system of equations.
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