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Abstract: The authors consider the problem of finding a minimum cost multicast sub-graph based on network coding, where
delay values associated with each link, limited buffer-size of the intermediate nodes and link capacity variations over time are
taken into account. The authors consider static multicast (where membership of the multicast group remains constant for the
duration of the connection) in lossless wireline networks. For such networks, first the continuous-time (asynchronous packet
transmissions) model is formulated. Subsequently, the discrete-time model for the synchronous packet transmissions scenario
is derived. Then, by using an auxiliary time-expanded network, a decentralised algorithm in the presence of link delays,
limited buffer-size and time-varying link capacity is proposed. The proposed algorithm when coupled with decentralised code
construction schemes results in a fully decentralised approach for achieving minimum-cost in such multicast networks. Also,
how adding buffering capability at intermediate nodes reduces the overall cost of the optimal sub-graph is discussed in this
study. In addition, as will be shown, inclusion of buffering capacity at intermediate nodes makes it possible to find minimum
multicast solution in scenarios that such solutions do not exist otherwise.

1 Introduction

Network coding generalises the traditional routing paradigm,
in which relaying nodes can only forward or replicate data, by
allowing them to perform arbitrary operations on information
received at each node. It is well known that network
performance can be significantly improved through such
network coding approach [1, 2]. As an important example,
use of network coding makes the once intractable optimal
multicast routing problem tractable [1, 3].
As shown in [1], network coding makes it possible to reach

the achievable throughput of a multicast session by running
the max-flow algorithm from the source to each individual
receiver, and choosing its minimal value. Li et al. [4]
further showed that the above result can be obtained by
running a linear coding algorithm. In addition, Jaggi et al.
[5] also showed that such network codes could be designed
using a polynomial time algorithm.
For cyclic graphs, the multicast capacity can be achieved

by performing linear time-invariant coding over a
sufficiently large field, as shown by Koetter and Medard
[2]. An alternative theoretical treatment of cyclic graphs is
via linear time-varying network coding over a discrete-time
trellis, used for example in [1, 4]. Specifically, the original
graph is expanded into a larger acyclic trellis, whose edges
correspond to transmissions along the original edge at
different time instances. Since the trellis is acyclic,

instantaneous linear network coding for acyclic graphs are
applicable in this scenario.
Chou et al. [6] were among the first to propose a practical

network coding solution where each node maintains a buffer.
Whenever a node receives a packet from one of its incoming
links, it stores the packet in its buffer and as a transmission
opportunity arises, the node generates an output packet by
linearly mixing the packets in the buffer using random
coefficients from a finite-field F.
Wu [7] analysed the asymptotic performance of typical

network coding schemes. Extending the discrete-time trellis
used in previous theoretical studies, he introduced a
continuous-time trellis, which models the asynchronous packet
transmissions in a practical network. The practical network
coding scheme can then be interpreted as a random linear
coding scheme implemented over the continuous-time trellis.
It should be noted that the minimum-cost multicast scheme

in networks using a network coding approach can be
decomposed into two parts: (i) finding the optimal sub-graph
to code over and (ii) determining the code to use over the
sub-graph [8]. In general, the first issue has been addressed
in the literature to a less extent relative to the second one. For
example, Lun et al. [3] proposed a decentralised network
resource allocation scheme to find minimum-cost sub-graphs
that allow multicast connections to be established (with
appropriate coding) over coded packet networks. The
decentralised methods in [3] generate the sub-graph which
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the network codes designed in [4, 9] apply over the sub-graph.
Cui and Ho [10] considered finding a minimum cost multicast
sub-graph with network coding on directed graphs, where the
packet transmission rate on each link is constrained to integer
values and a greedy algorithm in combination with a LP
rounding algorithm has been proposed to solve the problem.
A more direct primal approach is taken in [11], where a
distributed sub-gradient algorithm based on finding the
critical cut is proposed. Also, Xi and Yeh [12] provided an
analytical framework as well as a set of distributed solutions
for optimising the configuration of network coding in both
wireline and wireless networks.
However, one drawback of algorithms that address the

problem of finding the optimal sub-graph is their assumption
that packets going through each link do not incur any delays.
In addition, the effect of limited buffer size in intermediate
nodes is not taken into account in such approaches. Such
simplistic assumptions result in a static sub-graph in which
time is not represented explicitly and passage of packets
through links seems to occur instantaneously. However, in
practice, packets are delayed while transmitted along each
link, and the output packets do not leave a node at the
same time that packets are arriving at the same node.
Needless to say, such assumptions affect the overall
performance analysis of a given network. Another realistic
characteristic of realistic networks is their variation over time.
In fact, important characteristics of real-world networks such
as link costs and capacities are often subject to fluctuations
over time.
In this paper, we address the problem of finding a minimum

cost multicast sub-graph with network coding on directed
graphs, where the delay and buffering effects of packet
transmission and link capacity variations over time are
taken into account. The rest of this paper is organised as
follows. In Section 2, the system model for the delayed
network is presented. Section 3 extends the problem to
the varying linear cost model over time. Simulation results
are presented in Section 4. Finally, Section 5 concludes the
paper.

2 Networks with delay and limited-size
buffering

2.1 Network coding and minimum cost sub-graph
generation (traditional model: links without delay)

We first overview the model given in [3], in which no link
delay or buffer capacity at intermediate nodes is assumed.
The communication network is represented by a directed
graph G ¼ (V, A), where V is the set of nodes, |V| ¼ n, and
A is the set of links, |A| ¼ m, in G. Each link e ¼ (i, j)
represents a lossless point-to-point link from node i to node
j. For the link e ¼ (i, j), we write head(e): ¼ j and
tail(e): ¼ i. For a node i [ V, the terms d+i and d−i denote
the set of links leaving node i (tail(e) ¼ i) and entering
node i (head(e) ¼ i), respectively. Let Ze denotes the rate at
which coded packets are injected on link e. The linear,
separable cost ce denotes the cost per unit rate of sending
coded packets over link e [ A. The capacity ue of link e is
defined to be the number of packets that can be sent over
link e in one time unit. We assume that link capacities are
non-negative integer numbers. Single-session multicast is
considered in this paper, where a source node s [ V must
transmit an integer number of R packets per unit time to
every terminal in a set of K terminals K , V. The minimum
cost sub-graph with network coding is then given by the

following optimisation problem [3]

∑

e[A

ceze (1)

s.t.

ze ≥ x(k)e ≥ 0, ∀e [ A, k [ K (1a)

∑

e[d+
i

xke −
∑

e[d−i

x(k)e = sk
i , ∀i [ N , k [ K (1b)

ue ≥ ze, ∀e [ A (1c)

where

s
(k)
i =

R, i = s

−R, i = k

O, 0w

⎧

⎨

⎩

and x(k)e is the flow towards destination k that is passing
through link e.
Decentralised algorithms for solving (1) have been

proposed in [3]. The network codes designed in [4, 9] can
then be applied to code over the resulting sub-graph.

2.2 Network coding over links with delays:
continuous-time formulation

In our discussion, we first consider a more general scenario
where information flows may vary continuously over time.
Such cases, generally occur when asynchronous packet
transmissions are considered in a practical network. The
communication network with delay is represented by a
directed graph G ¼ (V, A, D), where V is the set of nodes,
|V| ¼ n, A is the set of links, |A| ¼ m and D is the integer time
horizon over which network behaviour at the destination is
observed. The time horizon D is chosen such that all source
flowunits have arrived at the destination by the endof this period.
Let ze(p) denotes the rate at which coded packets are

injected into link e at time instant p. The rate vector z,
consisting of ze(p), e [ A and p [ [0, D], is called a sub-
graph. Each link e [ A is associated with three integer
parameters: transit time de, transit cost ce and a positive
integer capacity at time p denoted by ue(p).
As de denotes the transit time over link e, if x(k)e (p) is the

rate of flow towards the destination k entering link e at time
p, the flow x(k)e (p) arrives at tail(e) at time p+ de.
Throughout the paper, we assume that transit time of
packets over each link is an integer value. The integer
restriction on the delay does impose some loss of generality
because the integer delay solution might not be as accurate
as a solution based on continuous delay values. However,
we can obtain an integer solution as close as desired to an
optimal continuous solution by scaling the time axis
properly (i.e. by multiplying all time indexes such as de by
an integer value M to obtain a higher accuracy value of
Mde, for a proper choice of M, for each arc e).
The linear, separable cost ce denotes the cost of sending

unit rate coded packets ze(p) over link e [ A. Therefore
the total weight of multicast connection is given by
∑

e[A ce
�D

0
ze(j)dj.

1498 IET Commun., 2011, Vol. 5, Iss. 11, pp. 1497–1505

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-com.2010.0612

www.ietdl.org



Moreover, at each time instant p [ [0, D], we should have
ze(p) = max

k[K
{x(k)e (p)}. Consequently, we obtain

ze(p) ≥ x(k)e (p), ∀e [ A, k [ K, p [ [0, D]

Also, as the time horizon D is chosen such that all links do not
carry any traffic for p . D, ze(p) ¼ 0 at such time instants.
The capacity ue(p) is an upper bound on the rate of coded

packets entering link e at time p

ue(p) ≥ ze(p)

It should be noted that the conservation constraints for the
case of links with delay will be included by integration of
the flow conservation constraints (1b) over time. As storage
of flow at intermediate nodes is allowed in our model, the
flow entering a node can be stored at that node for a given
time before it is sent out. Assuming bi denotes the buffer
length for i [ V\KU{s}, k [ K, p [ [0, D), buffering
constraints at each node can be written as follows

∫p

0

∑

e[d+
i

x(k)e (j)−
∑

e[d−i

x(k)e (j− de)

⎛

⎝

⎞

⎠dj ≤ s
(k)
i (2)

Consequently, for p ¼ D we have the equality

∫D

0

∑

e[d+
i

x(k)e (j)−
∑

e[d−i

x(k)e (j− de)

⎛

⎝

⎞

⎠dj = s
(k)
i ,

∀i [ N , k [ K

where

s
(k)
i =

R, i = s

−R, i = k

bi, i [ V\K < {s}

⎧

⎨

⎩

Therefore the following optimisation problem for optimal
sub-graph selection in network coding over networks with
delay can be formulated

min
∑

e[A

ce

∫D

0

ze(j)dj (3)

s.t.

ze(p) ≥ x(k)e (p) ≥ 0, ∀e [ A, k [ K, ∀p [ [0, D] (3a)

∫p

0

∑

e[d+
i

x(k)e (j)−
∑

e[d−i

x(k)e (j− de)

⎛

⎝

⎞

⎠dj ≤ s
(k)
i ,

∀i [ N , k [ K, ∀p [ [0, D) (3b)

∫D

0

∑

e[d+
i

x(k)e (j)−
∑

e[d−i

x(k)e (j− de)

⎛

⎝

⎞

⎠dj = s
(k)
i ,

∀i [ N , k [ K (3c)

ze(p) ≤ ue(p), ∀e [ A, ∀p [ [0, D] (3d)

ze(p) = 0, ∀e [ A, ∀p . D (3e)

It can be verified that the aforementioned model is similar to
the dynamic multicommodity flow problem in [13].
Subsequently, we will present a corresponding discrete-time
network model G for the problem.

2.3 Network coding over links with delays:
discrete-time formulation

In the continuous-time model, p can take any value in [0, D].
However, in discrete-time models, network is observed only
at time instances p ¼ 0, 1, 2, . . ., D. By considering the
same network parameters as before, our model in discrete
time can be formulated as follows

min
∑

e[A

∑

D−1

p=0

ceze(p) (4)

s.t.

0 ≤ x
(k)
e (p) ≤ ze(p),

∀e [ A, k [ K

∀p [ {0, 1, . . . , D− 1}
(4a)

∑

e[d+
i

∑

q

p=0

x
(k)
e (p)−

∑

e[d−i

∑

q

p=0

x
(k)
e (p− de) ≤ s

(k)
i ,

∀i [ N , k [ K

∀u [ {0, 1, . . . , D− 1}
(4b)

∑

e[d+
i

∑

D

p=0

x
(k)
e (p)−

∑

e[d−i

∑

D

p=0

x
(k)
e (p− de) = s

(k)
i ,

∀i [ N , k [ K (4c)

�ze(p) ≤ ue(p),
∀e [ A

∀p [ {0, 1, . . . , D− 1}
(4d)

ze(p) = 0, ∀p . D− 1, ∀e [ A (4e)

where for the discrete-time version of G, the rate of flow sent
into link e during the interval [p, p+ 1], denoted by x(k)e (p), is
equal to x

(k)
e (p) =

�p+1

p
x(k)e (j)dj for each p [ {0, 1, 2, . . ., D}.

In addition, the discrete-time capacity ue(p) and coded packet
ze(p) for every time interval [p, p+ 1] are defined as follows:

ue(p) =

∫p+1

p

ue(j) dj

ze(p) =

∫p+1

p

ze(j) dj

In order to simplify the problem, the usual approach for
deriving practical algorithms for a continuous-time coded
network problem is to reduce it to a discrete time one. As
mentioned earlier, the approximation error can be reduced
by choosing a smaller discrete time step at the cost of
additional complexity.
The next step is to verify that the flows x(k)e (p) and ze(p)

satisfy the constraints in model (4) for the link capacities
ue(p) as shown by the following lemma.

Lemma 1: By transforming the continuous variables into their
corresponding discrete variables (as given above), the
corresponding discrete-time model in (4) is obtained that
satisfy the corresponding constraints.
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Proof: Suppose x(k)e (p) and ze(p) satisfy the constraints in
model (3) for the link capacities ue(p), e [ A, k [ K,
p [ [0, D]. For every integral time step p [ {0, 1, 2, . . .,
D2 1} and time horizon D, x(k)e (p) can be bounded as follows

x
(k)
e (p) =

∫p+1

p

x(k)e (j) dj ≤

∫p+1

p

ze(j) dj = ze(p)

ze(p) =

∫p+1

p

ze(j) dj ≤

∫p+1

p

ue(j) dj = ue(p)

It is easy to verify that flow conservation constraints still hold.
Let u [ {0, 1, 2, . . ., D2 1}, then for each i [ N, k [ K we
obtain

∑

e[d+
i

∑

q

p=0

x
(k)
e (p)−

∑

e[d−i

∑

q

p=0

x
(k)
e (p− de)

=
∑

e[d+
i

∑

q

p=0

∫p+1

p

x(k)e (j) dj−
∑

e[d−i

∑

q

p=0

∫p+1

p

x(k)e (j− de) dj

=
∑

e[d+
i

∫q

0

x(k)e (j) dj−
∑

e[d−i

∫q

0

x(k)e (j− de) dj

=

∫q

0

∑

e[d+
i

x(k)e (j)−
∑

e[d−i

x(k)e (j− de)

⎛

⎝

⎞

⎠ dj ≤ s
(k)
i

and for u ¼ D, the above equation will be satisfied as an
equality. Therefore regarding the objective function we obtain

∑

e[A

∑

D−1

p=0

ceze(p) =
∑

e[A

∑

D−1

p=0

ce

∫p+1

p

ze(j) dj

=
∑

e[A

ce

∫D

e

ze(j) dj

Conversely, let x
(k)
e (p) and ze(p) satisfy the constraints in

model (4) for the link capacities ue(p). We define
x(k)e (u) = x

(k)
e (p), the coded packet ze(u) ¼ ze(p) and

capacity ue(u) ¼ ue(p) for u [ [p, p+ 1]. It is obvious that
x(k)e (p) and ze(p) satisfy the constraints in model (3) for the
link capacities ue(p). A

In summary, the above Lemma 1 shows that every
continuous-time problem can be transformed to a
corresponding discrete-time one.
It should be noted that the model given in (4), although is a

discrete-time model, is still not a static model to be solved in
polynomial time. Hence, our proposed algorithm is based on
reduction of this problem to a static time-expanded problem
that can be solved in polynomial time with respect to the
time-expanded network.
In the following, we will use the discrete-time model for

our analysis.

2.4 Time-expanded network

We now present a method for solving model (4). In order to
solve the above formulated problem, we propose an approach
based on transforming the problem into a delay-free problem
by using the time-expanded network proposed in [7].

It should be noted that in [7], a continuous-time network
with random linear coding is considered. However, the
objective in [7] has been to find the code to be used over
the sub-graph and finding the optimal sub-graph in
continuous-time has not been addressed there. On the other
hand, in this paper, our goal is to obtain the optimal sub-
graph by considering the discrete time model in which
delay times will take integer values and all are bounded in
the time horizon D. It can be shown that the network of
links with delay, G ¼ (V, A, D) can be reduced to a delay-free
problem (i.e. static network) through expanding time leading
to an auxiliary time-expanded network GD

¼ (VD, AD).
The time-expanded version of network G is a digraph
GD

¼ (VD, AD), wherein there is a copy of the nodes for each
time step in the time horizon {0, 1, . . . , D}. Consequently,
links are redrawn between these copies to indicate their
traversal times. The formal definitions are as follows:

VD
= {vp|v [ V , p = 0, 1, . . . , D}

A′
= {ep = (vp, up+de

)|e = (u, v) [ A;

p = 0, 1, . . . , D− de; vp, up+de
[ VD}

A′′
= {(vpvp+1)|vpvp+1 [ VD;

p = 0, 1, . . . , D− 1; v [ {s}< K}

AD
= A′

< A′′

Note that for a network GD, |VD
| ¼ D|V| and

|AD
|
∑

e[A

(D− de + 1)+D|V | = (|V | + |A|)D+ |A|−
∑

e[A

(de)

Since the maximum amount of buffering at node v is denoted by
bv, at each time instant at most bv units of information can be
stored in that node. Consequently, in the equivalent time-
expanded network, the same amount of information is
transformed from vp to vp+1. Therefore the capacity of the
link connecting nodes vp and vp+1 in the time-expanded
network will be equal to bv.
It can be easily verified that network G from the source s to

destination k [ K is equivalent to a corresponding network
GD from the source set sp to the sink set kp; p ¼ 0, 1, . . .,
D. It would then be possible to transform the network in
GD into a multicast problem by introducing a super-source
S (i.e. by converting sp, p ¼ 0, 1, . . ., D to a single source).
For example, the time-expanded graph corresponding to the
graph shown in Fig. 1 is demonstrated in Fig. 2.
Consequently, finding an optimal sub-graph in a network

with delays can be solved by finding a sub-graph optimal in
the time-expanded graph. With regard to the definition of

Fig. 1 Network with multicast from s to t1 and t2

Each link is marked with its corresponding transmit time
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time-expanded network, GD, we indicate the rate of flow on
link ep = (up, vp+de

) towards destination k by x(k)ep
. The

coded packets and link capacities are also denoted by zep
and uep , respectively.
The following equivalent selection formulation of the

optimal sub-graph is then obtained

min
∑

ep[AD

∑

D−de

p=0

cezep (5)

s.t.

x(k)ep
≤ zep , ∀ep [ AD, k [ K (5a)

∑

e[d+
ip

x(k)ep
−

∑

e[d−ip

x(k)ep
= s

(k)
i , ∀ip [ ND, k [ K (5b)

zep ≤ uep , ∀ep [ AD, p [ {0, 1, . . . , D} (5c)

x(k)ep
≥ 0, ∀ep [ AD, p [ {0, 1, . . . , D}, k [ K (5d)

It is easy to verify that models (4) and (5) will be equivalent

by setting zep = ze(p), x(k)ep
= x(k)e (p) and uep = ue(p) for each

ep [ AD, p [ {0, 1, . . ., D2 de}.
Thus, we obtain the following lemma:

Lemma 2: Models (4) and (5) are equivalent in the sense that
they both result in a solution with the same objective function
and satisfying the same corresponding constraints.

2.5 Obtaining the distributed solution

In order to obtain an iterative solution to problem (5), we use
the primal decomposition [14] and the dual-decomposition
methods in [15, 16] to find upper and lower bounds,

respectively. As shown in [15] these two bounds iteratively
converge to the optimal solution, as our problem satisfies
the conditions for convergence [14].

2.5.1 Primal decomposition: In order to find an upper
bound of model (5) through primal decomposition [14], we first
derive the dual problem D. By designating g(k)ep

, p
(k)
ip

andlep
as the dual variables associated with the constraints (5a), (5b)
and (5c), respectively, we will have

D:Max
∑

ep[AD

∑

D−de

p=0

ueplep +
∑

i[ND

∑

k[K

∑

D−de

p=0

s
(k)
ip
pk
ip

(6)

s.t.

ce + lep −
∑

k[K

g(k)ep
≥ 0,

∀ep [ AD, p [ {0, 1, . . . , D− de} (6a)

g(k)ep
− pk

head(ep)
+ pk

tail(ep)
≥ 0, ∀ep [ AD,

p [ {0, 1, . . . , D− de}, k [ K (6b)

g(k)ep
≥ 0, lep ≥ 0,

∀ep [ AD, p [ {0, 1, . . . , D− de}, k [ K (6c)

It should be noted that when lep and g
(k)
ep

are fixed at a given
arbitrary value, we obtain a linear programming problem in the
variable p

(k)
i . Therefore problem (6) decomposes into two sub-

problems. By first assuming constant values for lep and g
(k)
ep
,

sub-problem A is obtained.
Sub-problem A

Max
∑

ep[AD

∑

D−de

p=0

ueplep + f(g) (7)

s.t.

ce+lep −
∑

k[K

g(k)ep
≥ 0, ∀ep [ AD, p[ {0, 1, . . . ,D− de}

(7a)

g(k)ep
≥ 0, lep ≥ 0, ∀ep[ AD, p[{0, 1, . . . ,D− de}, k [K

(7b)

where

f(g) = Max
∑

i[ND

∑

k[K

∑

D−de

p=0

s
(k)
ip
pk
ip

(8)

s.t.

g(k)ep
− pk

head(ep)
+ pk

tail(ep)
≥ 0, ∀ep [ AD,

p [ {0, 1, . . . , D− de}, k [ K

Model (8) is the dual-standard minimum cost network flow
that can be solved as described in [17]. Problem (7) can
also be solved by using sub-gradient optimisation (see, e.g.
[15, Section 6.3.1]). It should also be noted that the model

Fig. 2 Time-expanded network of Fig. 1
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in (7) is now a static model which is independent of time.
Therefore it can be solved in a distributed manner [15].
We assume x∗ is the optimal value of dual variable in

model (8). If ze := max
k[K

{x∗ke }, ∀e [ A, then x∗ and z∗

satisfy the constraints of model (5). Therefore the objective
function of model (5) obtained by substituting x∗ and z∗

(denoted by w) will be an upper bound for the optimum
value of this model.

2.5.2 Dual decomposition: Constraint (5a) is a coupling
constraint such that, when relaxed, the optimisation problem
decouples into two sub-problems corresponding to variables
X and Z. Such relaxed problem is given by

Min
∑

ep[AD

∑

D−de

p=0

cezep +
∑

ep[AD

∑

k[K

∑

D−de

p=0

g(k)ep
(x(k)ep

− zep )

subject to constraints (5b), (5c) and (5d). If the objective
function (8) is rewritten as follows

∑

ep[AD

∑

D−de

p=0

ce −
∑

k[K

g(k)ep

( )

zep +
∑

ep[AD

∑

k[K

∑

D−de

p=0

g(k)ep
x(k)ep

the optimisation problem can be separated into two levels of
optimisation. At the lower level, we have the sub-problems
(i.e. the Lagrangians), one for each k [ K, in which (9)
decouples. We denote by g(k)(g), k [ K the dual function
obtained as the minimum value of the Lagrangian

g(k)(g) = Min
∑

ep[AD

∑

D−de

p=0

g(k)ep
x(k)ep

(9)

subject to constraints (5b) and (5d). The corresponding
function for z is

g(0)(g) = Min
∑

ep[AD

∑

D−de

p=0

ce −
∑

k[K

g(k)ep

( )

zep (10)

s.t.

0 ≤ zep ≤ uep , ∀ep [ AD, p [ {0, 1, . . . , D− de}

Note that the sub-problem (9) is the shortest path problem,
which can be solved using standard methods (see, e.g.
[Chapter 5 in [14, 17]). In the following, we use a
modification of the sub-gradient algorithm called the
volume algorithm [18, 19] which leads to faster
convergence in comparison with the sub-gradient algorithm.

2.5.3 Volume algorithm: Step 0: Start with a vector g and
solve (9) for each k to obtain g(k)(g), x(k). Then, solve (10)
to obtain g(0)(g), z. Set f ¼

∑

k[K g(k)(g)+ g(0)(g),
x(k)(0) ¼ x(k), z(0) ¼ z, and q ¼ 1.

Step 1: Compute g(k)ep
(q) = [g(k)

ep
+ s(x(k)ep

− zep )]
+, where

[.]+ indicates that g must be non-negative. s is also a
positive step-size to guarantee convergence of the algorithm
[15, 20]. Solve (9) and (10) with the computed value of
g(q), and let x(k)(q) and z(q) be the solutions obtained
resulting in corresponding values g(k)(g(q)), g(0)(g(q)). Let
f (q) ¼

∑

k[Kg
(k)(g(q))+ g(0)(g(q)). Then, x(k) and z are

updated as

x
(k)

:= ax(k)(q)+ (1− a)x(k), k [ K

z := az(q)+ (1− a)z

where a is a real number between 0 and 1.
Step 2: If f (q) . f, update g and f as

g := g(q)

f := f (q)

Let q: ¼ q+ 1 and go to Step 1.

Note that the solution of (8) results in a lower bound of the
objective function of problem (5).

2.5.4 Algorithm: The primal decomposition for model (5)
results in an upper bound through decomposing the
problem into two sub-problems that can be solved using
sub-gradient optimisation. The dual decomposition for
model (5) results in a lower bound through decomposing the
problem into |K| + 1 sub-problems that are solved using
the volume algorithm. By noting that our problem satisfies
the conditions for convergence, the lower and upper bounds
of the optimal value of the model (5) will both tend to the
optimal value; a near-optimal solution of any required

Fig. 3 Decentralised algorithm for the optimal sub-graph

selection-over network-coded networks with delay and limited-size

buffering
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accuracy, thus, can always be found within finite number of
iterations. The algorithm is summarised in Fig. 3.
The algorithm considered in [3] is based on the Lagrangian

dual problem of the model in [3] solved by sub-gradient
optimisation. However, we consider an iterative solution to
the problem that obtains lower and upper bounds of the
solution by using primal and dual decompositions. Such
approach is adopted in this case as the size of our model
might become large enough (due to expansion of the
dynamic problem over time and obtaining a static network).
Finally, our algorithm terminates whenever the lower and
upper bounds of the objective function become close enough.
It should be noted that in some cases, the solution obtained

in [3] by sub-gradient method may not satisfy the constraint in
the original model at every step, but our algorithm always
leads to a feasible solution at every step. Moreover, using
the volume method leads to a faster solution in comparison
with the sub-gradient algorithm [18, 19].
In the traditional case that arcs do not incur any delay, the

minimum cost sub-graph with network coding proposed by
Lun et al. [3] in model (1) is a convex optimisation
problem, with a polynomial-time solution. However, when
link delays are taken into account, the size of our proposed
time-expanded graph would not be polynomial in the size
of original problem, as there are D copies of the network in
the time-expanded version. Consequently, although the
original problem is not polynomial, after time-expansion it
will become a static polynomial problem with respect to the
new time-expanded version.

3 Extension to the varying-cost scenario

In real networks, link cost functions are not necessarily fixed
and may vary over time. In this section, we extend the
problem to the case of networks with varying costs. In this
case, we modify model (3) such that ce is not constant and
varies over time. As a result, the new objective function
will be

∑

e[A

∫D

0

ce(j)ze(j)dj

Model (5) will be subsequently modified as follows

Min
∑

e[AD

∑

D−de

p=0

cepzep (11)

s.t.

x(k)ep
≤ zep , ∀ep [ AD, p[ {0, 1, . . . , D− de}, k [ K

(11a)

zep ≤ uep , ∀ep [ AD, p[ {0, 1, . . . , D− de} (11b)

∑

e[d+
ip

x(k)ep
−
∑

e[d−ip

x(k)ep
= s

(k)
i

∀ip [ ND, p[ {0, 1, . . . , D− de}, k [ K (11c)

x(k)ep
≥ 0 ∀ep [ AD, p [ {0, 1, . . . , D− de}, k [ K (11d)

It is evident that model (11) can also be solved by the method
proposed earlier.

4 Simulation results: comparison with the
minimum-cost multicast approach

In this section, we compare the performance of our algorithm
with minimum-cost multicast algorithm described in [3]. It is
expected that in the absence of any delays in the network, our
algorithm will reduce to the minimum-cost multicast
approach in [3]. Therefore MCM techniques can be
considered as special cases in our algorithm.
For our simulations, we first consider the Butterfly network

of Fig. 4 that denotes a typical scenario in which network
coding is known to increase the multicast throughput [21].
Cost and delay of each link are shown in Figs. 4a and b,
respectively. Assume that there is only one source s and
two multicast receivers, t1 and t2 requesting same flows.
We consider three different scenarios with rates of 1, 2 and
3 units. We also consider three different time horizons
D ¼ 2, D ¼ 8 and D ¼ 9 and obtain the optimum solution
in each scenario as shown in Table 1.
Considering network variations, the simulations are

performed for the following four scenarios as well. In the
first case, no link delay and buffer size are assumed that
naturally leads to the optimal sub-graph solution obtained
by Lun’s algorithm [3]. In the second case, we include
buffer size and link costs; however, assume that their values
do not change over time. In the third case, we assume link
costs to be constant but buffer sizes vary over time
(randomly chosen from a uniform distribution in the
interval three to ten). Finally, we have also considered a
fourth scenario in which both buffer size and link costs
vary over time, chosen randomly from uniform distributions
in the intervals three to ten and one to five, respectively.
The results are shown in Table 2.

Fig. 4 Network with multicast from s to t1 and t2

a Each link is marked with its cost per unit rate
b Each link is marked with its transmit time

Table 1 Overall network cost for the cases 1, 2 and 3

Butterfly

network

R ¼ 1 R ¼ 1 R ¼ 1 R ¼ 2 R ¼ 2 R ¼ 3 R ¼ 3

D ¼ 2 D ¼ 8 D ¼ 9 D ¼ 8 D ¼ 9 D ¼ 8 D ¼ 9

first case 24 17 10 41 27 – 50

second case 24 17 10 34 20 51 30

third case 10 10 10 33 33 – –
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The results of Tables 1 and 2 can be summarised as
follows:

1. For small values of time horizon, sending data through
low-delay paths may lead to higher cost results. In addition,
if time horizons are assigned to very small values, it is
possible to encounter scenarios in which finding an optimal
sub-graph is impossible.
2. By increasing the time horizon, the proposed algorithm
has more flexibility in choosing lower cost solutions.
3. Increasing the buffer size of nodes can reduce the overall
cost, as intermediate nodes have the flexibility to store
incoming packets in their buffer when their lower-cost
output links are occupied. Such nodes can then send out the
stored packet at a later time instant at which the given
lower-cost links become available again.
4. When source data rate is increased beyond some limit,
selection of optimal sub-graph becomes impossible.
However, by proper choice of buffer size, the proposed
model may still lead to optimal sub-graphs while such
solution may not be found for the traditional solutions (i.e.
note the case of R ¼ 3 in Table 1).

It should be noted that since the algorithm proposed in [3]
finds the optimal sub-graph per time unit, we should compare
the average value of the cost function obtained from the
proposed algorithm over the time horizon D. In summary,
the proposed approach may naturally lead to solutions with
higher cost values if delay constraints are too strict.
However, they provide higher flexibility through packet
storage at intermediate nodes which may lead to lower cost
solutions when enough time horizon is taken into account.
In the next step, we tested our algorithms on random graphs

and compared the total cost for both network-coding-based
and routing-based solutions over the time-expanded
network described in Section 2.4. As expected, in routing-
based case the minimum-cost multicast solution is
equivalent to solving the Steiner tree problem on directed
graphs which is NP-hard [22]. Therefore one approach to
solving the routing-based problem is using polynomial-time
heuristics such as the multicast incremental power algorithm
proposed in [23]. The graphs, and their associated link
weights, are obtained from [24]. We first generate |N| nodes
randomly, according to a uniform distribution in a 10 × 10
square. The capacity of each link and buffer size of each

node in the network is one unit and the transmit rate is
R ¼ 1. Moreover, link costs and delays were assigned
randomly and the source node and the set of multicast
receivers were randomly chosen as well.
The results of the simulations are shown in Table 3. It can

be observed that depending on the network and the size of the
multicast group, the total cost reduction ranges from 23 to
43%. Simulations of our decentralised algorithm have been
performed for a network of 10 nodes and multicast group of
two sinks. The corresponding time-expanded network
contains 60 nodes and 235 arcs. Fig. 5 shows the result of
applying the volume algorithm described in Section 2.5 to
problem (5).
It should be noted that the value of parameter a in the

volume algorithm is set based on ideas proposed in [18, 19]
as follows. Let v ¼ x(k)2 z, v(q) ¼ x(k)(q)2 z(q), and let
amax be an upper bound for a. Then, we would compute
aopt as the value that minimises ‖av(q)+ (12 a)v‖. If
aopt , 0 we would set a ¼ (amax/10), otherwise we would
set a ¼ min{amax, aopt}. We start with the value of
amax ¼ 0.1 and then decrease its value as needed. Also, the
step-size in volume algorithm is set at s ¼ n20.3. The
optimal cost obtained for problem (5) by using the central
method is then equal to 15.34. It can be observed that in
fewer than 60 iterations, the cost obtained from the volume
algorithm is within 5% of the optimal value.

5 Conclusion

In this paper, we addressed the problem of finding optimal
sub-graphs in network coding over networks with link
delays and buffering capability at intermediate nodes.
Having formulated the problem of continuous delay
network coding, we described the relationship between
continuous and discrete models in coded networks. The
derived discrete model was then converted to an expanded
delay-free network which can be solved through well-
known algorithms. As shown by the simulation results,
inclusion of node buffering in our analysis may lead to
significant cost reduction. This is due to the fact that with
the aid of buffering, intermediate nodes can adopt a more
‘opportunistic’ transmission scheme over time. In addition,

Table 2 Overall network cost for the case 4

Butterfly

network

R ¼ 1 R ¼ 1 R ¼ 1 R ¼ 2 R ¼ 2 R ¼ 3 R ¼ 3

D ¼ 2 D ¼ 8 D ¼ 9 D ¼ 8 D ¼ 9 D ¼ 8 D ¼ 9

fourth case 9 4 5 8 10 12 12

Fig. 5 Dynamic network of 10 nodes with two-sinks multicast with

time horizon 5, that is, the time-expanded network contains 60 nodes

and 235 arcs

By using of the volume algorithm described in Section 2.5, obtained lower
bound of optimal cost

Table 3 Overall cost of random multicast connections of unit

rate for random networks of different sizes

Original

network size

Expanded-time

network size

Approach 2 sinks 4 sinks

10 nodes 60 nodes network coded 6.65 10.99

53 arcs 259 arcs routed network 11.81 17.6

20 nodes 120 nodes network coded 4.96 10.35

220 arcs 973 arcs routed network 6.83 13.47

Source and sink nodes are selected randomly among all nodes

(time horizon D ¼ 5)
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the proposed scheme leads to optimal sub-graphs when such
solutions may not be available for the traditional schemes that
do not take delay and buffering into account.

6 Acknowledgments

This work was supported in part by Iran National Science
Foundation under grant number 87041174.

7 References

1 Ahlswede, R., Cai, N., Li, S.Y.R., Yeung, R.W.: ‘Network information
flow’, IEEE Trans. Inf. Theory, 2000, 46, (4), pp. 1204–1216

2 Koetter, R., Medard, M.: ‘An algebraic approach to network coding’,
IEEE/ACM Trans. Netw., 2003, 11, (5), pp. 782–795

3 Lun, D.S., Ratnakar, N., Medard, M., et al.: ‘Minimum-cost multicast
over coded packet networks’, IEEE Trans. Inf. Theory, 2006, 52, (6),
pp. 2608–2623

4 Li, S.Y.R., Yeung, R.W., Cai, N.: ‘Linear network coding’, IEEE Trans.
Inf. Theory, 2003, 49, (2), pp. 371–381

5 Jaggi, S., Sanders, P., Chou, P.A., et al.: ‘Polynomial time algorithms for
multicast’, IEEE Trans. Inf. Theory, 2005, 51, (6), pp. 1973–1982

6 Chou, P.A., Wu, Y., Jain, K.: ‘Practical network coding’. Allerton Conf.
Comm. Cont. Comp., 2003

7 Wu, Y.: ‘A trellis connectivity analysis of random linear network coding
with buffering’. Proc. IEEE Int. Conf. Information Theory, 2006, no.
4036067, pp. 768–772

8 Lun, D.S., Medard, M., Ho, T., Koetter, R.: ‘Network coding with a cost
criterion’. Proc. ISITA, October 2004, pp. 1232–1237

9 Ho, T., Koetter, R., Medard, M., Effros, M., Shi, J., Karger, D.: ‘A
random linear network coding approach to multicast’, IEEE Trans.
Inf. Theory, 2006, 52, (10), pp. 4413–4430

10 Cui, T., Ho, T.: ‘Minimum cost integral network coding’. Proc. IEEE
Int. Conf. Information Theory, 2007, pp. 2736–2740

11 Wu, Y., Chiang, M., Kung, S.: ‘Distributed utility maximization for
network coding based multicasting: a critical cut approach’. Proc.
Second Network Coding Workshop, 2006

12 Xi, Y., Yeh, E.M.: ‘Distributed algorithms for minimum cost with
network coding’, IEEE/ACM Trans. Netw., 2010, 18, (2), pp. 379–392

13 Fonoberova, M., Lozovanu, D.: ‘Optimal dynamic multicommodity
flows in networks’, Electron. Notes Discrete Math., 2006, 25,
pp. 93–100

14 Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.: ‘Linear programming and
network flows’ (Wiley, New York, 1990, 2nd edn.)

15 Bertsekas, D.P.: ‘Nonlinear programming’ (Athena Scientific, Belmont,
MA, 1995, 2nd edn.)

16 Palomar, D., Chiang, M.: ‘A tutorial on decomposition method and
distributed network resource allocation’, IEEE J. Sel. Areas Commun.,
2006, 24, pp. 1439–1451

17 Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: ‘Network flows: theory,
algorithms, and applications’ (Prentice-Hall, Upper Saddle River, NJ, 1993)

18 Barahona, F., Anbil, R.: ‘The volume algorithm: producing primal
solutions with a subgradient method’, Math. Program., 2000, 87,
(3, Ser. A), pp. 385–399

19 Bahiense, L., Maculan, N., Sagastizabal, C.: ‘The volume algorithm
revisited: relation with bundle methods’, Math. Program, 2002, Ser.
A, 94, pp. 41–69

20 Shor, N.Z.: ‘Minimization methods for non-differentiable functions’
(Springer, Berlin, Germany, 1985)

21 Ho, T., Lun, D.S.: ‘Network coding an introduction’ (Cambridge
University Press, 2008)

22 Ramanathan, S.: ‘Multicast tree generation in networks with asymmetric
links’, IEEE/ACM Trans. Netw., 1996, 4, (4), pp. 558–568

23 Wieselthier, J.E., Nguyen, G.D., Ephremides, A.: ‘Energy-efficient
broadcast and multicast trees in wireless networks’, Mobile Netw.
Appl., 2002, 7, pp. 481–492

24 http://www.ifp.illinois.edu/~koetter/NWC/index.html

IET Commun., 2011, Vol. 5, Iss. 11, pp. 1497–1505 1505

doi: 10.1049/iet-com.2010.0612 & The Institution of Engineering and Technology 2011

www.ietdl.org


