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Abstract In this paper, we present an efficient evolutionary algorithm for the multi-user

detection (MUD) problem in direct sequence-code division multiple access (DS-CDMA)

communication systems. The optimum detector for MUD is the maximum likelihood (ML)

detector, but its complexity is very high and involves an exhaustive search to reach the best

fitness of transmitted and received data. Thus, there has been considerable interest in subop-

timal multiuser detectors with less complexity and reasonable performance. The proposed

algorithm is a combination of adaptive LMS Algorithm and modified genetic algorithm (GA).

Indeed the LMS algorithm provides a good initial response for GA, and GA will be applied for

this response to reach the best answer. The proposed GA reduces the dimension of the search

space and provides a suitable framework for future extension to other optimization algorithms.

Our algorithm is compared to ML detector, Matched Filter (MF) detector, conventional detec-

tor with GA; and Adaptive LMS detector which have been used for MUD in DS-CDMA.

Simulation results show that the performance of this algorithm is close to the optimal detector

with very low complexity, and it works better in comparison to other algorithms.

Keywords Direct sequence-code division multiple access (DS-CDMA) ·
Multiuser detection · Adaptive LMS algorithm · Genetic algorithm

1 Introduction

In a direct sequence-code division multiple access (DS-CDMA) system, the receiver is a

matched filter bank (MFB), which comprises the conventional detector (sign detector). This
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932 A. Zahedi, H. Bakhshi

Fig. 1 Baseband DS-CDMA block diagram, receiver with MUD [1]

type of receiver is unable to optimally recover the signal when the channel is contaminated by

additive white Gaussian noise (AWGN), and suffers from flat or frequency selective fading;

because the DS-CDMA signal is affected by multiple access interference (MAI) and also by

the near-far ratio (NFR) [1]. In fact, the signature signals of different users are not completely

orthogonal to each other, and cross correlation among these signals results in multiple access

interference. Therefore, the conventional MF detector [2,3], as in single user communica-

tion, is no longer effective and causes many problems. In 1986, Verdu in [2] proposed the

optimum multiuser detector (OMUD) which consists of a bank of matched filters followed by

a maximum likelihood sequence estimator (MLSE). The MLSE detector generates a maxi-

mum likelihood sequence, b̂, which is associated with the transmitted sequence, as presented

in Fig. 1 [1]. The vector b is estimated in order to maximize the sequence transmission

probability given that r(t) is received; where r(t) is extended for all messages, considering

all the transmitted messages with the same transmission probability [1]. The OMUD has a

computational complexity which grows exponentially with the number of users. Thus, since

CDMA systems could potentially have a large number of users, the OMUD is impractical

to implement for them. Therefore, many researches have focused on sub-optimum detectors

with less complexity and a performance which is almost as high as the OMUD. Alterna-

tive detectors for OMUD include the Decorrelator proposed by Verdu in [2] and the MMSE

recommended by Poor and Verdu in [4]. These algorithms have reasonable computational

complexity, and their performance is comparable to that of the optimum receiver, but they

yield a degraded communication system in sense of BER [1].

According to the problem of ML detector, many methods for suboptimal detection have

been proposed. Some heuristic methods have been developed, such as genetic algorithm

(GA). The first GA-based multiuser detector (GA-MUD) was proposed by Juntti et al. [5]

where the analysis was based on a synchronous CDMA system communicating over an

AWGN channel. After that in [6–11], the new approach of GA is proposed. Tabu search

algorithm [12] and simulated annealing algorithm (SAA) [13] are the other new approaches

of multiuser detectors. Also some novel techniques, such as particle swarm optimization

(PSO) and wavelet transform have been used [14–17]. Moreover, the PSO-based multiuser

detection (MUD) has been combined with Rake processing to overcome the multipath fading
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and multi access interference in [18]. Ant Colony-based MUD for suboptimal detection is

applied in [19,20].

For better implementation of multiuser detection, adaptive algorithms are used for MUD

implementation such as LMS and RLS algorithms. In [21] a new method, LBER, for MUD

in CDMA system is applied. Channel estimation using LMS and RLS and other adaptive

algorithms is discussed in [22]. Moreover in [23,24] LMS detector for multiple access system

is given. In adaptive algorithms by using of weight updating process, it is tried to decrease the

error between received and desired signal. With this property and due to the goal of this paper

(minimizing the detection error) we combined adaptive LMS algorithm and GA to suggest

sub-optimum method for multiuser detection. Our method is applied in two steps: first using

adaptive LMS to achieve a good initial response for GA and then in second step, applying

GA and repeating several generations to achieve the best result for multiuser detection.

We compare our proposed method to the ML detector, MF detector, conventional detector

with GA and Adaptive LMS detector and we show that the performance of the proposed

method is better with less complexity.

The remainder of this paper is organized as follows: Sect. 2 describes our asynchronous

CDMA system model; Sect. 3 highlights the algorithm used to implement our proposed

detector. The simulation results are presented in Sect. 4, while Sect. 5 provides comparison

of the complexities associated with our algorithm and several effective methods. Finally,

some conclusions are drawn in Sect. 6.

2 System Model

In a DS-CDMA system with binary phase-shift keying modulation (BPSK) shared by k

asynchronous users, as illustrated in Fig. 1, the k-th user transmitted signal is given by [25]:

xk (t) =
√

2Pk

∑

i

b
(i)
k sk (t − iTb) cos (ωct) . (1)

where Pk represents the k-th user transmitted power; b
(i)
k is the i-th BPSK symbol with period

Tb;ωc is the carrier frequency and sk(t) corresponds to the spreading sequence defined in

the interval [0, Tb):

sk (t) =

N−1
∑

n=0

ck,n p(t − nTc); 0 ≤ t < Tb. (2)

where ck,nǫ {+1,−1} is the n-th chip of the sequence with length N used by the k-th user;

Tc is the chip period and the spread spectrum processing gain, Tb

Tc
is equal to N ; the pulse

shaping p(t) is assumed rectangular with unitary amplitude in the interval [0, TC ) and zero

outside.

Assuming a frame with I bits for each user propagating over L independent slow Rayleigh

fading paths, the baseband received signal in the base station is [25]:

r (t) =

I−1
∑

i=0

K
∑

k=1

L
∑

l=1

Akb
(i)
k sk(t − τk) ∗ h

(i)
k (t) + w (t) . (3)

where K is the number of active users, tǫ [0, Tb) , the amplitude Ak is assumed constant for

all I transmitted bits, bkǫ {+1,−1} is the transmitted information bit, sk denotes a copy of the

signature sequence assigned to the k-th user and τk representing the random delay associated
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to the k-th user; the complex low-pass impulse response of the channel for the k-th user over

the i-th bit interval can be written as [25]:

h
(i)
k (t) =

L
∑

(l=1)

a
(i)
(k,l)δ(t − λk,l). (4)

where λk,l is the propagation delay and a
(i)
k,l is the complex channel coefficient whose ampli-

tude has Rayleigh distribution, and its phase is uniformly distributed over [0, 2π] ; finally,

w(t) represents the AWGN with bilateral power density equal to N0
2

.

Using vectorial notation, Eq. (3) can be stated as:

r (t) =

I−1
∑

i=0

s
T (t − iTb) Aa

(i)
b
(i) + w(t) (5)

where A = diag[A1I, A2I, . . . , AK I] is the diagonal matrix for the users’ amplitude includ-

ing the path losses and shadowing effects, and IL×L is the identity matrix with a dimension

equal to L; s is the vector of users signature sequence, and a is the diagonal channel gain

matrix as:

a
(i) = diag

[

a
(i)
1,1, . . . , a

(i)
1,L , a

(i)
2,1, . . . , a

(i)
2,L , . . . , a

(i)
K ,L

]

(6)

And the data vector is given by:

b
(i) =

[

b
(i)
1 , b

(i)
2 , . . . , b

(i)
K

]T

(7)

Representing the 1×L k-th user bit vector.

If we use the conventional Rake receiver which consists of a bank of KL filters matched

to the users’ signature sequence, then the output for the i-th bit interval can be expressed

as [25]:

y
(i)
k,l =

+∞
∫

−∞

r (t) sk

(

t − iTb − τk,l

)

dt = Ak Tbρ
(i)
k,l b

(i)
k + I

(i)
k,l + n

(i)
k,l . (8)

where the first term corresponds to the desired signal, the second term refers to the MAI

over the l-th multipath component of the k-th user, and the last term represents the filtered

AWGN. Notice that we neglect the auto-interference term for simplicity. MAI is the result

of cross correlation between signature signals of users as expressed [25]:

R j,k (τ, i) =

Tb
∫

0

s j (t) sk (t + iTb + τ) dt. (9)

If we use the Rake receiver as in [26], we need to estimate some parameters such as

channel coefficients and delay (τ ). When the number of users increases, the significance of

interference rises and owing to this fact, the conventional detector performance in MUD is

degraded. As mentioned in the previous section, we use the optimum detector to solve this

problem. The optimum detector is the maximum likelihood sequence detector that selects

the most likely sequence of transmitted bits given by the observations at the receiver. In

this context, the K -user, L-paths, I -frame and asynchronous channel scheme can be viewed
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as a KLI-user synchronous channel scheme, and then the KLI-user vector B can be written

as [25]:

B =
[

b(0)T

, b(1)T

, . . . , b(I−1)T
]T

. (10)

Based on [27], Verdu proved that in order to select the maximum likelihood sequence B,

we must maximize the log likelihood function (LLF):

f (B) = 2Re
{

BT
a

H Ay
}

− BT
aAR Aa

H B (11)

where y is the output vector and R is the cross correlation matrix that having the toeplitz

property:

y = [y(0)T

, y(1)T

, . . . , y(I−1)T

]T (12)

R =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

R[0] RT [1] 0 · · · 0 0

R[1] R[0] RT [1] · · · 0 0

0 R[1] R[0] · · · 0 0
...

. . .
...

0 0 0 · · · R[1] R[0]

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(13)

Neglecting the channel effect, we can state (11) in a simple form as [25]:

f (B) = BTr − BT RB. (14)

where r is the received signal and B is the transmitted sequence to be guessed and we neglect

other parameters in (11) due to the channel effect. The complete frame with the estimated

transmitted bits for all K users can be obtained through optimization of (14), resulting [25]:

B̂ = arg
{

maxBǫ{+1,−1}IK [ f (B)]
}

(15)

The OMUD attempts to find the best vector of data bits but because of high complexity and

unfeasible implementation, it is an inefficient method for multiuser. Because the optimization

associated with the OMUD is high dimensional, the dimension of the search space needs to

be restricted; hence, all suboptimal algorithms try to find a solution following an objective

function which is able to improve the performance of multiuser detection. These attempts try

to reduce the complexity of OMUD and maximize the DS-CDMA mean performance. As

a matter of fact, most efforts concentrate on approaching the performance of ML algorithm

with less complexity and reliable applicability along with the least possible error. In the next

section, we propose our algorithm to achieve this goal and compare our algorithm to other

efficient algorithms available in the literature.

3 Proposed Algorithm

It is well-known in the evolutionary computation literature that basic GAs (and even many

other modified evolutionary algorithms) bear some deficiencies in solution of large scale

problems. It is worthwhile to devise a dimension reducing algorithm to surmount the

so-called “curse of dimensionality”. One of the most important features of GAs is their

ability to find the global optimum of a cost function [28,29]. Many of the modifications

performed on the conventional GA’s have targeted this issue [30].
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Our proposed method in this paper not only modifies GA, but also guarantees the stability

and fast convergence of that. This method is adaptive and composed of two steps:

3.1 LMS Algorithm

In the first step for using the LMS algorithm, the initial weights must be determined. For this

subject the sequence of pilot data is transmitted and due to this fact that the desired output

must be the same as the transmitted data, it is tried to minimize the error between received

and transmitted pilots iteratively as in [31]. In this paper we use LMS with variable step size

and this variation is as follow (VSS algorithm [32]):

µ(n + 1) = αµ(n) + γ e2(n). (16)

where µ is the step size, e is the error between output and desired signal, 0 < α < 1 and
γ > 0. Also µ(n + 1) is limited between µmin and µmax. The advantage of variable step size

is that when the step is large, the convergence speed is much but probability of missing the

optimum point is high and if the step size is small, the convergence occurs late. The variable

step size has both advantages of these two cases.

Thus with this iterative and adaptive algorithm, the proper weights for minimizing input-

output difference are set and in other words the system is trained. The output is obtained

and then applied as initial response to GA. This output signal is near the optimum answer.

The simplicity and good performance of the LMS algorithm make it the benchmark against

which other optimization algorithms are judged. The use of LMS presents a proper initial

condition for applying GA.

3.2 Genetic Algorithm

In step 2, regarding to the fixed weights from previous step, it is tried to obtain the minimum

detection error with GA and LLF criterion.

It is trivial that the optimization algorithm performs better when the number of parameters

is fewer. Thereby, decomposition of a large scale problem into small parts is of substantial

interest. Such ideas are strong motivations for introducing a novel GA which tries to simplify

optimization problems and decompose them into simpler problems, since the probability of

finding the solution reduces when the number of the parameters increases. For example, to

elaborate more, consider the following cost function [30]:

F(�x) = 0.5 + (sin2|�x | − 0.5)e−0.2|�x |, �x = (x1, x2, . . . , xl) (17)

In which �x is the vector of the parameters of the problem. Obviously, the global minimum of

the cost function is located in �x = 0 and its value is 0. First, consider �x = x1. As shown in

Fig. 2, in order to reach the global optimum, it is necessary for a chromosome to be placed

in the best region, which is highlighted in Fig. 2. This region occupies a ratio of L1
L

of the

search space, which is a significant part of the space. There are many precise tools which can

assist the GA to reach this global optimum easily. Now, consider the following situation:

�x = (x1, x2) (18)

The function is illustrated in Fig. 3. Observe that the portion of the search space occupied

by the attraction domain of the global optimum is proportional to (L1/L)2 rather than L1
L

.

Since L1
L

< 1, this fact directly causes a reduction in the chance of finding the global optimum.

When the number of parameters proliferates, the chance decreases exponentially.
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Fig. 2 The function F(�x) in �x = x1 [29]

Fig. 3 The function F(�x) in �x = (x1, x2) [29]

This fact is firstly realized by a naive idea, i.e. neglecting some of the parameters of the

problem in the optimization procedure. However, such an approach is not mathematically

feasible when the steps towards the optimum points of the objective function are selected

regularly. In contrast, the random nature of the GAs makes the implementation of this idea

possible. The algorithm allows every parameter to change. The main difference of the algo-

rithm with conventional GA’s is that in each iteration, the algorithm is performed over subset

of the parameters while the other parameters are kept constant. In the next iteration, different

set of parameters are selected to be constant. The set of changeable parameters are selected

according to a procedure described in the sequel. With a sufficient number of repetitions, one

can make sure that an appropriate searching strategy is selected for the whole search space

which reduces the dimension of the parameters in each iteration of the conventional GA. It

is heuristically justifiable to initialize the algorithm by a “sufficiently good” solution which

is determined by adaptive LMS algorithm as previous section.
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Next, let us take a closer look at the objective function. Considering Eqs. (11) and (14),

the objective function is comprised of the two parts: BT r and BT RB. In the BT r part,

considering the fact that each element of B can only take the values of either 1 or −1 (as

many as the number of transmitted bits), it is enough for each element of B to to be either 1 or

−1, according to the corresponding member in r . Since the BT RB term is a square matrix,

if the non-diagonal elements were small, it would practically equal to BT B. In this case it

is indifferent if the values of the elements of B are either 1 or −1. The main problem is that

in some cases, some non-diagonal matrix elements are not considerably small and cannot be

assumed as negligible. Because the matrix R is symmetric, these elements add terms of the

type 2Ri j BT
i B j to the objective function. In this case if Ri j is negative, the fact that BT

i and

B j bear the same sign helps increase the value of the objective function, and if Ri j is positive,

their difference in sign helps this fact. In other words, the problem variables are no longer

independent, and their interaction is influential. The variable showing more interaction with

other variables is considered to be a more significant variable. In other words, the following

criterion is proposed:

idk =

K
∑

j=1

abs(Rk j ) (19)

where K is the number of transmitted bits. Any element of B with higher value id is a more

significant and effective variable. As discussed, a number of variables (say M) are selected

for optimization in the proposed algorithm, and the rest (K − M) are kept constant at the

previous value. As we discussed, those variables with lower id are more likely to be at their

optimal value, provided by the adaptive LMS detector from previous section. Thus, it is better

to take advantage of a probabilistic algorithm for selection of M , so that the variables with

higher id are more likely to be selected. Accordingly, the Roulette Wheel can be used in each

iteration for selection of variables with a probability proportional to their id value. However,

we take advantage of a method with less computational cost. This is done through selection

of a random number for each variable, having uniform distribution between zero and the

id corresponding to that variable. Then, the M variables possessing larger random numbers

are picked out. This action, on one hand, makes all the variables likely to be selected, and

on the other hand, makes those with higher id more likely to be chosen. In the next step, a

chromosome is created using these M variables, and the conventional GA is performed on

it once. Subsequently, the best answer is saved as the new values of these M variables, and

this process continues again. The different parts of this conventional GA are as follows:

3.2.1 Fitness Function Evaluation

In each generation, the fitness values are computed for each chromosome. Due to (14), the

fitness function is as follow:

f (B) = BT r − BT RB (20)

3.2.2 Selection

In order to preserve better chromosomes (solutions) to yield better offspring, we employ the

truncated selection scheme, through retaining only some of the parent chromosomes in the

population, which possess larger fitness values and reproduce them in the mating pool from

which the two parent chromosomes are randomly selected for the following crossover step

[28,33].
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3.2.3 Crossover

The bits of the parent vectors are then exchanged using the uniform crossover process in

order to produce two offspring. The process of uniform crossover invokes a crossover mask,

which is a sequence consisting of randomly generated 1s and 0s [28,33].

3.2.4 Mutation

The mutation process [28,33] refers to the alteration of the value attributed to a bit in the

offspring from 1 to −1 or vice versa, with a probability pm. Here, we set pm = 1/K, such that

on the average, only one bit in each individual is mutated.

The flowchart is provided in Fig. 4.

Fig. 4 The flowchart of

proposed algorithm
Start

Verify the condition of 

convergence ?

Specify M , K

Specify initial response with 

Adaptive LMS algorithm

Assign to each variable a random value 

between 0 And id proportional to that variable

Select M variables that maximize the fitness function 

Freezing other  K , create 

an initial random population . Of course , present 

response must be a member of this population  

Calculate the fitness function for population members

Selection

Recombination

Mutation

Select the best individual as answer

End

N

Y

M variables in present value
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The algorithm seems to have another advantage. Fine tuning algorithms for GA’s such

as Tabu search and other types of local search are more efficient in escaping from the local

minima when the dimension of the search space is low. Thereby, this algorithm is more likely

to perform better when combined with fine-tuning algorithms.

4 Numerical Results

In this section, the performance of the algorithm described in Sect. 3 is compared with

optimum ML detector and ordinary GA with conventional detector considering the BER as the

main figure of merit. The convergence of the algorithm versus optimization parameters is also

considered. It is assumed that the communication system is asynchronous DS-CDMA MUD,

over slow Rayleigh fading AWGN channel. The system performance is evaluated for both

BPSK and QAM modulations. The numerical results were obtained based on the averaging of

1,000 simulation runs; these results were attained in identical systems and channel conditions

in order to provide fair comparison with other algorithms. In all simulations, the parameters

are as follows in Table 1.

The spread sequences are selected as pseudo-noise (PN) m-sequence; the number of active

asynchronous users in the system is K = 20 and M = 4; the processing gain is N = 63. In

all simulations, it was assumed that the phases, amplitudes, channel gains and random delays

of all users are perfectly known in the receiver, and users’ power is according to:

E

[

L
∑

l=1

∣

∣

∣a
(i)
k,l

∣

∣

∣

2
]

= 1, f or k = 1, 2, . . . , K (21)

L is the number of signal paths. In all simulations, the population of GA has been selected

as 10 and the iteration has been chosen as 100. In these simulations as will be seen, our

proposed method is more effective and better in comparison to other algorithms presented

before.

First the main parameter of each communication system, BER, is discussed. In Fig. 5, this

property of the proposed algorithm for BPSK modulation is compared to the other algorithms

and also to the comprehensive search in the space of parameters known as ML and the worst

case as MF. It is revealed that although in low SNR, there is no main difference among the

methods; the proposed algorithm in high SNR converges to OMUD and the BER of this

method is less than others. In this figure, it is concluded that adaptive LMS detector with step

size 0.01 has a low performance in high SNR and so does conventional genetic method, but

Table 1 Simulation parameters
Modulation BPSK/QAM

Spreading code m-sequence with 63 chips

Communication system Uplink asynchronous CDMA

User number (K) 20

Channel AWGN with slow Rayleigh fading

Path number (L) 4

Path loss variance −5 dB

α (LMS) 0.9

γ (LMS) 0.1
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Fig. 5 BER of the proposed algorithm in comparison with other methods versus SNR, (BPSK mode)
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Fig. 6 BER of the proposed algorithm in comparison with other methods versus SNR, (4-QAM mode)

the proposed algorithm which combines adaptive variable step size LMS with modified GA,

has an excellent performance close to optimum detector. Figure 5 shows the unsuitability of

the MF form MUD.

In Figs. 6 and 7, the performance of the proposed algorithm compared to other algorithms

is presented for system with 4-QAM and 64-QAM modulations. In these figures, the similar

results such as those in the previous figure (Fig. 5) are obtained but with BER more than

that in the previous figure because the error of QAM modulations is more than that in BPSK

ones.

In Fig. 8, the effect of increasing the number of users on BER is analyzed for all mentioned

algorithms. On the basis of this figure, we see that the proposed adaptive genetic-based

algorithm performance is better than others and BER of this algorithm does not considerably

increase with increasing user numbers and is almost near ML detector. We also see that the

performance of the classic MF method is degraded substantially, and this fact shows that for

Multiuser detection, single user detector is not an effective method. This simulation is carried

out with SNR = 12 dB.

In Fig. 9, the BER of the proposed algorithm versus SNR with different step sizes is

implemented, and the numerical results are depicted. It is observed that with the variable

step size, the algorithm converges to OMUD and has a little error. Of course, for step sizes

0.01, 0.05, convergence occurs with an error. This figure shows that variable step size LMS
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Fig. 7 BER of the proposed algorithm in comparison with other methods versus SNR, (64-QAM mode)
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Fig. 8 BER of the proposed algorithm versus number of users in comparison with other methods. SNR is

fixed at 12 dB

has better convergence and less error in comparison with fixed step size LMS. Moreover the

limits of fixed step size LMS are suppressed.

In Fig. 10, BER versus the number of generations in different population sizes is illustrated,

and it is revealed that the proposed algorithm with population size 15 converges faster in

comparison to other two population sizes 10, 5. This property is very important, as the

complexity of calculations is decreased to a great extent by the proposed algorithm and

noticeably the cost of the detector and hardware bears the least quantity possible. This figure

shows that our algorithm is comparable with ML algorithm, and its convergence is fast with

lower complexity. This simulation was conducted in SNR = 15 dB.

5 Computational Complexity

In order to express the complexity of the analyzed algorithms, it is essential to determine

which instructions are carried out and how many times they are processed. For the fitness

value calculation, Eq. (11), the set of operations F1 = aH Ay and F2 = a ARAaH can be

obtained before the optimization loop of each algorithm. If the number of transmitted bits is I

and number of users is K , the complexity of genetic section of the proposed algorithm is in the
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Fig. 9 BER of the proposed algorithm versus SNR in different step sizes
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Fig. 10 BER versus the number of generations in proposed algorithm in different step sizes 15, 10, 5, and

ML and SNR = 15 dB

order of (K I )2 as most GAs [6]. This relation is because both the number of Generations and

the number of Populations is proportional to K I , and the complexity of GAs is proportional

to the product of these two parameters. Moreover the complexity of LMS section is in order

of K I [22]. So the complexity of the proposed algorithm is in order of (K I )3 in the worst

case mode (in the sequel it is explained why the worst case mode is said). Of course this

order is valid for the BPSK modulation and in QAM modulation, this complexity exists in

two dimensions such as in 4-QAM. So, the complexity of 4-QAM or 4-PSK is two times

more than BPSK mode complexity and in higher order modulation, the complexity grows

almost linearly. But for OMUD, the number of operations increases exponentially with the

number of users, i.e. 2K I . For example, in case with user numbers as 10 and the transmitted

bits equal to 4, the complexity of our proposed algorithm is compared with other methods in

Table 2.

As said in above, the complexity order (K I )3 is valid in the worst case mode. Indeed

in proposed algorithm, the computation order is less than that in the Table 2 because the

LMS algorithm is not needed to apply completely and after some iterations, it proposes

a good initial response for the modified GA as the next step. So the computation order

of modified GA is decreased because it relates with approximately good response from

previous step and it needs fewer numbers of generations and populations to converge. Fur-
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Table 2 Comparison of the

complexity of our proposed

algorithm with other methods

(K = 10, I = 4)

Methods O (order of computation)

MF K = 10

LMS K I = 10 × 4 = 40

GA (conventional) (K I )2 = (10 × 4)2 = 1, 600

Modified GA+LMS (K I )3 = (10 × 4)3 = 64, 000

OMUD (2)K I = 2(10×4) = 1.0995e + 12
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Fig. 11 Computation order of the proposed method in various modulations versus the number of users,

comparison to LMS, GA (conventional), ML and MF method

thermore, modified GA has less complexity than conventional GA. In numerical aspect

by using of averaging, it can be said that each step complexity of the proposed algorithm

is approximately reduced to half of its value and complexity order (K I )3 is converted to
K I
2

× ( K I
2

)2 = (K I )3

8
. Due to this new order, the computation order 64,000 in Table 2 is

changed to 8,000 for the proposed algorithm and due to this discussion, the real complexity

of proposed algorithm is near the other algorithms but its performance is much better than

others. From this table, the complexity of OMUD is much more than the proposed algo-

rithm even with higher order modulations. In Fig. 11, we assumed the number of users as

k= [5,10,15,20] and the number of transmitted bits as I = 4. From this figure, although

LMS receiver has less complexity in comparison to our algorithm but it is generally less

performing than adaptive GA-LMS and is strongly influenced by the step size parameter

setting.

6 Conclusions

In this paper, multiuser detection based on adaptive LMS combined with modified GA was

implemented, and through presentation of a new search method, the desirable optimization

method was achieved. In addition to complexity view point, there are three main novelties in

this work: First, we have used LMS algorithm with variable step size as initial response for GA

which has shown a good performance in the paper. Second, we have applied a modification

of GA which is powerful against high dimension problems. This is very important, since we

know that the curse of dimensionality is the main cause of failure in high dimension problems

optimization. On the other hand multiuser detection in DS-CDMA systems is certainly a high
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dimension problem with many optimization variables. Third, we have defined a way to find

more important variables in DS-CDMA systems, i.e. we have proposed that users with higher

cross-correlation have more important role in the final cost function. So the optimization

procedure should be applied on them more than the others.

When compared to sub-optimal algorithms such as conventional GA and LMS receiver,

the new algorithm shows better performance, and in some cases, rapidly approaches the

optimal ML algorithm. The present paper is also novel from complexity viewpoint. By

using the proposed method, the complexity is decreased considerably by the decompo-

sition of the problem into several problems with lower dimensions as presented in this

paper.
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