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Abstract: In the present work, we use the homotopy perturbation method (HPM) to solve the Newell-

Whitehead-Segel non-linear differential equations. Four case study problems of Newell-Whitehead-

Segel are solved by the HPM and the exact solutions are obtained. The trend of the rapid convergence 

of the sequences constructed by the method toward the exact solution is shown numerically. As a result 

the rapid convergence towards the exact solutions of HPM indicates that, using the HPM to solve the 

Newell-Whitehead-Segel non-linear differential equations, a reasonable less amount of computational 

work with acceptable accuracy may be sufficient. Moreover the application of the HPM proves that the 

method is an effective and simple tool for solving the Newell-Whitehead-Segel non-linear differential 

equations.  
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INTRODUCTION 

 

 Recently lots of attentions are devoted toward the semi-analytical solution of real-life mathematical 

modeling that is inherently nonlinear differential equations. Most of the nonlinear differential equations do not 

have an analytical solution. The idea of the homotopy perturbation method was first pioneered by (He, 1999) 

Later the homotopy perturbation method (HPM) which is a semi-analytical method is applied to solve the non-

linear non-homogeneous partial differential equations (He, 2005; Yildirim, 2009; He, 2006; He, 2006; He, 2006; 

He, 2005; He, 1998; He, 1998; He, 1999; He, 1999; He, 2000; He, 2006; He, 2005; He, 2005; He, 2005; Koçak 

et al., 2011; Gepreel, 2011; Cao and Bo. Han, 2011; Wazwaz, 2009). Ezzati and Shakibi (Ezzati, 2011) solved 

the Newell-Whitehead equation using the Adomian decomposition and multi-quadric quasi-interpolation 

methods. They concluded that the Adomian decomposition and multi-quadric quasi-interpolation methods are 

reasonable methods to solve the Newell-Whitehead equation with acceptable accuracy. 

 In the present work, the homotopy perturbation method (HPM) is applied to obtain the closed form 

solution of the non-linear Newell-Whitehead-Segel equation. Four case study problems of non-linear Newell-

Whitehead-Segel equations are solved using the HPM. The trend of the rapid convergence towards the exact 

solution is shown when compared to the exact solution. The Newell-Whitehead-Segel equation models the 

interaction of the effect of the diffusion term with the nonlinear effect of the reaction term. The Newell-

Whitehead-Segel equation is written as: 

 
 Where  and  are real numbers with  and  is a positive integer. In Eq. (1) the first term on the 

left hand side, , expresses the variations of  with time at a fixed location, the first term on the right 

hand side, , expresses the variations of  with spatial variable x at a specific time and the remaining 

terms on the right hand side, , takes into account the effect of the source term. In Eq. (1)  is 

a function of the spatial variable x and the temporal variable  with  and  The function  

may be thought of as the (nonlinear) distribution of temperature in an infinitely thin and long rod or as the flow 

velocity of a fluid in an infinitely long pipe with small diameter. The Newell-Whitehead-Segel equations have 

wide applicability in mechanical and chemical engineering, ecology, biology and bio-engineering.  
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2. The Idea Of Homotopy Perturbation Method: 

 The homotopy perturbation method (HPM) is originally initiated by (He, 1999; He, 2005; Yildirim, 2009; 

He, 2006; He, 2006; He, 2006; He, 2005; He, 1998; He, 1998; He, 1999; He, 1999; He, 2000; He, 2006; He, 

2005; He, 2005; He, 2005; Koçak et al., 2011). This is a combination of the classical perturbation technique and 

homotopy techinique. The basic idea of the HPM for solving nonlinear differential equations is as follow; 

consider the following differential equation: 

                       
                               (2) 

Where  is any differential operator. We 

construct a homotopy as follow: 
             

                              (3) 

  

 Where are F(u), H(u) are functional operators with the known solution vo. It is clear that when p is equal to 

zero then H(u, 0) = F(u) – H(u) = 0, and when p is equal to 1, H(u, 1) = E(u) = 0. It is worth nothing that is the 

embedding parameter  p increases monotonically from zero to unity the zero order solution vo continuously 

deforms into the original problem E(u) = 0. The embedding parameter, p [0,1], is considered as an expending 

parameter(He, 1999). In the homotopy perturbation method the embedding parameter p is used to get series 

expansion for solution as: 

 

 
 
 

When p        1, then Eq. (3) becomes the approximate solution to Eq. (2) as: 

                                                                        (5) 

 

 The series Eq. (5) is a convergent series and the rate of convergence depends on the nature of Eq. (2) (He, 

1999; He, 2005; Yildirim, 2009; He, 2006; He, 2006; He, 2006; He, 2005; He, 1998; He, 1998; He, 1999; He, 

1999; He, 2000; He, 2006; He, 2005; He, 2005; He, 2005; Koçak et al., 2011). It is also assumed that Eq. (3) has 

a unique solution and by comparing the like powers of p the solution of various orders is obtained. These 

solutions are obtained using the Maple package.  

 

3. The Newell-Whitehead-Segel Equation: 

 To illustrate the capability and reliability of the method, four cases of nonlinear diffusion equations are 

presented. 

 

Case І: 
 In Eq. (1) for  and  the Newell-Whitehead-Segel equation is written as: 

 
 Subject to a constant initial condition 

                                                                                                                                (7) 

 We construct a homotopy for Eq. (6) in the following form: 

 

 The solution of Eq. (6) can be written as a power series in as: 

                                                                                                            (9) 
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 Substituting Eq. (9) and Eq. (7) into Eq. (8) and equating the terms with identical powers of :  

 

 

 

 
  

 Using the Maple package to solve recursive sequences, Eq. (10), we obtain the followings: 

 

 

                                                                                         (11) 

 
   By setting   in Eq. 9  the solution of Eq. 6  can be obtained as   Therefore the solution of Eq. (6) is written as: 

              (12) 

 The Taylor series expansion for   is written as: 

 
 By substituting Eq. (13) into Eq. (12), thus Eq. (12) can be rewritten as: 

 
 
 This is the exact solution of the problem, Eq.(6). Table 1 shows the trend of rapid convergence of the 

results of  to  using the HPM. The rapid convergence of the 

solution toward the exact solution, the maximum relative error of less than 0.0046%, is achieved as shown in 

table 1. 

 Table 1 shows: he percentage of relative errors of the results of   to 

 of the HPM solution of Eq. (6) for λ=0.1 

 Case ІІ: In Eq. (1) for  and  the Newell-Whitehead-Segel equation is 

written as: 
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Table 1:  
  percentage of relative error (%RE) 

  
0.1540788596 

 
0.01027226573 

 
0.0002058041542 

 
0.00001949256084 

 
0.000001708760704 

 
3.214500334 e-8 

  
0.3835101093 

 
0.06910026503 

 
0.003074197736 

 
0.001358981068 

 
0.0003091665977 

 
0.00001230390524 

 
 
 
 
 
 

 

 
0.4680703804 

 
0.1063582391 

 
0.005078839539 

 
0.003988077959 

 
0.001125247109 

 
0.00004585924829 

 

 
 Subject to initial condition 

 
 To solve Eq. (15) we construct a homotopy in the following form:  

 

 The solution of Eq. (15) can be written as a power series in as: 

 
 Substituting Eq. (18) and Eq. (16) in to Eq. (17) and equating the term with identical powers of p, leads to  
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 Using the Maple package to solve recursive sequences, Eq. (19), we obtain the followings: 

 

 

 
 

   By  setting    in  Eq. 18   the  solution  of  Eq. 15   can  be  obtained  as   Therefore the solution of Eq. (15) is written as: 

 

The Taylor series expansion for    is written as                                                                     (21) 

 

 

 

 

 

 

 

 

 

 By substituting Eq. (22) into Eq. (21), the Eq. (21) can be reduced to  

 

 

 This is the exact solution of the problem, Eq. (15). Table 2 shows the trend of rapid convergence of the 

results of  to  using the HPM solution toward the exact 
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solution. The maximum relative error of less than 0.0008% is achieved in comparison to the exact solution as 

shown in table 2.  

 

Table 2: 

  percentage of relative error (%RE) 

  
 

  
0.09374691950 0.1010110875 0.1051585828 

 
0.003020748923 0.003848096613 0.004359470571 

 
0.00001102987604 0.00002050070585 0.00004357185889 

 
0.000003008522247 0.000003116144165 0.000002949567767 

 
3.247853526 e-8 7.597179054 e-8 1.007266564 e-7 

 
2.475184340 e-9 6.284562692 e-10 4.103584300 e-10 

  
0.2480807805 0.2663112457 0.2766522515 

 
0.02225395729 0.02841934500 0.03220845585 

 
0.0003852758255 0.0003051199126 0.0008095286291 

 
0.0002055820118 0.0002152872468 0.0002058262157 

 
0.000005574634536 0.00001431284116 0.00001929380478 

 
0.000001472642781 0.000001037290051 5.725167943 e-7 

 
 
 
 
 
 
 

 
0.3115489693 0.3338572016 0.3464690907 

 
0.03586206901 0.04586954916 0.05200200785 

 
0.0009882331330 0.0004901161293 0.001569416719 

 
0.0005982451688 0.0006298759390 0.0006050514464 

0.00001947940975 0.00005317431566 0.00007241822783 

 
0.000007711072685 0.000005555853236 0.000003218048969 

 

 Table 2 shows: the percentage of relative errors of the results of    to 

 of the HPM solution of Eq. (15). 

 Case ІІІ: In Eq. (1) for  and  the Newell-Whitehead-Segel equation 

becomes: 

 
 Subject to initial condition 

 

 We construct a homotopy for Eq. (24) in the following form: 

 

 The solution of Eq. (24) can be written as a power series in as: 

 
 

 Substituting Eq. (27) and Eq. (25) into Eq. (26) and equating the terms with identical powers of p:  
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 Using the Maple package to solve recursive sequences, Eq. (28), we obtain the followings: 

 

 

 

   By  setting    in  Eq. 27   the  solution  of  Eq. 24   can  be  obtained  as   thus the solution of Eq. (24) can be written as: 
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The Taylor series expansion for   is written as: 

 

 Comparing Eq. (31) with Eq. (30), thus Eq. (30) can be reduced to 

 

 This is the exact solution of the problem, Eq. (24). Table 3 shows the trend of rapid convergence of the 

results of  to  using the HPM solution toward the exact 

solution. The maximum relative error of less than 0.007% is achieved in comparison to the exact solution as 

shown in table 3. We can conclude that the HPM is one the most suitable and friendly method in solving the 

Newell-Whitehead-Segel equation. 

 Table 3 shows: the percentage of relative errors of the results of  to 

 of the HPM solution of Eq. (24). 

 

Case ІV: 

 In this case we will examine the Newell-Whitehead-Segel equation for , 

 
 Subject to initial condition 

                                                                                                         (34) 

 We construct a homotopy for Eq. (33) in the following form: 

 

 The solution of Eq. (33) can be written as a power series in as: 

 
 

 Substituting Eq. (36) and Eq. (34) into Eq. (35) and equating the terms with identical powers of p: 
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Table 3: 

  percentage of relative error (%RE) 

  
 

  
0.09323514238 0.1045372618 0.1099789256 

 
0.001725301473 0.003516790607 0.004498961488 

 
0.0002100221036 0.0001216772460 0.00005170881962 

 
0.00001173612982 0.00001539927439 0.00001472293353 

 
3.620778386 e-7  2.929797495 e-7 5.746720664 e-7 

 
5.414213656 e-8  3.614791446 e-8 1.434500497 e-8 

  
0.2396054415 0.2702774140 0.2852064054 

 
0.009390569965 0.02330928345 0.03106724554 

 
0.005215736776 0.003375969333 0.001825357483 

 
0.0007262150389 0.001037577469 0.001023346798 

 
0.00009555513293 0.00004044412369 0.0001029640746 

 
0.00003280557979 0.00002473085989 0.00001198739229 

 
 
 
 
 
 
 

 
0.2962707966 0.3351845099 0.3542406943 

 
0.01219208796 0.03518330953 0.04811460219 

 
0.01183961035 0.008037424274 0.004713588643 

 
0.001990820701 0.002987593293 0.002996129616 

 
0.0004128329726 0.0001164720814 0.0003682018367 

 
0.0001681121669 0.0001337455766 0.00006941923143 

  

 Using the Maple package to solve recursive sequences, Eq. (37), we obtain: 
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   By  setting    in  Eq.  36   the  solution  of  Eq. 33   can  be  obtained  as 
 

 Thus the solution of Eq. (33) can be written as, 

       

        

 

 

 

   

 

      (39)   

 

 

 

 The Taylor series expansion for    is written as                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 By substituting Eq. (40) into Eq. (39), the Eq. (39) can be reduced to:  

  
 

 This is the exact solution of the problem, Eq. (33). Table 4 shows the trend of rapid convergence of the 

results of  to  using the HPM solution toward the exact 
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solution. The maximum relative error of less than 0.037% is achieved in comparison to the exact solution as 

shown in table 4.  

 

Table 4: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Table 4 shows: the percentage of relative errors of the results of  to 

 of the HPM solution of Eq. (33). 

 

4. Conclusion: 

 In the present work the exact solution of the Newell-Whitehead-Segel nonlinear diffusion equation is 

obtained using the HPM. The validity and effectiveness of the HPM is shown by solving four non-homogenous 

non-linear differential equations and the very rapid convergence to the exact solutions is demonstrated 

numerically. The trend of rapid and monotonic convergence of the solution toward the exact solution is clearly 

shown by obtaining the relative error in compared to the exact solution. The rapid convergence towards the 

exact solutions of HPM indicates that, using the HPM to solve the non-linear differential equations, a reasonable 

less amount of computational work with acceptable accuracy may be sufficient. Moreover it can be concluded 

that the HPM is a very powerful and efficient technique which can construct the exact solution of nonlinear 

differential equations.  
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