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Abstract: In the present work, we use the homotopy perturbation method (HPM) to solve the Newell-
Whitehead-Segel non-linear differential equations. Four case study problems of Newell-Whitehead-
Segel are solved by the HPM and the exact solutions are obtained. The trend of the rapid convergence
of the sequences constructed by the method toward the exact solution is shown numerically. As a result
the rapid convergence towards the exact solutions of HPM indicates that, using the HPM to solve the
Newell-Whitehead-Segel non-linear differential equations, a reasonable less amount of computational
work with acceptable accuracy may be sufficient. Moreover the application of the HPM proves that the
method is an effective and simple tool for solving the Newell-Whitehead-Segel non-linear differential
equations.
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INTRODUCTION

Recently lots of attentions are devoted toward the semi-analytical solution of real-life mathematical
modeling that is inherently nonlinear differential equations. Most of the nonlinear differential equations do not
have an analytical solution. The idea of the homotopy perturbation method was first pioneered by (He, 1999)
Later the homotopy perturbation method (HPM) which is a semi-analytical method is applied to solve the non-
linear non-homogeneous partial differential equations (He, 2005; Yildirim, 2009; He, 2006; He, 2006; He, 2006;
He, 2005; He, 1998; He, 1998; He, 1999; He, 1999; He, 2000, He, 2006; He, 2005; He, 2005; He, 2005; Kogak
et al., 2011; Gepreel, 2011; Cao and Bo. Han, 2011; Wazwaz, 2009). Ezzati and Shakibi (Ezzati, 2011) solved
the Newell-Whitehead equation using the Adomian decomposition and multi-quadric quasi-interpolation
methods. They concluded that the Adomian decomposition and multi-quadric quasi-interpolation methods are
reasonable methods to solve the Newell-Whitehead equation with acceptable accuracy.

In the present work, the homotopy perturbation method (HPM) is applied to obtain the closed form
solution of the non-linear Newell-Whitehead-Segel equation. Four case study problems of non-linear Newell-
Whitehead-Segel equations are solved using the HPM. The trend of the rapid convergence towards the exact
solution is shown when compared to the exact solution. The Newell-Whitehead-Segel equation models the
interaction of the effect of the diffusion term with the nonlinear effect of the reaction term. The Newell-
Whitehead-Segel equation is written as:

%2 bu? (1)
-— = -+ auw — bu
dt dxt

Where @, b and k are real numbers with & = 0, and ¢ is a positive integer. In Eq. (1) the first term on the

. du
left hand side, ——,
ot

8%u
ax?’

terms on the right hand side, @ — bu? takes into account the effect of the source term. In Eq. (1) w{x,t) is

expresses the variations of 1¢(x,t) with time at a fixed location, the first term on the right

hand side, expresses the variations of (2, ) with spatial variable x at a specific time and the remaining

a function of the spatial variable x and the temporal variable t, with & €R and t = 0. The function u(x,t)

may be thought of as the (nonlinear) distribution of temperature in an infinitely thin and long rod or as the flow
velocity of a fluid in an infinitely long pipe with small diameter. The Newell-Whitehead-Segel equations have
wide applicability in mechanical and chemical engineering, ecology, biology and bio-engineering.
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2. The Idea Of Homotopy Perturbation Method:

The homotopy perturbation method (HPM) is originally initiated by (He, 1999; He, 2005; Yildirim, 2009;
He, 2006; He, 2006; He, 2006; He, 2005; He, 1998; He, 1998; He, 1999; He, 1999; He, 2000; He, 2006; He,
2005; He, 2005; He, 2005; Kogak et al., 2011). This is a combination of the classical perturbation technique and
homotopy techinique. The basic idea of the HPM for solving nonlinear differential equations is as follow;
consider the following differential equation:

E(u) =0, 2)
Where E (1t} is any differential operator. We
H(u,p) = (1—p)(F(u) — H(uj) + P[E ('UJ) = 0. construct a homotopy as follow:

&)

Where are F(u), H(u) are functional operators with the known solution v, It is clear that when p is equal to
zero then H(u, 0) = F(u) — H(u) = 0, and when p is equal to 1, H(u, 1) = E(u) = 0. It is worth nothing that is the
embedding parameter p increases monotonically from zero to unity the zero order solution v, continuously
deforms into the original problem E(u) = 0. The embedding parameter, p €[0,1], is considered as an expending
parameter(He, 1999). In the homotopy perturbation method the embedding parameter p is used to get series
expansion for solution as:

u=Zpivi=vD+pv1 +P21"2 +P31"3+'" (4)

i=0

When p—1, then Eq. (3) becomes the approximate solution to Eq. (2) as:
u=vy, +vy+v,+vygt+-- ®)

The series Eq. (5) is a convergent series and the rate of convergence depends on the nature of Eq. (2) (He,
1999; He, 2005; Yildirim, 2009; He, 2006; He, 2006; He, 2006; He, 2005; He, 1998; He, 1998; He, 1999; He,
1999; He, 2000; He, 2006; He, 2005; He, 2005; He, 2005; Kogak et al., 2011). It is also assumed that Eq. (3) has
a unique solution and by comparing the like powers of p the solution of various orders is obtained. These
solutions are obtained using the Maple package.

3. The Newell-Whitehead-Segel Equation:
To illustrate the capability and reliability of the method, four cases of nonlinear diffusion equations are
presented.

Case I:
InEq.(1)fora =2,b =3,k = 1landg = 2 the Newell-Whitehead-Segel equation is written as:

du _ 9%u

E—ax2+zu—3u2 (6)
Subject to a constant initial condition
u(x,0) =4, (7
We construct a homotopy for Eq. (6) in the following form:
dv  du, dv  d*v .
H(v,p) = (1—p) [E—¥]+p E_E_EU_FEU =0 (8)

The solution of Eq. (6) can be written as a power series in P as:

v=v, +puv, +pu, +- )
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Substituting Eq. (9) and Eq. (7) into Eq. (8) and equating the terms with identical powers of:

du,  du,

p": 3 - ot vy (x,0) = 4,
pt: %_% = H;xv;, + 2u- 317, v (x,0) =0,
T R S N Y b;(x,0) = 0, (10)
p?: i’i; = ZZU: — 3yu, —3vf +v,(2—3y,), vy(x,0) = 0.

Using the Maple package to solve recursive sequences, Eq. (10), we obtain the followings:

Ul}(xrt’j = Fk.v
v (xt) = AM2-310)¢,
v, (x8) = 24(2 - 30 (1 - 3D, (n

t:i
vy (x, ) = 24(2 —34)(274% — 184 + 2) R

By setting® = 1in Eq. (9) the solution of Eq. (6) can be obtained as

v = vy + vy + vy + vy + ... Therefore the solution of Eq. (6) is written as:

v(t) = A+ A2 - 3N+ 242 —32)(1— 3D S +24(2 — 30) (2742 — 182+ 2) S+

(12)
_Eagtt
The Taylor series expansion for m is written as:
—2p2t £2
————— = A+12-30t+ 242 -30)(1-31) =
— S A—ReX 21
3
£3
+2A(2—-32) (274 — 181 + 2) 3 + - (13)
By substituting Eq. (13) into Eq. (12), thus Eq. (12) can be rewritten as:
_ 2)1 2t
(x,1) i (14)
vixt)=—F"""—
—> 4 A—he?

This is the exact solution of the problem, Eq.(6). Table 1 shows the trend of rapid convergence of the
results of Sy(x, t) = v, (x,t) to Sg(x, t) = Ef‘:uvi(x, t) using the HPM. The rapid convergence of the
solution toward the exact solution, the maximum relative error of less than 0.0046%, is achieved as shown in

table 1.
Table 1 shows: he percentage of relative errors of the results of Sylx, £) = w,(x, ¢ to

550x, t) = X2, w; (x, t) of the HPM solution of Eq. (6) for A=0.1
Case II: In Eq. (1) fora=1,b =1,k =1 and g = 2 the Newell-Whitchead-Segel equation is
written as:
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Table 1:
percentage of relative error (%RE)
t=0.1 Solx,t) 0.1540788596
5,(x,t) 001027226573
Sa(x,t) 0.0002058041542
S3(x,t) 0.00001949256084
Salxt) 0.000001708760704
Sc(x,t) 3214500334 -8
t=273 Solx,t) 0.3835101093
S5i(x,t) 0.06910026503
Sa(x,t) 0.003074197736
S3(x,t) 0001358981068
Salxt) 0.0003091665977
Sc(x,t) 0.00001230390524
t=.4 Solx,t) 0.4680703804
5, (x,t) 0.1063582391
Sa(x,t) 0.005078839539
Sa(x,t) 0.003988077959
Salx,t) 0.001125247109
Sc(x,t) 0.00004585924829
du d*u ,
Bt axE MM (15)
Subject to initial condition
1
u(x,0) = (16)

* 2
(1 + e*’g)

To solve Eq. (15) we construct a homotopy in the following form:

v du,

H.p) = 1-p) 52~ +p

dt  dt

dv  3*v

The solution of Eq. (15) can be written as a power series in 2 as:

v=1, +py +plu,

(18)

Substituting Eq. (18) and Eq. (16) in to Eq. (17) and equating the term with identical powers of p, leads to

dv,  du, 1
TR TS %) = T4
(1 + e*’g)
du, du, d*y,
Pl T o — g F e w) wx0) =0,
du d%v
p?: a—; = Ezl — vy (1 —wy), w(x0)= 0, (19)
du d*v
P =T by ol 2w, u(x0) = 0.
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Using the Maple package to solve recursive sequences, Eq. (19), we obtain the followings:

vxt) = ——
(1 - eﬁ)

e
'Ul(x,t] —gﬁt (20)
(1 - eﬁ)
X X
25 E“"'E(_-l + ZE"E) 2
v, (x,t) = 1s P
(1 + eﬁ)
= = =
125 E"fg (4‘(3“"{;]2 —_ ?E"E + 1) tH
vy (x,1) = 216

EAS 3
(1 + e*’g)
in Eq. (18) the solution of Eq. (15)
v = vy + vy + vy, + g+ .. Therefore the solution of Eq. (15) is written as:

By setting p=1

can be obtained as

x X x x x
= a""g(—1+29"'?) . avE (4(91’3}“—?9*’3“)
_ 1 5 gve 25 t 125
v(x,t) = -+ = — i

X 18 ERN 2 + 216 x5 3 +
(1+a"'€) (1+a*’3) (1+s"3) (1+a“~’3)

1
The Taylor series expansion for = = . Iswritten as 21
14675 &
x = X
1 1 5 % 25 (€| —1+ 39";) 2
BN =it3 EXChRET x4 2
(‘1 + E"E & ) (1 -|— e'\"g) 1 + E'\"E) (1 + E""'E)
= = =
125e"® (4(&*’@2 — Jefe + 1) 3
S T 27
216 XyE 3 (22)
(2+¢7)
By substituting Eq. (22) into Eq. (21), the Eq. (21) can be reduced to
1
u{x, tj = T .=z {23]
(1+aﬁ_gr)

This is the exact solution of the problem, Eq. (15). Table 2 shows the trend of rapid convergence of the
results of Sy(x, t) = v, (x,t) to Sg(x t) = Ef;uv,-(x,tj using the HPM solution toward the exact
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solution. The maximum relative error of less than 0.0008% is achieved in comparison to the exact solution as
shown in table 2.

Table 2:
percentage of relative error (%RE)
x=1 x=15 x=1.8
t=0.1 Su(x; t} 0.09374691950 0.1010110875 0.1051585828
_5'1 (.'X.', t} 0.003020748923 0.003848096613 0.004359470571
5q (x, t} 0.00001102987604  0.00002050070585  0.00004357185889
5q (_-rJ t} 0.000003008522247  0.000003116144165  0.000002949567767
Sa (.‘I.', t} 3.247853526 e-8 7.597179054 e-8 1.007266564 -7
55 (_-)(:J t} 2.475184340 -9 6.284562692 e-10 4.103584300 e-10
t=.3 Su(xj t} 0.2480807805 0.2663112457 0.2766522515
5 (x, t} 0.02225395729 0.02841934500 0.03220845585
5q (:X.', t} 0.0003852758255 0.0003051199126 0.0008095286291
5y (:X.', t} 0.0002055820118 0.0002152872468 0.0002058262157
Sa (.'X.', t} 0.000005574634536  0.00001431284116  0.00001929380478
_5'5 (.'X.', t} 0.000001472642781  0.000001037290051  5.725167943 e-7
t=.4 _S'D(xJ t} 0.3115489693 0.3338572016 0.3464690907
54 (:I.', t} 0.03586206901 0.04586954916 0.05200200785
5q (.‘I.', t} 0.0009882331330 0.0004901161293 0.001569416719
_5'3 (.'X.', t} 0.0005982451688 0.0006298759390 0.0006050514464
5a (x, t} 0.00001947940975  0.00005317431566  0.00007241822783
5z (JC, t} 0.000007711072685  0.000005555853236  0.000003218048969

Table 2 shows: the percentage of relative errors of the results of  Sylx.£) = v,(x. &) to
Selx. t) = EZ_jv; (x, ) of the HPM solution of Eq. (15).
CaseIIl: InEq. (1) fora = 1,b = 1,k = 1 and g = 4 the Newell-Whitehead-Segel equation

becomes:
du _ dtu + A 24
ar  axz o (24)

Subject to initial condition

1
u(x,0) = | —— (25)
1+ e

We construct a homotopy for Eq. (24) in the following form:

dv  du dv  d*v
H(U;P)=(1—P)[E—a—:] PE—E—U"‘U* =0. (26)

The solution of Eq. (24) can be written as a power series in  as:
v=v, tpu iy 4o (27)

Substituting Eq. (27) and Eq. (25) into Eq. (26) and equating the terms with identical powers of p:
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dv, du, 1
A R
(1 + e’_”)
du, d%u, du,
pl: E = 322 —§+ Uu{i_ Uua}r Ul(xrnj = 0,
, o d*v, 3
S o Y 0(60) = 0, @8)
du %v
p*: 8—; - ax; - ﬁvuzlﬁz _4‘”u3”2 + vy, us(x,0) = 0.

Using the Maple package to solve recursive sequences, Eq. (28), we obtain the followings:

1 B
V(nt) =\ ——=_
1+e@

B
LT
w(ot) =g| ——— |t

(1 + eF*)

2 2
49 (Zeﬁx - 3) eV #2

Us (xJ t] = A 2 E {29}

50 s S
(1 + eﬁ)
B 2 B B
4 (eﬁ“‘) — 27eV® 49| eV
343

1000 . 2 3
(1 + eF“)

vy(x, t) =

By setting P =1 in Eq. (27) the solution of Eq. (24) can be obtained as
v =uy +uy +uy, + vy + ... thus the solution of Eq. (24) can be written as:
z 2 LI._x L..-.x

1y 7| e 49 (3'9““ - 3) v |42

v ) = | —— | 42| ———— |t + — — |=

1 = 5 IRy 50 E g 2

te (1 + eF") (1 + eF")
B 2 B B
4(eﬁ) —27eV® + 9 |eV
343 t

N (30)

1000 3

. .=
(1+eﬁ)a
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. . 1 3 7 1 . .
The Taylor series expansion for (E tanh (— (x - t]) + ;) is written as:

1 3 7 1
(Etrmh(—zm(x - mt))-l_i)

5 2 5 ]
4(e-ﬁ") —27eV® + 9 |eV
343 t?

R T 31
1000 = 3+ (31)

:
(1 + eﬂ) )
Comparing Eq. (31) with Eq. (30), thus Eq. (30) can be reduced to
z

v(x, t) = G tanh (— 2jﬁ (x - «;%t)) + %); (32)

This is the exact solution of the problem, Eq. (24). Table 3 shows the trend of rapid convergence of the
results of SD(x, t) = 7 (x.t) to SE(X, t) = Ef;uv,-(x,tj using the HPM solution toward the exact
solution. The maximum relative error of less than 0.007% is achieved in comparison to the exact solution as
shown in table 3. We can conclude that the HPM is one the most suitable and friendly method in solving the
Newell-Whitehead-Segel equation.

Table 3 shows: the percentage of relative errors of the results of Sp(x £} = w5 (x, £) to
5. (x. £) = B2, v; (x, ) of the HPM solution of Eq. (24).

Case IV:

In this case we will examine the Newell-Whitehead-Segel equation fora = 3,b = 4,k =1, = 3,
du a*u 3
E—E‘FER—-’{-R, (33)

Subject to initial condition
(x,0)= |2 e (34)
L 4 - A&’
gVBXy 7 %
We construct a homotopy for Eq. (33) in the following form:

dv  du, dv  d*v

H(v,p) = (1-p) [E—¥]+p[§—@—3u+4uﬂ =0. (35)

The solution of Eq. (33) can be written as a power series in  as:

v=uv, tpuv +piu +o (6

Substituting Eq. (36) and Eq. (34) into Eq. (35) and equating the terms with identical powers of p:

1407



Aust. J. Basic & Appl. Sci., 5(8): 1400-1411, 2011

du du e e
P 2= 0 wE0)= [ =
eVEx 4 o 3%
duv, 8%y, dy,
P G T axr g T (374w %(60) = 0,
dv, d*v
2 dug 5‘2112 3 2
p’: 2=+ 3yl — 120,08 w(x0) = 0
Table 3:

percentage of relative error (%RE)

x=1
t=01 Splx,t) 009323514238
5y (x,t)  0.001725301473
S,(x,t)  0.0002100221036
53(x, )  000001173612982
Sa(x,t) 3.620778386 -7
So(x,t) 5414213656 -8
t=.3 Sgplx,t) 02396054415
5y(x,t)  0.009390569965
5,(x,t) 0005215736776
S3(x,t)  0.0007262150389
Sa(x,t)  0.00009555513293
Sc(x,t)  0.00003280557979
t=4 Splx,t) 02962707966
51 (x,t) 001219208796

S,(x,£)  0.01183961035
Sa(x,t)  0.001990820701

Sa(x,£)  0.0004128329726
Sclx,t)  0.0001681121669

¥x=15 x=18
0.1045372618 0.1099789256
0.003516790607 0.004498961488
0.0001216772460 0.00005170881962
0.00001539927439 0.00001472293353

2.929797495 e-7 5.746720664 e-7

3.614791446 e-8 1.434500497 e-8

0.2702774140 0.2852064054
0.02330928345 0.03106724554
0.003375969333 0.001825357483
0.001037577469 0.001023346798
0.00004044412369 0.0001029640746
0.00002473085989 0.00001198739229
0.3351845099 0.3542406943
0.03518330953 0.04811460219
0.008037424274 0.004713588643
0.002987593293 0.002996129616
0.0001164720814 0.0003682018367
0.0001337455766 0.00006941923143

Using the Maple package to solve recursive sequences, Eq. (37), we obtain:

E'v'ﬁ.x
Ul}(x-' tj = o N
gVex 4 gz "

9 |3
Lll(x,t]:i Z
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= B 2
E. “x B &
543 3&“' oz ( 4&“'” +(e“' x} -I-( ))ta
16 .4 RS 3
(e“'s“+ezx)

By setting P =1 in Eq. (36) the solution of Eq. (33) can be obtained as
v=uytu o tut o
Thus the solution of Eq. (33) can be written as,

vy(x, t) =

v(x,t) =
-
= 1
ex VEx Rt it T
3 g + 5 [3 g g2 ¢ + 21 |3 +
4 - Y5, 244 JE 4 a4 JEN T 2
g e g (E'\"Ex_l_ ng) (E'\"Ex_l_BTx)

243 |3 : Ll (39)
16 J; _ B 3 +on
(B‘E‘rhg sz

Vex
3
The Taylor series expansion for : = Tz o IS written as
-\"Ex_I_E[Tx_Et
3 Ve
n & 9
4 E_“st + e T.x:—;f)
— T
3 gVex 9 (3 eVE¥ez"
V& JE o4 2
4 Ew‘ﬁx +e 7 244 E'v'g.x: te :.x)
_ s &
g1 (3¢ 7= (_Em + E?)rz
+— |-
4 |4 RS 2
(e“'ﬁx +es )
R V5 z
VBx ,TE VEBx oo B o
ez 4" ez + (e + (e z )
243 (3 ( (=) t3 N (40)
16 .4 et 3
(e )

By substituting Eq. (40) into Eq. (39), the Eq. (39) can be reduced to:

< B

v(x, t) = |- . (41)
)

("E
E'v'ﬁx_l_e z 2

[#3]

This is the exact solution of the problem, Eq. (33). Table 4 shows the trend of rapid convergence of the
results of Sy(x,t) = v, (x,t) to Sc(xt) = Z?zu‘lﬂi(x,tj using the HPM solution toward the exact
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solution. The maximum relative error of less than 0.037% is achieved in comparison to the exact solution as
shown in table 4.

Table 4:
percentage of relative error (%RE)
x=.2 x=24 xr=.8

t=01 Sylx,t) 01591055626 0.1376714465 0.09890297594
5y(x,£) 0007038530707 0.009754764500 0.01176933513
S5(x,t) 0002482893305 0.001788283111 0.0004607861238
S3(x,t)  0.0001958736131 0.0002690488417 0.0002512962487
Salx,2)  0.00004554598541 0.00002344226507 0.00001229642845
Sc(x,t)  0.000004998678372 0.000006399733729 0.000003681928211

t=.15 Splx,t) 02155132753 01864801193 0.1339670591
5, (x,t) 001698529379 0.02214248709 0.02558157620
So(x,t) 0007422698254 0.005232453593 0.001127443849
S3(x,t) 0001011675135 0.001318032849 0.001182316216
§4(x,t)  0.0003016921205 0.0001450263132 0.0001001951821
Sc(x,t)  0.00005638430243 0.00006875985734 0.00003732434558

t=.2 Solx,t) 02605557486 0.2254546357 0.1619662983

5y(x,t) 003164334146 0.03938244479 0.04388750886
So(x,t) 001561926168 0.01076040185 0.001819030418
S3(x,t) 0003225422844 0.004022798070 0.003478947590
Sa(x,t) 0001110362592 0.0004931283715 0.0004433744920
Sc(x,t)  0.0003119309814 0.0003646043520 0.0001870028440

Table 4 shows: the percentage of relative errors of the results of S5ulx, &) = vy (x.t) to
Selx. t) = EE_yv; (x, £) of the HPM solution of Eq. (33).

4. Conclusion:

In the present work the exact solution of the Newell-Whitehead-Segel nonlinear diffusion equation is
obtained using the HPM. The validity and effectiveness of the HPM is shown by solving four non-homogenous
non-linear differential equations and the very rapid convergence to the exact solutions is demonstrated
numerically. The trend of rapid and monotonic convergence of the solution toward the exact solution is clearly
shown by obtaining the relative error in compared to the exact solution. The rapid convergence towards the
exact solutions of HPM indicates that, using the HPM to solve the non-linear differential equations, a reasonable
less amount of computational work with acceptable accuracy may be sufficient. Moreover it can be concluded
that the HPM is a very powerful and efficient technique which can construct the exact solution of nonlinear
differential equations.
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