
Robust Facial 2D Motion Model Estimation for 3D
Head Pose Extraction and Automatic Camera Mouse

Implementation

Masoomeh Nabati (Msc. Student)
Electrical Engineering Department

 Shahed University
Tehran, Iran

masoomeh_nabaaty@yahoo.com

Alireza Behrad (Assist. Prof.)
Electrical Engineering Department

Shahed University
Tehran, Iran

behrad@shahed.ac.ir

Abstract— In this paper, we present a novel approach to 3D

head pose estimation from monocular camera images for the

control of mouse pointer movements on the screen and clicking

events. This work is motivated by the goal of providing a non-

contact instrument to control the mouse pointer on a PC

system for handicapped people with severe disabilities using

low-cost and widely available hardware. The required

information is derived from video data captured using a

monocular web camera mounted on the computer monitor.

Our approach proceeds in six stages. First, the face area is

extracted using Haar-like features and AdaBoost algorithm.

Second, the locations of the point features are detected and

tracked over video frames by LK algorithm. Third, the 2D

transformation model between consecutive frames is estimated

by matching features and robust RANSAC algorithm. Fourth,

the estimated 2D transformation model is applied to four

supposed points on the face area. Then, the 3D rotation matrix

and translation vector between the web camera and 3D head

pose are estimated using four points correspondences. Finally,

the 3D rotation and translation matrix is applied for estimating

the mouse pointer movements on the PC screen and clicking

events. Experimental results showed the promise of the

algorithm.

Keywords-Camera mous; 3D head pose estimation; mouse

pointer control; visual tracking module;

I. INTRODUCTION

More than 500 million persons, 10 percent of the world's
total population, suffer from some type of disability.
Nowadays different support devices and care equipment
have been developed to help the handicapped people. One of
the main support devices for handicapped people with severe
disabilities is an instrument for communication with
computers or similar devices. However, the main problem
with these devices is the control difficulties due to the
limited physical abilities of the users. Thus, different type of
interfaces has been developed to facilitate the
communication between the handicapped users and the
devices like computers [1-5]. These interfaces are mainly
categorized into two groups including intrusive and non-
intrusive methods. Intrusive methods mostly use contact
sensors which measure human reflections or activities.

Although intrusive methods can detect features or signals
more accurately, they require expensive devices and are not
flexible [6-10]. Non-intrusive methods mostly track human
gestures by processing images or videos obtained via a
camera. In contrast to intrusive methods, they are more
comfortable for the users and involve less expensive
communication devices.

A camera mouse system is a non-intrusive method that
helps handicapped people to interact with computers. A
camera mouse system is usually composed of one or multiple
video cameras for capturing video frames and a processing
unit like a PC which uses image processing algorithm to
convert the motion events in video frames to mouse
operations. The algorithm is usually formed from a visual
tracking module and a mouse control module. The visual
tracking module retrieves motion information from the
video, and the mouse control module specifies the rules of
control.

Different algorithms have been proposed for the
implementation of camera mouse which most of them use
head pose or movements and facial features like eyes,
nostrils and mouth. The use of head and facial feature for
camera mouse implementation is due to two reasons: first,
they have high communicative information and second: most
camera mouse users have severe hand disability. Systems
using eye movements have already been presented in [11-
13], where mouse movements and click events are generated
based on eye movements and fixing in a specific area for one
or more seconds. Using mouth movements and lip reading is
another method for camera mouse implementation which has
been presented in [14, 15]. In this method various mouth
shapes is used for lip reading. The system proposed by
Yunhee Shin et al [16] is able to control the mouse based on
eye and mouth movements. Jilin Tu et al [17] presented a
system that driven by visual face tracking based on a 3D
model. This system needs to be initialized with face Action
Units in the 3D space and then estimates rotation and
translation matrix. Nostrils and nose tip systems presented in
[18] and [19] respectively are the other systems for the
control of the mouse pointer on the screen. The main
problem with using facial feature for camera mouse is their

small area in the input image; therefore we need to have
enough zoom ratio for the camera which is not possible in
most of webcams. However the head area in the input image
is large enough and head pose usually indicates the focus of
attention.

In this paper, we present a novel approach for camera
mouse implementation using face detection and 3D head
pose estimation from monocular camera images. In our
previous work [20] we discussed about the algorithm for the
calculation of 3D head pose using four artificial rectangular
points on the face. To remove the need for marking artificial
points on the face and increasing the accuracy of the camera
mouse, in this work we utilized a new algorithm to obtain the
coordinates of the four arbitrary virtual points on the face
area in each frame. For this purpose we calculate the 2D
transformation model between two consecutive frames using
point features extraction and matching and RANSAC
algorithm [21]. The calculated model is used to calculate the
coordinates of four virtual points. Then, 3D head pose is
estimated using the coordinates of four virtual points.
Finally, the 3D head pose are used to implement mouse
operations.

The extracted 3D rotation and translation matrix not only
is applicable for camera mouse implementation but also for
applications like virtual reality environment which need 3D
head position.

The remainder of this paper is structured as follows:
Section 2 describes the block scheme of the proposed
algorithm. Section 3 describes the method for extraction of
the face area and tracking features. Section 4 explains the
algorithm for estimating of the 3D head pose from 2D to 3D
point correspondences, followed by mouse controller which
is discussed in Section 5. Section 6 presents the
implementation results and some final conclusions are given
in Section 7.

II. BLOCK SCHEME OF THE PROPOSED ALGORITHM

Fig. 1 shows the block scheme of proposed algorithm for
camera mouse implementation. The method estimates 3D
head pose including its 3D translation and rotation for
camera mouse implementation. To estimate 3D head pose,
we used 2D to 3D point correspondences. Our method
requires four rectangular points correspondence on face
screen for obtaining 3D head pose. However the precise
detection and tracking of these points is mandatory for the
robust camera mouse implementation. In our previous work
[20] we used four artificial points for this purpose, however
to increase the efficiency of algorithm we used four arbitrary
virtual and rectangular points on the face in this work. The
points are virtual and their coordinates are arbitrary on the
face. The only restriction is that they should form a rectangle
with two sets of parallel lines on the user face as shown in
Fig. 2.

Figure 1. The block scheme of proposed approach for camera mouse

implementation

Figure 2. Four virtual points on the face for camera mouse
implementation

As it is shown in Fig. 1, the proposed algorithm includes
six stages structured in three modules. Algorithm starts with
face detection stage using Haar-like features and AdaBoost
algorithm [22] at first frame. Then we extract point features
and track them in the next frames. To extract and match
point features different algorithms like SIFT features [23] or
recursive and multiresolution implementation of LK
algorithm [24] may be used. The SIFT algorithm is slow and
very time consuming, therefore we used multiresolution
implementation of LK algorithm points to extract point

features called good features to track (GFTT) and matching
them. The point features and their matches are used for the
estimation of four virtual points coordinates during
consecutive video frames. Since the matching points for
some feature points may be erroneous we used robust
RANSAC algorithm to estimate 2D projective
transformation between consecutive frames. Then the
calculated 2D transformation is employed to calculate the
location of virtual points at current frame. The 2D
coordinates of virtual points are used to estimate the 3D
rotation and translation matrix by 2D to 3D point
correspondences method. Then we calculate rotation angles
around x, y and z axes using the calculated rotation matrix.
Finally in the third module, rotation angles around x and y
axes are translated into mouse pointer movements on the
screen. To implement clicking events we used the distance
change between user and camera which is obtained using z
component of translation vector obtained in the previous
stage.

III. VISUAL TRACKING MODULE

First module of the proposed algorithm is visual tracking
module which receives video frames from webcam. The
module has two responsibilities including extraction face
area and detection and tracking of point features.

A. Extraction of the Face Area

For extraction of the face area in the first frame, we used
of the Haar-like features and AdaBoost algorithm presented
by Viola and Jones [22]. To make the algorithm real-time we
apply the face detection algorithm at first frame and track the
face area in the next frames using the proposed tracking
algorithm. The tracking algorithm has the disadvantage of
accumulative error. To handle this problem we frequently
detect the face area each 10 frames and correct the face area.

B. Detecting and Tacking Point Features

For detection of the point features on the face area we
used the Good Feature to Track (GFTT) algorithm. The
extracted point features are then matched using recursive and
multi-resolution implementation of LK algorithm. We also
tested other algorithms like SIFT features, where its accuracy
and speed was not proper for reality of time purpose.

IV. PROCESSING MODULE

The second module of the proposed algorithm is the
processing module. As mentioned before, the 2D coordinates
of the four virtual points in each frame is calculated in this
module.

A. 2D Ttransformation Model Estimation

To calculate the 2D coordinates of the four virtual points
in each frame, we first calculate 2D transformation model
between consecutive frames. Different transformation model
may be used for this purpose. Since the four virtual points
are considered to be located on a plane, we used 2D
projective transformation model in our algorithm which
completely covers 3D rotation and translation for points on a
plane. Since some matching points may be erroneous, we
used RANSAC algorithm [21] to remove outliers and
calculate transformation model as follows:

 Select M set of point features and their matches
which each set contains four point features and
their matches.

 Calculate parameters of projective model for each
set.

 Calculate the total number of consistent matches
for each projective model.

 Select model with more consistent number of
matches.

B. Applying Transformation Model to Virtual Points

The projective model obtained in the section IV.A, is
applied to the coordinates of four virtual points in previous
frame to obtain the coordinates of virtual points in current
frame as follow: ݔ௜ᇱ = ௜ݔܽ + ௜ݕܾ + ௜ݔ݀ܿ + ௜ݕ݁ + 1

(1)

௜ᇱݕ = ௜ݔ݂ + ௜ݕ݃ + ℎ݀ݔ௜ + ௜ݕ݁ + 1
(2)

where (xi,yi) are coordinates of virtual points in previous
frame, (x୧ᇱ, y୧ᇱ) are coordinates of virtual points in current
frame and (a ,b, c, d, e, f, g) are projective model parameters.
Fig. 3 shows the results of applying transformation model to
virtual points.

Figure 3. The location of four virtual points after applying transformation

model

C. Estimating 3D Head Pose from 2D to 3D Point

Correspondences

1) Coordinates System:

Fig. 4 shows different coordinate systems used for 3D
head pose estimation.

The definitions for different coordinate systems are as
follows.

Figure 4. Different coordinate systems for 3D head pose estimation

Image Distortion

Function

a) Head coordinate system:

The system is used for specifying 3D coordinates of four
virtual points on the user head. We assumed that all virtual
points on the face are located on the same plane, therefore
the origin of the head coordinate frame, Xh and Yh axes lie
on the plane containing virtual points, while the Zh axis is
perpendicular to the plane. Since all virtual points are in the
Xh Yh plane, their Z values are zero in head coordinate
system.

b) Camera coordinate system:

 This system is used to convert 3D coordinates to image
coordinates. To convert coordinates in head coordinate
system to camera coordinate system the following equations
are used[25]:

൦XୡYୡZୡ1 ൪ = Tୡ୦ ൦X୦Y୦Z୦1 ൪

(3)

Tୡ୦ = ൦Rଵଵ Rଵଶ Rଵଷ T୶Rଶଵ Rଶଶ Rଶଷ T୷Rଷଵ0 Rଷଶ0 Rଷଷ0 T୸1 ൪

(4)

where R11 to R33 are the parameters of rotation matrix
and Tx, Ty and Tz represent translation between two
coordinate systems.

c) Ideal image coordinate system

This coordinate system shows the ideal 2D coordinates
of image pixels neglecting lens distortion. To convert 3D
camera coordinates to ideal image coordinate system,
pinhole camera model and perspective projection is used as
follows[25]:

൥hx୍hy୍h ൩ = ൥Pଵଵ Pଵଶ Pଵଷ0 Pଶଶ Pଶଷ0 0 1 ൩ ൥XୡYୡZୡ൩ = P ൥XୡYୡZୡ൩

(5)

where (xI,yI) are ideal image coordinate (without lens
distortion) and Pଵଵ to Pଶଷ are camera parameters.

d) Observed image coordinate system

This coordinate system shows the real 2D coordinates of
image pixels in computer. Computer program detect markers
in this coordinate system. To obtain observed image
coordinates we should consider the effect of lens distortion
as follows[26]: dଶ = (x୍ − xୢ଴)ଶ + (y୍ − yୢ଴)ଶ (6) p = 1 − kdଶ (7) x୭ = p(x୍ − xୢ଴) + xୢ଴ (8) y୭ = p(y୍ − yୢ଴) + yୢ଴ (9)

where k is distortion factor, (xdo,ydo) are coordinates of
distortion center and (xo,yo) are observed image coordinates.

2) Head Pose Estimation:

Given a calibrated camera and correspondences between
3D marker points in head coordinate system and 2D detected
marker points in the input image, the goal of head pose

determination algorithm is to estimate the rotation and
translation matrix between head coordinate system and
camera coordinate system i.e.Tch. We assumed that the
distance between four virtual points are known and used it
for the estimation of the Tch [25]. Tch is estimated in two steps
which are 1- rotation matrix estimation and 2-translation
vector estimation.

a) Estimating rotation matrix

When two parallel lines between virtual points in 3D
space are projected on the image plane, the equations of line
in the ideal image coordinates are as follows [25]: aଵx + bଵy + cଵ = 0, aଶx + bଶy + cଶ = 0 (10)

Given the perspective projection matrix P in Eq. 5 that is
obtained by the camera calibration, it can be shown that the
equation of the planes passing these two lines in camera
coordinate system can be represented as follows
respectively[25]: aଵPଵଵXୡ + (aଵPଵଶ + bଵPଶଶ)Yୡ + (aଵPଵଷ + bଵPଶଷ + cଵ)Zୡ = 0 aଶPଵଵXୡ + (aଶPଵଶ + bଶPଶଶ)Yୡ + (aଶPଵଷ + bଶPଶଷ + cଶ)Zୡ = 0

 (11)
 (12)

The normal vectors of these planes are defined as n1 and
n2 as follows:

nଵ = ൥ aଵPଵଵaଵPଵଶ + bଵPଶଶaଵPଵଷ + bଵPଶଷ + cଵ൩
nଶ = ൥ aଶPଵଵaଶPଵଶ + bଶPଶଶaଶPଵଷ + bଶPଶଷ + cଶ൩

 (13)

 (14)

It can be shown that the normal vector to both ܖଵ and ܖଶ
vectors, defined as the outer product of ܖଵ × ଶ, is theܖ
representation of one of the head coordinate axis in camera
coordinate frame. Since we have two sets of parallel lines
obtained from virtual points, we can calculate the
representation head coordinate axis in camera coordinate
frame which give rise to the calculation of rotation matrix as
follows: ܝ૚ = ૚ܖ × ,૛ܖ ૛ܝ = ૜ܖ × ૚܀ ૝ (15)ܖ = ૚ܝ , ૛܀ = ,૛ܝ ૜܀ = ૚ܝ × ૜×૜܀ ૛ (16)ܝ = ൥܀૚܀૛܀૜൩

(17)

ܑ܀ = ሾܑ܀૚ ૛ܑ܀ ૜ሿ (18)ܑ܀

where n3 and n4 are normal vectors of planes
corresponding to the two other parallel lines of virtual points.

b) Estimating translation vector

To calculate the translation vector we present the
problem as optimization problem as follow[26]:

err = 1N ෍ ቄ൫x୨ − x෤୨൯ଶ + ൫y୨ − y෤ ୨൯ଶቅ୒
୨ୀଵ

(19)

where (xj,yj) is the estimated coordinates of virtual

points, N is the number of virtual points, and)ˆ,ˆ(jj yx are

calculated using the following equation:

ቈxො ୨yො୨቉ = F ێێۏ
Cۍێ × Tୡ୦ ൦X୦୨Y୦୨Z୦୨1 ൪ۑۑے

ېۑ , j = 1: N

(20)

where F presents the lens distortion function and [Xhj,
Yhj, Zhj] are the 3D coordinates of virtual points in head
coordinate system. By solving the optimization problem of
Eq. 20 and having rotation matrix parameters from previous
stage, it is possible to obtain Tch matrix completely which
represents 3D head pose.

V. MOUSE POINTER CONTROL

When the 3D head pose including rotation matrix and
translation vector is calculated, it is used for the control
mouse pointer and generating mouse events. The rotation
matrix is an orthogonal matrix and can be represented using
three rotation angles around x, y and z axes as follow:

(21)

where α, β and γ are rotation angles around x, y and z
axes respectively. Considering flexible rotation of human
face around x and y axes, we used α and β for generating
mouse movement in x and y directions respectively. Since
the R matrix are obtained using some measurements and
optimization algorithm it may not be an orthogonal matrix
because of measurement and calculation error, therefore we
orthogonalize it using singular value decomposition and
calculate the required rotation angles in degree using the
following equations:

(22) β = 360 × sinିଵ ൬Rଵଷ2π ൰

(23)
α = 360 × sinିଵ ൮൬− Rଶଷcos(sinିଵ Rଵଷ)൰2π ൲

Equations (24, 25) are utilized for the translation of the
rotation angle into mouse movement on the screen.

(24) mouse୶ = ൬ ββ୫ୟ୶൰ × ቀw2 ቁ + ቀw2 ቁ

(25)

mouse୷ = ൬ αα୫ୟ୶൰ × ൬h2൰ + ൬h2൰

Where mouse_x and mouse_y are the coordinates of
mouse pointer on the screen, w and h are screen width and
height in pixel and αmax and βmax are maximum head rotation
around x and y axes respectively. In this paper α୫ୟ୶ =10୭ and β୫ୟ୶ = 30୭ are supposed.

To generate click events we used the distance between
camera and user head i.e. Tz. We assumed that the natural
distance between camera and user head is between two user
defined parameters called min_distance and max_distance.
When user head distance is less than min_distance for more
than 0.5s or 5 frame and then head returns to natural
distance, left click event is generated. The same procedure is
used to generate right click event if the distance is larger than

max_distance. Fig. 5 shows the pseudo code to generate
mouse click events.

While (frame) do
 if min_distance < Tz < max_distance
 if L_Number ≥ 7
 generate left click event
 end if

 if R_Number ≥ 7
 generate right click event
 end if

 R_Number=L_Number=0
 End if

 If Tz < min_distance
 L_ Number++
 R_Number=0
 End if

 If Tz > max_distance
 R_ Number++
 L_Number=0
 End if

End while

Figure 5. Pseudo code for mouse click events implementation

VI. EXPERIMENTAL RESULTS

We implemented the proposed algorithm using a
Microsoft Visual C++ program and Intel's OpenCV library
for computer vision [27]. To solve the optimization problem
of Eq. 19 and showing the result as 3D graphics, we utilized
the functions provided by ARToolKit [28]. In order to set
suitable initial values for rotation and translation matrices,
the results of previous frame is used as initial values for
current frame.

Fig. 6 shows the camera mouse interface consisting of a
1.3M pixel webcam mounted on the laptop PC’s monitor.
The laptop CPU is an Intel Core 2 Duo CPU with the speed
of 2GHz and Windows XP operating system. According to
equations (24,25) the resolution (width and height) of the
computer screen can be set arbitrarily in the proposed
system, therefore we used the resolution of 600*600 in our
experimental tests.

Figure 6. Camera mouse implementation using a laptop PC

Fig. 7 shows the calculated head coordinate system
displayed using ARToolKit functions.

     coscossinsinsincossinsincossincos sincoscossinsinsinsincoscossinsinR

Figure 7. The calculated head coordinate system displayed using

ARToolKit functions

We evaluated the performance of our system on five
users and different lighting conditions. We also tested our
system with SIFT and LK trackers. To compare the results of
proposed method with that of another method, we also
implemented the camera mouse using nose tracking [18]. To
evaluate the performance of camera mouse algorithm we
calculate the position of mouse pointer using the algorithm
and compare it with true position which is estimated using
human user. Fig. 8 shows the true position and the position
of the mouse pointer obtained using the proposed method
and nose tracking algorithm for a typical frame of a test
video. The results with SIFT and LK tracker for all frames of
a typical user are shown in Fig. 9 and Fig. 10. As it is
obvious from Fig. 9 and Fig. 10, the proposed algorithm with
LK tracker has better results. Table I summarizes the results
of camera mouse algorithm for five users with different test
videos. The average time to process a frame for the proposed
algorithm with LK tracker is about 0.1s while the processing
time for proposed algorithm with SIFT is 0.58s which means
the proposed system is capable of processing 10 frames/sec
with LK tracker and 1.7 frames/sec with SIFT tracker. The
table shows the mean absolute error (MAE) and average
deviation (AD) of MAE for mouse positions in x and y
directions. These parameters are defined as follows for x
direction: MAE = ∑ ex୧N

(26)

AD = ∑|ex୧ − MAE|N
(27)

Where exi is the absolute error in x direction for ith frame
and N is the total number of frames.

TABLE I shows that the error for the proposed algorithm
with LK tracker is approximately twice less than camera
mouse implementation using proposed algorithm with SIFT
tracker and nose tracking. Also TABLE II confirms this
result for α and β angles.

Figure 8. Position of mouse pointer on the screen for a typical frame of a

test video

VII. CONCLUSION

In this paper we proposed a new method for camera
mouse implementation using monocular video camera and
3D head pose estimation by 2D to 3D point correspondences.
The algorithm is real time and can process 10 frames/sec.
Experimental results showed that the error for the proposed
algorithm is twice less than that of another algorithm. To
obtain the 3D pose of head we need four virtual points on the
face constituting a rectangle. For this purpose we estimated
transformation model using of RANSAC algorithm and LK
feature tracker between two consecutive frames.

Figure 9. Mouse position in x and y directions for different frames of a

typical test video with SIFT tracker

Figure 10. Mouse position in x and y directions for different frames of a

typical test video with LK tracker

TABLE I. CAMERA MOUSE ERROR FOR FIVE USERS IN X

AND Y DIRECTIONS
Mouse

Direction

Method

Error

Proposed

method

using SIFT

tracker

Proposed

method

using LK

tracker

Nose

tracking

[18]

X(pixel)

MAE 54.91 24.21 73.73

MAE(%) 9 4.03 12.28

AD 46.09 17.94 44.62

Y(pixel)

MAE 55.40 22.60 57.40

MAE(%) 9.23 3.76 9.56

AD 43.12 19.90 37.35

TABLE II. CAMERA MOUSE ERROR FOR FIVE USERS IN α

AND β ANGLES
Pose angle Method

Error

Proposed

method

using

SIFT

tracker

Proposed

method

using LK

tracker

α (Deg) MAE 1.74 0.75
AD 1.38 0.65

β (Deg) MAE 5.65 2.44
AD 4.63 1.79

REFERENCES

[1] D. Stefanov, Z. Bien, and W. Bang, “The smart house for older
persons and persons with physical disabilities: structure, technology
arrangements, and perspectives,” IEEE Transl. Neural Systems and
Rehabilitation Engineering, vol. 12, no. 2, pp. 228-250, 2004.

[2] T. Carlson and Y. Demiris, “Using visual attention to evaluate
collaborative control architectures for human robot interaction,”
imperial college london, 2008.

[3] J. Alon, V. Athitsos, and S. Sclaroff, “Simultaneous localization and
recognition of dynamic hand gestures,” in Proc. IEEE Motion
Workshop, 2005.

[4] C. S. Lin, C. W. Ho, C. N. Chan, C. R. Chau, Y. C. Wu, and M. S.
Yeh, “An eye-tracking and head-control system using movement
increment-coordinate method,” in Proc. Optics & Laser Technology
Conf., pp. 1218–1225, 2007.

[5] M. C. SU, K. C. Wang, and G. D. Chen, “An eye tracking system
and its application in aids for people with severe disabilities,”
Department of Computer Science and Information Engineering,
National Central University, Chung Li, Taiwan, vol. 18, no. 6, pp.
319-327, December 2006.

[6] C. Mauri, T. Granollers, J. Lorés, and M. García, “Computer vision
interaction for people with severe movement restrictions,” An
Interdisciplinary Journal on Humans in ICT Environments, vol. 2, no.
1, pp. 38-54, April 2006.

[7] G. M. Eom, K. S. Kim, C. S. Kim, J. Lee, S. C. Chung, B. Lee, H.
Higa, N. Furuse, R. Futami, and T. Watanabe, “Gyro mouse for the
disabled: ‘click’ and ‘position’ control of the mouse cursor,”
International Journal of Control, Automation, and Systems, vol. 5, no.
2, pp. 147-154, April 2007.

[8] C. Veigl, “An open-source system for biosignal- and camera-mouse
applications,” Studying Medical Computer Science, Technical
University Vienna, 2006.

[9] C. Topal, A. Doğan, and Ö. N. Gerek, “A wearable head-mounted
sensor-based apparatus for eye tracking applications,” in Proc. IEEE
International Conference on Virtual Environments, Human-Computer
Interfaces, and Measurement Systems, 2008.

[10] M. A. Qamar and A. Jehanzeb, “Retina Based Mouse Control
(RBMC),” World Academy of Science, Engineering and Technology,
2007.

[11] B. Scassellati, “Eye finding via face detection for a foveated, active
vision system,” MIT Artificial Intelligence Lab Cambridge, MA,
02139, USA, 1998.

[12] K. E. Yi and K. S. Kuk, “Eye tracking using neural network and
mean-shift,” LNCS, vol. 3982, pp. 1200–1209, 2006.

[13] J. J. Magee, M. R. Scott, B. N. Waber, and M. Betke, “Eyekeys: a
real-time vision interface based on gaze detection from a Low-grade
video camera,” Computer Science Department, Boston University,
2004.

[14] H. E. Cetingul, Y. Yemez, E. Erzin, and A. M. Tekalp,
“Discriminative analysis of lip motion features for speaker
identification and speech-reading,” IEEE Trans Image Process, vol.
15, no. 10, pp. 2879-91, 2006.

[15] S. Stillittano, and A. Caplier, “Inner lip segmentation by combining
active contours and parametric models,” in Proc. 2008 International
Conference on Computer Vision Theory and Applications., pp. 297-
304.

[16] Y. Shin, J. S. Ju, and E. Y. Kim, “Welfare interface implementation
using multiple facial features tracking for the disabled people,”
Pattern Recognition Letters, vol. 29, pp. 1784–1796, 2008.

[17] J. Tu, H. Tao, and T. Huang, “Face as mouse through visual face
tracking,” Computer Vision and Image Understanding, vol. 108, pp.
35-40, 2007.

[18] C. M. Yee, J. Varona, and F. J. Perales, “Face-based perceptual
interface for computer-human interaction,” Departament de
Matemàtiques i Informàtica, 2006.

[19] J. Na, W. Choi, and D. Lee, “Design and implementation of a
multimodal input device using a web camera,” ETRI Journal, vol. 30,
no. 4, pp. 621-623, August 2008.

[20] M. Nabati and A. Behrad, " Camera mouse implementation using
3D head pose estimation by monocular video camera and 2D to 3D
point and line correspondences," submitted to 6th Iranian Conference
on Machine Vision and Image Processing (MVIP 2010), 2010.

[21] O. Chum, "Two-view geometry estimation by random sample and
consensus," PhD thesis, 2005.

[22] P. Viola and M. Jones, “Rapid object detection using a boosted
cascade of simple features,” in Proc. IEEE Conference on Computer
Vision and Pattern Recognition,2001.

[23] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints”, International Journal of Computer Vision, vol. 60, no. 2,
pp. 91-110 2004.

[24] J. Y. Bouguet, “Pyramidal implementation of the lucas kanade
feature tracker description of the algorithm”, Intel Corporation
Microprocessor Research Labs, Online:
http://robots.stanford.edu/cs223b04/algo_tracking.pdf.

[25] H. Kato and M. Billinghurst, “Marker tracking and HMD calibration
for a video-based augmented reality conferencing system”, In Proc. of
the 2nd Int. Workshop on Augmented Reality (IWAR 99), October
2000.

[26] H. Kato, K. Tachibana, M. Billinghurst, and M. Grafe, “A registration
method based on texture tracking using ARToolKit”, In The Second
IEEE Int. Augmented Reality Toolkit Workshop, 7th October 2003.

[27] Open Source Computer Vision Library, Online:
http://sourceforge.net/projects/opencvlibrary

[28] ARToolKit library, Online: http://www.hitl.washington.edu/artoolkit.

