
Camera Mouse Implementation Using 3D Head Pose
Estimation by Monocular Video Camera and 2D to

3D Point and Line Correspondences

Masoomeh Nabati (Msc. Student)
Electrical Engineering Department

 Shahed University
Tehran, Iran

masoomeh_nabaaty@yahoo.com

Alireza Behrad (Assist. Prof.)
Electrical Engineering Department

Shahed University
Tehran, Iran

behrad@shahed.ac.ir

Abstract— In this paper, we present a novel approach to estimate

the 3D head pose from a monocular camera images for the

control of mouse pointer movements on the screen and clicking

events. This work is motivated by the goal of providing a non-

contact instrument to control the mouse pointer on the PC screen

for helping handicapped people with severe disabilities using low-

cost and widely available hardware. The required information is

derived from video data captured using a web camera mounted

on the computer monitor. The proposed algorithm is based on

the 2D tracking of the markers on the face. Our approach

proceeds in three stages. First, the positions of the markers are

detected and tracked over video frames by LK algorithm. Then,

the 3D rotation and translation between the web camera and 3D

head pose are estimated using point and line correspondences.

Finally, the 3D rotation and translation matrix is used for

estimating the mouse pointer movements on the PC screen and

clicking events. Experimental results showed the promise of the

algorithm.

Keywords- Camera mouse; 3D head pose estimation; mouse

pointer control; visual tracking module;

I. INTRODUCTION

More than 500 million persons, 10 percent of the world's
total population, suffer from some type of disability. Nowadays
different support devices and care equipment have been
developed to help the handicapped people. One of the main
support devices for handicapped people with severe disabilities
is an instrument for communication with computers or similar
devices. However, the main problem with these devices is the
control difficulties due to the limited physical abilities of the
users. Thus, different type of interfaces have been developed to
facilitate communication between the handicapped users and
the devices like computers [1- 5]. These interfaces are mainly
categorized into two groups including intrusive and non-
intrusive methods. Intrusive methods mostly use contact
sensors which measure human reflections or activities.
Although intrusive methods can detect features or signals more
accurately, they require expensive devices and are not flexible
[6-10]. Non-intrusive methods mostly track human gestures by
processing images or videos obtained via a camera. In contrast
to intrusive methods, they are more comfortable for the users
and involve less expensive communication devices.

A camera mouse system is a non-intrusive method that
helps handicapped people to interact with computers. A camera
mouse system is usually composed of one or multiple video
cameras for capturing video frames and a processing unit like a
PC which uses image processing algorithm to convert the
motion events in video frames to mouse operations. The
algorithm is usually formed from a visual tracking module and
a mouse control module. The visual tracking module retrieves
motion information from the video, and the mouse control
module specifies the rules of control.

Different algorithms have been proposed for the
implementation of camera mouse which most of them use head
pose or movements, and facial features like eyes, nostrils and
mouth. The use of head and facial feature for camera mouse
implementation is due to two reasons; they have high
communicative information and most camera mouse users have
severe hand disability. Systems using eye movements have
already been presented in [11-13] where mouse motion and
click events are generated based on eye motion and fixing in a
specific area for one or more seconds. Mouth movements and
lip reading is another method for camera mouse
implementation which has been presented in [14, 15]. In this
method various mouth shapes is used for lip reading. The
system proposed by Yunhee Shin et al [16] is able to control
the mouse based on eye and mouth movements. Jilin Tu et al
[17] presented a system that driven by visual face tracking
based on a 3D model. This system needs to be initialized with
face Action Units in the 3D space and then estimates rotation
and translation matrix. Nostrils and nose tip systems presented
in [18] and [19] respectively are the other systems for the
control of the mouse pointer on the screen. The main problem
with using facial feature for camera mouse is their small area in
the input image; therefore we need to have enough zoom ratios
or high resolution camera which is not possible in most of
webcams. However the head area in the input image is large
enough and head pose usually indicates the focus of attention.

In this paper, we present a novel approach for camera
mouse implementation using the 3D head pose estimation.
Most important novelty of the proposed approach is the robust
estimating of the 3D rotation and translation matrix by using
only one camera. In addition both click and mouse movement
event are implemented using 3D head pose. The proposed

algorithm is real time and experimental results showed higher
accuracy of the proposed method. To make the algorithm real
time we used four artificial markers on the face which is shown
in Fig. 1. These markers are detected and tracked to estimate
3D head pose over video frames. The 3D head pose are used to
implement mouse operations. Since we extract 3D rotation and
translation matrix, the algorithm may be used in other 3D
applications like virtual reality applications.

The remainder of this paper is structured as follows:
Section 2 presents block scheme of the proposed algorithm.
Section 3 describes 3D head pose estimation from 2D to 3D
point and line correspondences. The algorithm for mouse
controller is described in Section 4. Section 5 presents the
implementation results and some final conclusions are given in
Section 6.

Figure 1. Four markers on the face for camera mouse implementation

II. BLOCK SCHEME OF THE PROPOSED ALGORITHM

Fig. 2 shows the block scheme of proposed method for
camera mouse implementation. The method estimates 3D head
pose including its 3D translation and rotation for camera mouse
implementation. To estimate 3D head pose, we used 2D to 3D
point and line correspondences. To make the algorithm real
time we used four artificial markers on the user face which
form a rectangle with two sets of parallel lines as shown in Fig.
1.

First stage of proposed approach is the detection and
tracking of the markers. We used small black markers on the
face which can be detected using a color segmentation
algorithm precisely. To detect markers we first detect face area
in the image using AdaBoost based face detector algorithm
[20]. Then the location of the markers is estimated in face area
and corrected using color segmentation. To track the marker
we used recursive and multiresolution implementation of LK
algorithm [21]. In the second stage of algorithm, the 2D
coordinates of markers are used to estimate the 3D rotation and
translation matrix by 2D to 3D point and line correspondences
method. Finally, we calculate rotation angles around X, Y and
Z axes using the calculated rotation matrix. The rotation angles
around X and Y axes are then translated into mouse pointer
movements on the screen. To implement clicking events we
used the distance change between user and camera which is
obtained using Z component of translation vector obtained in
the previous stage.

Figure 2. The block scheme of proposed approach for camera mouse
implementation

III. ESTIMATING THE HEAD POSE FROM 2D TO 3D

POINT AND LINE CORRESPONDENCES

A. Coordinates System

Figure 3. Different coordinate systems for head pose estimation

Fig. 3 shows different coordinate systems used for head
pose estimation. The definitions for different coordinate
systems are as follows:

Image Distortion

Function

1) Head coordinate system

The system is used for specifying four marker points on
the user head. We assumed that all marker points on the face
are located on the same plane, therefore the origin of the
object coordinate frame, Xh and Yh axes lie on the plane
containing marker points, while the Zh axis is perpendicular to
the plane. Since all markers are in the Xh Yh plane, their Z
values are zero in head coordinate system.

2) Camera coordinate system

This system is used to convert 3D coordinates to image
coordinates. To convert coordinates in head coordinate system
to camera coordinate system the following equations are used
[22]:







































11
H

H

H

CH

c

c

c

Z

Y

X

T
Z

Y

X

 (1)





















1000
333231

232221

131211

z

y

x

CH
TRRR

TRRR

TRRR

T (2)

where R11 to R33 are the parameters of rotation matrix and
Tx, Ty and Tz represent translation between two coordinate
systems.

3) Ideal image coordinate system

This coordinate system shows the ideal 2D coordinates of
image pixels neglecting lens distortion. To convert 3D camera
coordinates to ideal image coordinate system pinhole camera
model and perspective projection are used as follows [22]:








































































11
0100

00

00

c

c

c

c

c

c

cy

cx

I

I

Z

Y

X

C
Z

Y

X

yf

xf

h

hy

hx

 (3)

where (xI,yI) are ideal image coordinate (without lens
distortion) and fx, fy, xc and yc are camera parameters.

4) Observed Image Coordinate System

This coordinate system shows the real 2D coordinates of
image pixels in computer. Computer program detect markers in
this coordinate system. To obtain observed image coordinates
we should consider the effect of lens distortion as follows [22]:

   222
doIdoI yyxxd  (4)

21 kdp  (5)

  dodoIo xxxpx  (6)

  dodoIo yyypy  (7)

where k is distortion factor, (xdo,ydo) are coordinates of
distortion center and (xo, yo) are observed image coordinates.

B. Head Pose Estimation

Given a calibrated camera and correspondences between
3D marker points in head coordinate system and 2D detected
marker points in the input image, the goal of head pose
determination algorithm is to estimate the rotation and
translation matrix between head coordinate system and camera
coordinate system i.e. TCH.

Calculation of TCH may be considered as an optimization
problem, where the following error function should be
minimized [22].

    



N

j

jjjj yyxxe
1

22 ˆˆ (8)

where (xj,yj) are the coordinates of detected marker points,
N is the number of detected marker points which is 4 for our

algorithm, and  
jj yx ˆ,ˆ are calculated using the following

equation[22]:

Nj
Z

Y

X

TCF
y

x

Mj

Mj

Mj

CM

j

j
:1

1

ˆ

ˆ
















































 (9)

where F presents the lens distortion function and [XMj, YMj,
ZMj] are the 3D coordinates of markers in head coordinate
system. By solving the optimization problem of equation (8) it
is possible to obtain TCH matrix which represents 3D head
pose.

The main problem with the optimization problem is the
selection of initial values which affects the accuracy of the
optimization algorithm. To cope with this problem we estimate
rotation matrix first and use the estimated rotation matrix as the
initial value for the optimization problem.

C. Estimating Rotation Matrix

As mentioned before to obtain accurate results using
optimization problem, it is better to estimate rotation matrix
and use the estimated rotation matrix as the initial value for the
optimization problem. The marker points which we have
considered on user face have rectangular geometry; therefore
the following geometrical constraint can be used to obtain 3D
coordinates of marker points [23].












































DC

DC

DC

AB

AB

AB

ZZ

YY

XX

ZZ

YY

XX

DCAB (10)

where A, B, C and D are four marker points on the user
face. When the 3D coordinates of marker points are obtained
the rotation matrix vectors are calculated using the following
equation [23]:

*2*1*3*2*1 rrr
AC

AC
r

AB

AB
r  (11)

IV. MOUSE POINTER CONTROL

When the 3D head pose including rotation and translation
matrix is calculated, it is used for the control mouse pointer and
generating mouse events. The rotation matrix is an orthogonal
matrix and can be represented using three rotation angles
around x, y and z axes as follow:

 (12)

where α, β and γ are rotation angles around x, y and z axes
respectively. Considering flexible rotation of human face
around x and y axes, we used α and β for generating mouse
movement in x and y directions respectively. Since the R
matrix are obtained using some measurements and
optimization algorithm it may not be an orthogonal matrix
because of measurement and calculation error, therefore we
orthogonalize it using singular value decomposition and
calculate the required rotation angles in degree using equations
(13, 14):

 



2

sin360 131 R (13)

  



2

sincos
sin360 13

1
23

1













 R

R

 (14)

Equations (15, 16) show the translation of the rotation angle

into mouse movement on the screen.

























22
_

max

ww
xmouse




 (15)

























22
_

max

hh
ymouse




 (16)

where mouse_x and mouse_y are the coordinates of mouse
pointer on the screen, w and h are screen width and height in
pixel and αmax and βmax are maximum head rotation around x ad
y axes respectively.

To generate click events we used the distance between
camera and user head i.e. Tz. We assumed that the natural
distance between camera and user head is between two user
defined parameters called min_distance and max distance.
When user head distance is less than min_distance for more
than 500 ms or 7 frame and then head returns to natural
distance, left click event is generated. The same procedure is
used to generate right click event if the distance is larger than
max_distance. Fig. 4 shows the pseudo code to generate mouse
click events.

While (frame) do
 if min_distance < Tz < max_distance
 if L_Number ≥ 7
 generate left click event
 end if

 if R_Number ≥ 7
 generate right click event
 end if

 R_Number=L_Number=0
 End if

 If Tz < min_distance
 L_ Number++
 R_Number=0
 End if

 If Tz > max_distance
 R_ Number++
 L_Number=0
 End if

End while

Figure 4. Pseudo code for mouse click implementation

V. EXPERIMENTAL RESULTS

We implemented the proposed algorithm using a Microsoft
Visual C++ program and Intel's OpenCV library for computer
vision [24]. To solve the optimization problem of equation (8)
and showing the result as 3D graphics, we utilized the
functions provided by ARToolKit [25]. In order to set suitable
initial values for rotation and translation matrices, the results of
previous frame is used as initial values for current frame. For
the first frame we used the method described in section 3.3 for
the initialization of rotation matrix.

Fig. 5 shows the project interface consisting of a 1.3M pixel
webcam mounted on the laptop PC’s monitor. The laptop CPU
is an Intel Core 2 Duo CPU with the speed of 2GHz and
Windows XP operating system. According to equations (15,
16) the resolution (width and height) of the computer screen
can be set arbitrarily in the proposed system, however we used
the resolution of 320*240 in our experimental tests.

Fig. 6 shows the calculated head coordinate system
displayed using ARToolKit functions.

Figure 5. Camera mouse implementation using a laptop PC

     coscossinsinsincossinsincossincos sincoscossinsinsinsincoscossinsinR

Figure 6. The calculated head coordinate system displayed using ARToolKit
functions

We evaluated the performance of our system in different
situations and lighting conditions. We also tested it on different
users. To compare the results of proposed method with that of
another method, we also implemented the camera mouse using
nose tracking [18]. To evaluate the performance of camera
mouse algorithm we calculate the position of mouse pointer
using the algorithm and compare it with true position which is
estimated using human user. Fig. 7 shows the true position and
the position of the mouse pointer obtained using the proposed
method and nose tracking algorithm [18] for a typical frame of
a test video. The results for all frames of the test video are
shown in Fig. 8. As it is obvious from Fig. 7 and Fig. 8, the
proposed algorithm gives rise to better results. Table 1
summarizes the results of camera mouse algorithm over 3000
frames of different test videos. The average time to process a
frame is about 67ms for the proposed algorithm which means
the proposed system is capable of processing 14 frames/sec.
The table shows the mean absolute error (MAE) and standard
deviation (SD) and average deviation (AD) of MAE for mouse
positions in x and y directions. These parameters are defined in
equations (17-19) for x direction:

N

ex
MAE

i (17)

 
N

MAEex
SD

i 


2

 (18)

N

MAEex
AD

i  (19)

where exi is the absolute error in x direction for ith frame
and N is the total number of frames.

TABLE I shows that the error for the proposed algorithm is
twice less than camera mouse implementation using nose
tracking.

Figure 7. Position of mouse pointer on the screen for a typical frame of a test

video

Figure 8. Mouse position in x and y directions for different frames of a
typical test video

TABLE I. CAMERA MOUSE ERROR FOR 3000 FRAMES OF
DIFFERENT VIDEOS

Mouse
direction

 Proposed method Nose tracking

X

MAE 7.5 19.85
AD 5.7 13.33
SD 8.3 16.92

Y

MAE 10.17 32.9

AD 8.38 20.02
SD 11.78 25.14

VI. CONCLUSION

In this paper we proposed a new method for camera mouse
implementation using monocular video camera and 3D head
pose estimation by 2D to 3D point and line correspondences.
The algorithm is real time and can process 14 frames/sec.
Experimental results showed that the error for the proposed
algorithm is twice less than that of another algorithm. To
obtain the 3D pose of head we need four feature points on the
face constituting a rectangle. For this purpose and make the
algorithm real time we used artificial markers as feature points.
For future development we are going to use natural features on
the face. REFERENCES

[1] D. Stefanov, Z. Bien, and W. Bang, “The Smart House for Older

Persons and Persons With Physical Disabilities: Structure, Technology
Arrangements, and Perspectives,” IEEE Transaction on Neural Systems
and Rehabilitation Engineering, vol. 12, no. 2, pp. 228-250, 2004.

[2] T. Carlson and Y. Demiris, “Using Visual Attention to Evaluate
Collaborative Control Architectures for Human Robot Interaction,”
Imperial College London, 2008.

[3] J. Alon, V. Athitsos, and S. Sclaroff, “Simultaneous localization and
recognition of dynamic hand gestures,” in Proc. 2005 IEEE Motion
Workshop, 2005.

[4] C. S. Lin, C. W. Ho, C. N. Chan, C. R. Chau, Y. C. Wu, and M. S. Yeh,
“An eye-tracking and head-control system using movement increment-
coordinate method,” in Proc. 2007 Optics & Laser Technology Conf.,
pp. 1218–1225.

[5] M. C. SU, K. C. Wang, and G. D. Chen, “An eye tracking system and
its application in aids for people with severe disabilities,” Department of
Computer Science and Information Engineering, National Central
University, Chung Li, Taiwan, vol. 18, no. 6, pp. 319-327, December
2006.

[6] C. Mauri, T. Granollers, J. Lorés, M. García, “Computer vision
interaction for people with severe movement restrictions,” An
Interdisciplinary Journal on Humans in ICT Environments, vol. 2, no. 1,
pp. 38-54, April 2006.

[7] G. M. Eom, K. S. Kim, C. S. Kim, J. Lee, S. C. Chung, B. Lee, H. Higa,
N. Furuse, R. Futami, and T. Watanabe, “Gyro Mouse for the Disabled:
‘Click’ and ‘Position’ Control of the Mouse Cursor,” International
Journal of Control, Automation, and Systems, vol. 5, no. 2, pp. 147-154,
April 2007.

[8] C. Veigl, “An Open-Source System for Biosignal- and Camera-Mouse
Applications,” studying Medical Computer Science, Technical
University Vienna, 2006.

[9] C. Topal, A. Doğan, and Ö. N. Gerek, “A Wearable Head-Mounted
Sensor-Based Apparatus for Eye Tracking Applications,” in Proc.
VECIMS 2008 IEEE International Conference on Virtual Environments,
Human-Computer Interfaces, and Measurement Systems.

[10] M. A. Qamar, and A. Jehanzeb, “Retina Based Mouse Control
(RBMC),” World Academy of Science, Engineering and Technology,
2007.

[11] B. Scassellati, “Eye Finding via Face Detection for a Foveated, Active
Vision System,” MIT Artificial Intelligence Lab Cambridge, MA,
02139, USA, 1998.

[12] K. E. Yi, and K. S. Kuk, “Eye tracking using neural network and mean-
shift,” LNCS, vol. 3982, pp. 1200–1209, 2006.

[13] J. J. Magee, M. R. Scott, B. N. Waber, and M. Betke, “EyeKeys: A real-
time vision interface based on gaze detection from a Low-grade Video
Camera,” Computer Science Department, Boston University, 2004.

[14] H. E. Cetingul, Y. Yemez, E. Erzin, and A. M. Tekalp, “Discriminative
analysis of lip motion features for speaker identification and speech-
reading,” IEEE Trans Image Process, vol. 15, no. 10, pp. 2879-91, 2006.

[15] S. Stillittano, and A. Caplier, “Inner lip segmentation by combining
active contours and parametric models,” in Proc. of International

Conference on Computer Vision Theory and Applications., pp. 297-304.
2008.

[16] Y. Shin, J. S. Ju, E. Y. Kim, “Welfare interface implementation using
multiple facial features tracking for the disabled people,” Pattern
Recognition Letters, vol. 29, pp. 1784–1796, 2008.

[17] J. Tu, H. Tao, T. Huang, “Face as mouse through visual face tracking,”
Computer Vision and Image Understanding, vol. 108, pp. 35-40, 2007.

[18] C. M. Yee, J. Varona, and F. J. Perales, “Face-Based Perceptual
Interface for Computer-Human interaction,” Departament de
Matemàtiques i Informàtica, 2006.

[19] J. Na, W. Choi, D. Lee, “Design and Implementation of a Multimodal
Input Device Using a Web Camera,” ETRI Journal, vol. 30, no. 4, pp.
621-623, August 2008.

[20] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proc. 2001 IEEE Conference on Computer Vision
and Pattern Recognition.,

[21] J. Y. Bouguet, “Pyramidal Implementation of the Lucas Kanade Feature
Tracker Description of the algorithm,” Intel Corporation.,
Microprocessor Research Labs, 1994.

[22] H. Kato, K. Tachibana, M. Billinghurst, and M. Grafe, “A registration
method based on texture tracking using ARToolKit”, In The Second
IEEE Int. Augmented Reality Toolkit Workshop, 7th October 2003.

[23] J. Y. Didier, F. E. Ababsa, and M. Mallem, “Hybrid camera pose
estimation combining square fiducials localization technique and
orthogonal iteration algorithm,” International Journal of Image and
Graphics (IJIG), vol. 8, pp. 169-188, 2008.

[24] Open Source Computer Vision Library [Online]. Available:
http://sourceforge.net/projects/opencvlibrary

[25] ARToolKit library, [Online]. Available:
http://www.hitl.washington.edu/artoolkit

