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Abstract – Sometimes, quality of a process can be 

described by a functional relationship between response 

variables and explanatory variables which called profile. 

In some situations, there is an autocorrelation structure 

within a profile. Most of the times in real practice there is 

no enough data to estimate the process parameters. In this 

case, we can use a self-starting control chart which does 

not need preliminary data to start monitoring in start-up 

stages. In this paper, we consider a simple linear profile in 

the presence of a first order autoregressive (AR(1)) 

autocorrelation structure within profile and propose a self-

starting control chart to monitor mean and variance of a 

simple linear profile simultaneously.  

Keywords - Self-starting control chart, simultaneous 

monitoring, Recursive residuals, Simple linear profile. 

I. INTRODUCTION 

Statistical process monitoring (SPM) is a useful 

method applied to monitor industrial processes. Control 

charts are one of the most important tools which are 

used to monitor the industrial processes. In some cases, 

the quality of process is characterized by a relationship 

between a response variable and one or more 

explanatory variables which is called profile in the 

literature. Two control charts are developed to monitor 

simple linear profiles in Phase II [1]. Three EWMA 

control charts which monitor intercept, slope and 

standard deviation in simple linear profiles [2]. A 

cumulative sum (CUSUM) control chart is proposed to 

monitor simple linear profiles in Phase II [3]. Some 

monitoring schemes are proposed for simple linear 

profiles by using variable sample size [4]. 

In SPM, it is needed to distinguish between 

monitoring procedures of Phases I and II. In Phase I, we 

need to analyze the process to estimate process 

parameters and investigate if the process is in-control 

(IC). In Phase II monitoring, the process parameters are 

presumed to be known. However, maybe there is always 

no enough data to perform Phase I analysis. Hence, it is 

necessary to apply a kind of control chart which can 

start monitoring the process without the need of large 

amount of preliminary observations. Self-starting 

control chart updates the parameters estimation with 

each new observation and checks for out-of-control 

(OC) condition simultaneously. A self-starting CUSUM 

control chart is developed for location and scale, by 

using some theoretical properties of residuals 

independency [5]. A self-starting multivariate 

exponentially weighted moving average (MEWMA) 

control chart is proposed in [6]. They transformed the 

unknown process parameters vector into known process 

parameters vector with the same dimension in their 

study. A self-starting control chart is developed to 

monitor process mean and variance simultaneously 

based on likelihood ratio test (LRT) method and 

EWMA procedure [7]. A self-starting control chart for 

high-dimensional short run processes is proposed which 

can monitor the process at the start-up stages without 

sufficient initial data [8]. A self-starting control chart to 

monitor simple linear profiles is developed in [9]. The 

proposed control chart enables to detect shifts in the 

intercept, slope, and/or standard deviation. 

In all aforesaid studies, it is assumed that the error 

terms in the model are i.i.d normal random variables. 

However, in some cases this assumption can be 

violated.  Within profile autocorrelation in Phase I is 

addressed by [10] using a linear mixed model (LMM). 

Authors in [11] investigated simple linear profiles over 

time with autocorrelation between profiles. [12] 

proposed a monitoring scheme to monitor polynomial 

profiles in Phase I over time . 

A real case about autocorrelation within simple 

linear profiles is discussed in [13] and [14]. In this 

example, apples are sampled from apple trees randomly 

and the diameters of the selected apples are measured. 

In this case, the diameter and the time are modeled by a 

simple linear profile. As mentioned in [13] and [14], 

there is within profile AR(1) autocorrelation structure. If 

we want to monitor the process from the initial stages of 

the process or enough data is not available for Phase I 

studies and correct estimations of the process, a self- 

starting chart should be used. Moreover, simultaneous 

monitoring of location and variability of a quality 

characteristic is discussed by some researchers in the 

literature. Hence, in this paper, we develop a self-

starting control chart for monitoring the regression 

parameters and error standard deviation simultaneously 

in AR(1) autocorrelated simple linear profiles.  

The remainder of this paper is organized as follows: 

in the next section, we present problem formulation. In 

Section III, we propose a self-starting sum of squares 

exponentially weighted moving average (SS-EWMA) 

control chart. The simulation studies and performance 

evaluation are presented in Section IV. The concluding 

remarks and future researches are given in the final 

section.  
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II. PROBLEM FORMULATION 

If ( , )i ijx y  is the thj  random sample observed 

over the time, the relationship between ijy  and ix  

under in-control situation presumed to be as follows: 

0 1
,

ij i ij
y A A x ε= + + ; 1,2,...,   ,i n=  

(1) 

( 1)
   ,

ij i j ij
aε ρε −= +

 

where 'ij sε  are correlated error terms and 'ija s  follow 

(0,1)N  [14]. y is response variable and x is the 

explanatory variable. Since there is no enough data in 

many processes in real practice, the parameters 0 1,A A  

and 
2σ are not known a priori and should be estimated 

by using (2), (3) and (4), respectively as they are used in 

[1], [2] and [9]. 
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Note that the AR(1) structure between error terms 

in (1), results in autocorrelated observations at different 

x values in each profile [14], so the observations in 

each profile can be written as follows: 
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[14] proposed a transformation method for 

observations to eliminate the within profile 

autocorrelation in simple linear regression profile. This 

transformation is given in (6) as: 

( 1)
'    .
ij ij i j

Y Y Yρ −= −  (6) 

If we substitute the simple linear model (1) in ij
Y  and 

( 1)i j
Y −  available in (6), a simple linear profile with 

independent error terms is obtained as follows: 

0 1 1 ( 1)
' (1 ) ( ) ( )  ,
ij i i ij i j

Y A A X Xρ ρ ε ρε− −= − + − + −  (7) 

1, 2,...,  i n=  

Hence, we have  

0 1
' ' ' '   ,
ij i ij

Y A A X a= + +  (8) 

where 
( 1)

'ij ij i j
Y Y Yρ −= − , 

1
'ij ij i

X X Xρ −= −  ,

0 0' (1 )A A ρ= − , and 1 1'A A= , and 'ija s follow 
2

)(0,N σ  

. In this paper, we assumed that ρ  is a known 

parameter. 

Since it is assumed that there is no enough initial 

sample at the start-up stages to estimate the process 

parameters, we used recursive residuals to design a self-

starting control chart which can be applied at the 

beginning of the process to monitor simple linear 

profile. Now according to [9] suppose that there are 

1m −  in-control existing data and , 1, ...m m +  future 

samples with size n . If all the , 1, ...m m +  in-control 

existing data and , 1, ...m m +  future data pooled 

together in one sample, i.e.  1,2,..., ,{( , ),i ij i nx y =

}1, 2, ..., 1, , 1...j m m m= - + , then we can calculate the 

standardized recursive residuals for each future sample 

by using (9) as it is applied in [9].  
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1, 2, ...,i n=   ,  , 1,...j m m= +   

where  
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And for simplicity let ( 1)   ,j n i ijy y- + =  1, 2,...,  ,i n=

1,2,...j = [9]. Note that (10)-(14) are also applied by [9]. 

The ije value of each observation depends on 

estimated regression parameters (β ), standard deviation 

( S ) and the 'X X  value of previous observations, so to 

avoid the high volume of calculations to reach each 

observation’s ije , [9] used recursive formulas (15), (16) 

and (17) as: 
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where ( 1)t j n i= - + .  

Reference [15] showed that under the in-control 

linear model ije follows t distribution with 

( 1) 3j n i- + -  degrees of freedom [9]. Also, it is 

proved by [16] that the ije ’s  are independent [9]. 

Hence, by using a transformation, the ijQ  statistic 

which is called Q-statistic by [17] is obtained as 

follows: 

1

( 1) 3[ ( )],ij j n i ijQ T e-
- + -=F  (18) 

where 
1-F  denotes the inverse of cumulative 

distribution function of standard normal random 

variable, (.)Tn  is the cumulative distribution function of 

the t distribution with n  degrees of freedom [9]. So, 

, 1,2,..., ,{ ijQ i n=  1, 2,..., 1, , 1...}j m m m= - + is a 

sequence of random variables which are independent 

and follow (0,1)N  [9].  

III. PROPOSED SELF-STARTING SS-EWMA CONTROL CHART 

[18] proposed a chart known as the semicircle chart 

and [19] has developed this kind of control charts to 

monitor multivariate profiles in Phase II.  This control 

chart can also identify which parameter (mean or 

variance) has changed.  

This paper proposes the combination of 

transformation technique in [14], self-starting control 

chart in [9] and SS-EWMA in [20] to develop a self-

staring control chart to monitor the location and 

variability of AR(1) simple linear profiles. This is the 

main contribution of the paper.   

When a special cause after some subgroups 

(denoted by t ) happens, the Q-statistics’ distribution 

when 1 2, ,....j t t= + +  is different from their 

distribution when 1, 2,...,j t= . This difference is used 

to detect assignable cause in process.  

In order to monitor residuals we need 

1
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mean and variance for thj  sample, respectively. These 

estimators are unbiased, independent and also follow 

different distributions. The following equations are used 

to change the statistics’ distribution to (0,1)N  for jQ  

and 
2

jQS  , respectively.  
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where jZ  follows (0,1)N , [ ; ] ( )H X P X xυ = ≤  is 

chi-square cumulative distribution function of X  with 

υ  degrees of freedom and 
1−Φ  is the inverse of the 

standard normal cumulative distribution function [19]. 

Now jZ and 
jF  have the same distribution. For the jth 

random sample, the EWMA statistic is: 

1(1 ) .    1, 2,...j j jU Z U jθ θ −= + − =  (21) 

In (21), 0U is the starting point which is equal to zero 

and the smoothing parameter (θ ) takes the value in 

(0,1] interval. 

The EWMA statistics derived from jF for monitoring 

process variability is given by 

1(1 ) ,      1,2,...j j jV F V jθ θ −= + − =   (22)

In (22), 0 0V = . According to (21) and (22), the 

self-starting-SS-EWMA control chart statistic is formed 

as (23) [19]. 
2 2

j j jEW U V= + .  (23) 

Since jEW is the sum of squares of jU and jV

which are EWMA statistics, then the chart designed 

based on jEW  referred to as a self-starting SS-EWMA 

control chart [19]. self-starting SS-EWMA statistic 

represents the equation of a circle with radius equal to 

.UCL  jU and jV follow the normal distribution. 

jEW follows a chi-square distribution with 2 degrees of 

freedom when it is divided by
2

jUσ , Since 

j

j

U

U

σ
 and 

j

j

V

V

σ
are independent, identical and have standard 

normal distribution. 
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Hence, 

2( ) 2
jj UE EW σ= , (26) 
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4Var( ) 4
jj UEW σ= . (27) 

Since 0jEW > , then the self-starting SS-EWMA 

chart has merely upper control limit (UCL) given in 

(28): 

2

( ) Var( )

2
       (1 (1 ) )(1 )

2

j j

j

UCL E EW L EW

L
θ

θ
θ

= +

= − − +
−

. (28) 

UCL in (28) is obtained by simulation to achieve a 

desired in-control ARL. If jEW UCL>  then the control 

chart signals an out-of-control condition.  

IV. PERFORMANCE EVALUATION 

In this section, we use an illustrative example to 

evaluate the ARL performance of the proposed chart 

through 10000 simulation runs. The smoothing 

parameter θ  in all the EWMA statistics is set equal to 

0.2. L in SS-EWMA and self-starting SS-EWMA is set 

equal to 3.815 and 3.675, respectively to guarantee the 

0ARL  equal to 200 for each control chart. The profile 

model used in this paper is: 

( 1)

3 2 ,

,

ij i ij

ij i j ij

y x

a

ε

ε ρε −

= + +

= +
 

where ija follows (0,1)N  [14]. The explanatory 

variable x values are considered to be 2, 4, 6 and 8.  

The results in Table I showed the out-of-control 

(OC) ARLs  of self-starting SS-EWMA control chart 

under different change point values (τ ) and SS-EWMA 

control chart which is designed in Phase II. In this table,

λ is the magnitude of shift in intercept and δ is the 

magnitude of shift in slope, respectively in unit of 

sigma. Also, γ  is the shift value in standard deviation. 

The results showed that when the number of historical 

samples observed before occurring a shift increases, the 

performance of the self-starting SS-EWMA chart 

improves under all shifts in the intercept, slope and 

standard deviation. Similar to the results in [9], when 

the number of reference samples (τ ) increases, the 

performance of self-starting control chart for monitoring 

a simple liner profile gets better 

 

 

 

.  

TABLE I 

 OC ARLS OF SELF-STARTING SS-EWMA CHART UNDER 

DIFFERENT CHANGE POINTS (τ )AND SS-EWMA CHART WITH 

TRUE PARAMETERS (ARL0=200) 

  
τ values of Self-starting 

SS-EWMA 
 

 λ  20 50 100 SS-EWMA 

0β λσ+  

0.4 82.54 31.77 19.37 15.05 

0.8 7.60 5.46 5.18 4.97 

1.2 3.49 3.16 3.07 3.04 

1.6 2.50 2.33 2.30 2.27 

2 2.03 1.94 1.91 1.89 

 δ      

1β δσ+  

0.05 143.42 91.99 62.84 34.36 

0.1 45.95 16.16 11.44 10.07 

0.15 9.90 6.04 5.70 5.39 

0.2 4.54 3.97 3.76 3.67 

0.25 3.29 2.98 2.88 2.85 

 γ     

γσ  

1.4 9.01 6.72 6.12 9.69 

1.8 4.48 3.92 3.71 4.15 

2.2 3.10 2.72 2.62 2.71 

2.6 2.37 2.11 2.07 2.12 

3 1.96 1.78 1.73 1.74 

 

The results of Table II shows the effect of different 

values of autocorrelation coefficient on the OC ARL 

performance of the proposed self-starting chart under 

different shifts in the intercept ( 0β λσ+ ), slope (

1β δσ+ ), and error standard deviation ( γσ )[14]. We 

consider 0.1ρ = and 0.9ρ = . The results show that 

when the value of autocorrelation coefficient increases, 

the out-of-control ARLs of the self-starting SS-EWMA 

control chart increase and the performance of the 

control chart deteriorates.  

V. CONCLUSIONS AND FUTURE RESEARCHES 

In this paper, we proposed a self-starting control 

chart to monitor the location and variability 

simultaneously in the situation that there is AR(1) 

autocorrelation structure within a simple linear profile 

when there are no enough initial samples at the start-up 

stages for a satisfactory estimation. We also applied a 

SS-EWMA chart to monitor the parameters of an 

autocorrelated simple linear profile simultaneously in 

Phase II. The results showed that if the correlation 

coefficient gets smaller, performance of the proposed 

control chart improves. Also, the larger values of 

reference samples lead to better parameters estimation 

and as a result the better performance of the proposed 

control chart. Developing self-starting control chart for 

monitoring autocorrelated general linear profiles as well 

as investigating more complicated autocorrelation 

structures are fruitful areas for future researches. 
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TABLE II  

OUT-OF-CONTROL ARL VALUES FOR 0.1ρ =  AND 0.9ρ =  UNDER DIFFERENT VALUES OF SHIFTS IN INTERCEPT, SLOPE 

AND STANDARD DEVIATION WHEN 20τ =  (ARL0=200)  

 λ  0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

0β λσ+  
0.1ρ =  162.73 96.52 37.31 11.18 5.62 4.07 3.28 2.80 2.45 2.23 

0.9ρ =  189.03 188.69 187.85 185.97 182.09 176.94 175.49 167.04 163.81 158.57 

 δ  0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 

1β δσ+  
0.1ρ =  182.56 147.5 99.24 58.31 25.55 12.30 7.15 5.11 4.17 3.58 

0.9ρ =  188.58 179.5 163.6 140.9 128.1 104.2 78.86 59.50 39.08 29.12 

 γ
 

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 

γσ  
0.1ρ =  20.22 9.71 6.27 4.60 3.71 3.15 2.70 2.37 2.13 1.97 

0.9ρ =  46.74 15.64 7.78 5.30 4.08 3.29 2.77 2.47 2.21 1.97 
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