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The saddle point free energy in alkali atoms
Kabiri, Zeinab; Ebrahimian, Neda
Department of Plysics, Faculty of Basic Sciences, Shahed University, Tehran, 18155159, Tran

ABSTRACT

We consitder a polarized Ferni mixnre. We concentrate on the saddle point free energy of the system. We obtain

tiee functional dependence of the free energy of the svstem on average and imbalanced chenrteal potentials with
numerical colewlations.

Much of the interest in ultra-cold Fermi gases comes from their amazing tunability. In balanced mixtures
of fermions, this tunability is exploited to study the crossover from a Bose-Einstein condensate (BEC) of
maolecules to a Bardeen-Cooper-Schrieffer (BCS) superfluid [ 1]. In the case of imbalanced mixtures of spin
polarized Fermi gases, since the BCS-phase cannot support polarization at zero temperature, onc typically
expects, in a harmonic trap, phase separation into an unpolanzed superfluid core, surrounded by the
polarized normal Fermi gases. Hence much research has been done about this subject [2-3], One of the
interesting results in this connection is the thermodynamic potential for these systems. The Ginzburg-
Landau {GL) approach is a powerful tool for this aim. Recently, the GL method was re~derived in the
context of superfluid ultracold Fermi gases |4).In this paper, we consider a system consist of two spin

species. With massesm, andm, | and chemical potentials g, and g . The T — 4 interaction is assumed
o be a contact interaction characterized by the coupling constant = —4#ﬂ’n‘,|"'mn with
My =2man, f{my +m,) . Also a is the scattering length. We define the imbalanced chemical potential,
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I, = (g, = p,)/2, and the average chemical potential, g, = (4t + 41, )f2. Using the Bogoliubov-de
Gennes cquations, onc finds the spectra in superfluid phase as| 5]

'k
E, =_h‘+1m +yg,} +A° (N

where &, = (W'k"[2m, — 1,) and my, =2mm, [(m, —m_ ). A is the gap function.

Also, using the functional integral formalism over the fermion fields (the Grassmann variables) and Green's
functions technique in quantum field theory, the saddle point free energy for this system is given by [4] :

dak [1 m A | m AT
Lyl el RPN e kil Wi Ll
L8 j{z }3[ ln(!nmhﬂEp+1mshﬂﬁl:] £, : } 2 (2)

where F=1/K,I'" | T is the temperature, K is the Boltzmann constant. It should be noted that in fact,
an exact solution 15 not possible to obtain the free energy. There is a way, in essence non-perturbative, to
approximate the integral existing in the action, called saddle point method. In this approximation, the fields
near the lowest point of the action functional contribute most to the path intcgration, exiracting this lowest
point gives zeroth approximation of the integral. For obtaining the saddle point free energy. £2 | we should
first obtain the values of the proper parameters, such as /1, _ existing in Eq. (2). Thus find &, and &, via the
Clogston limit. Also, we write the #11, and #1,. in terms of mass ratio, 1, =, (. , and take the allowed
range of the values of m_ . By fixing the value of m_ &, g1, A and using the allowed values of these relevant

physical parameters |6], we plot the free energy, £3, | as a function of these proper parameters. It should be
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mientioned that in the numerical caleulations, the energies (suchas €3, f, g and A) are measured with
respect to K f,. (7, is Fermi temperature; also, throughout the paper, we used K, =1). Figure 1 shows
the saddle point free energy, £ | in terms of average chemical potential, £, . The free energy decreases

with the average chemical potentials, This result is due to the existence of the term —g N in the free
energy (thermodynamic potential ).
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Fig 1. Q'ursusﬂ!, o o constant emperalune and a constant mass mio

Figure 2 shows the saddle point frec encrgy, () in terms of .Il',
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Fig2. .‘.'J;vn'susﬂr for a constant temperature and a constanl mass ralio

Conclusions

We considered a mixture of polarized Fermi gases . The dependence of the saddle point free energy
for this system with the average and imbalanced chemical potentials of the system were
numerically calculated. The free energy decreases with the average chemical potentials. This result
15 reversed for the imbalanced chemical potentials (the free energy increases with the imbalanced
chemical potentials). We claim the free energy can be conirolled by experimentalist via average
and imbalanced chemical potentials.

References
[1] G. B. Patridge, W. Li, R. I. Kamar, Y. A. Liao and R.G. Hulet, Science3 11, 503 (2006)

2] M. W. Zwerlein, A. Schirotzek, C. H. Schunck and W Ketterle, Science311, 492 (2006).

Page | 262

@U@Rﬂ 9ili pale suflagy ~1FAF olools )3 F ¥ — S jud 03l il R85 (o sler 9 Casm

[3] Y. Shin, M. W. Zwierlein, C. H. Schunck, A. Schirotzekand W. Ketterle, Phys. Rev. Lert.97, 9030401
(2006),G. B. Parridge, W. Li, Y. A. Liao, R. G. Hulet, M. Haque and H. T. C. Stoof, Phys. Rev. Lett 97,
190407 {2006).

[4] S. N, Klimin, J. Tempere, (. Lombardi, J. Devreese, Eur, Phys. 1. B 88, 122(20135).
[5] B. Van Schacybroeck, A. Lazarides, Phys. Rev, Lett. 98, 1 70402(2007),

[6] M. Ebrahimian, Z. Safee, Physica B 509, 24 (2017).

Page | 263



