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A communication network composed of M sub-channel and N trans-

mitter-receiver pairs, each of unit transmit power constraint, is con-

sidered. The capacity of this network under Gaussian code book

assumption for the case of a decentralised single-hop and one-shot

game is investigated, showing the corresponding sum-rate capacity

behaves like M log (N ) 2 u(loglog(N )).

Introduction: Bandwidth partitioning has been regarded as one of the

main concerns in wireless networks. This is due to the limited amount

of bandwidth and more demands, arising from emerging wireless tech-

nologies. Spectrum sharing is a key solution to this need [1].

Generally, there are two main power allocation methods, centralised

against decentralised approaches. The former makes use of a central

node to set the transmit power of each link with a view to increasing

the network throughput (e.g. [2]). The latter, however, assumes each

link sets the corresponding power selfishly, while considering the

network benefits in terms of increasing the network throughput [3].

To this end, most of the decentralised schemes attempt to define a

proper utility function for each link, which aims at increasing the

network throughput [4].

The main contribution of the current work is the introduction of the

optimum decentralised power allocation method for the case of having

several independent frequency bands, when each transmitter makes

use of a Gaussian code book. This optimum power allocation method

is first addressed in [5], however its optimality is not proved there.

The rest of this Letter is organised as follows. The following Section

presents the mathematical model in detail. Accordingly, the optimum

power allocation strategy, leading to the sum-rate capacity is investigated

in the subsequent Section. The final Section summarises the findings.

Throughout the Letter, for any function f (n) and g(n), f (n) ¼ O(g(n)),

f (n) ¼ o(g(n)) and f (n) ¼ w(g(n)) are equivalent, respectively, to

limn�1 |f (n)/g(n)| , 1, limn�1 |f (n)/g(n)| = 0 and limn�1 |f (n)/
g(n)| = 1.

System model: We consider N transmitter-receiver pairs, communicat-

ing over M I.I.D. sub-channels. It is assumed that the number of links

(N) as well as the number of sub-channels (M ) are the common

information at the transmitters. Also, each transmitter only knows the

direct channel gains of M sub-channels to the affiliated receiver, and

is restricted to transmit with unit power.

The corresponding channel gain between the jth receiver and the ith

transmitter in the kth sub-channel is denoted by a random variable

gji
(k), for i, j [ {1, 2, . . . ,N} and k [ {1, 2, . . . ,M}. Assuming a

quasi-static Rayleigh fading channel, thus the channel strength

h
(k)
ji = |g(k)ji |2 has an exponential distribution, i.e. Pr

h
(k)
ij
(x) = e−x for

x ≥ 0.

We also assume the average transmit power of the ith user in the kth

sub-channel is represented by p
(k)
i [ [0, 1]. Thus, to have the unit trans-

mit power constraint, it follows
∑M

k=1 p
(k)
i ≤ 1 for i ¼ 1, . . . N.

Optimum power allocation strategy: The following theorem states the

optimum power allocation strategy.

Theorem: Assuming there are N links, communicating over M I.I.D.

sub-channels, such that each link has only access to its direct channel

gains over M sub-channels, then the optimum power allocation strategy

is to communicate over the best sub-channel if the corresponding

channel strength exceeds a certain threshold, otherwise the transmitter

should remain silent.

Proof: The received signal of the ith user from M sub-channels can be

formulated as the following matrix notation,

yi = Giixi +
∑

N

j=1
j=i

Gijxj + n (1)

where xi ¼ [xi
(1) xi

(2)
. . . xi

(M )]T is the transmitted vector of the ith user

over M sub-channels. yi ¼ [ yi
1 yi

2
. . . yi

M]T represents the received

vector, and Gij denotes the diagonal channel matrix between the jth

transmitter and the ith receiver, i.e. Gij ¼ diag[gij
(1), gij

(2), . . . , gij
(M )],

where gij
(k) denotes the corresponding channel gain between the jth trans-

mitter and the ith receiver in the kth sub-channel.

Considering Iij ¼ Gijxj as the interfering signal arising from the jth

transmitter at the ith receiver, one can readily compute the corresponding

correlation matrix of this interfering signal as follows

E[IijI
†
ij ] = EGij

[GijExj [xjx
†
j ]G

†
ij ]

= EGij
[GijLjG

†
ij =(a) diag(Lj) = Sj

(2)

where in (2) it is assumed E[xjx
†
j ] = Lj for j ¼ 1, . . . , N. Also, Sj ¼

diag(Lj) is a matrix whose diagonal elements are the same as that of

Lj, while its off diagonal entries are zero. Also, owing to the the unit

transmit power constraint, trac(Lj) ≤ 1, hence it follows trace Sj ≤ 1.

Again, noting the power allocation strategy of the jth link merely

depends on the direct channel gain matrix Gjj, thus Sj is a function of

Gjj, hence, one can easily verify that

E[IiI
†
i ] =

∑

j=N

j=1,j=i

E[IijI
†
ij ]

=(a) ∑

j=N

j=1,j=i

Sj ≃(b) (N − 1)EGii
[Si] ≃ (N − 1)S

(3)

where (a) comes from the fact that E[IijI
†
ij ] for j ¼ 1, . . . ,M are indepen-

dent. Also, referring to the central limit theorem and noting the

aforementioned interfering signals arising from different transmitters

are drawn from the same distribution, the sum of N2 1 identically

distributed random variables can be approximated using a Gaussian

distribution. Thus, assuming the kth diagonal entry of E[IiI
†
i ], is i

(k) it

follows

Pr{(N − 1)m(k)(1− d) , i(k) , (N − 1)m(k)(1+ d)}

≃ 1− 2Q
(N − 1)m(k)d
��������������

(N − 1)s(k)2
√

( )

(4)

where in (4), m(k) and s(k)2 denote, respectively, the kth diagonal entry of
S and the average interference power of the kth sub-channel. It can be

verified that by setting d = O(
���

InN
N

√

) and noting the approximation

Q(x) = 1
���

2px
√ ex

2/2 for x ≫ 1, E[IiI
†
i ] with probability approaching one

tends to the following,

E[IiI
†
i ] = (N − 1) 1+ O

�����

InN

N

√

( )( )

S (5)

This justifies (b) in (3). Thus it follows,

E[yiy
†
i |Gii] ≃ EXi

[Giixix
†
i G

†
ii ] + (N − 1)S+ s2

nI (6)

Note that there is a dependency between xi and Gii, as it is assumed each

transmitter has access to its channel gain matrix. On the other hand,

using Hadamard inequality, one can argue that when dealing with

network throughput, the diagonal entries of matrix xixi
† merely affect

the result. The Hadamard inequality states that for a given square

matrix K of dimension n and diagonal entries kii for i ¼ 1, . . . , n, we

have det(K) ≥
∏n

i=1 kii . Moreover, the equality holds if K is a diagonal

matrix.

Let us define the kth diagonal entry of matrix xixi
† as fk(.) which in fact

is a function of direct channel gain matrixGii, i.e. fk (g(1)ii , g
(2)
ii , . . . , g

(M )
ii ).

The problem is to find the set of functions f = {f1(.), . . . , fM (.)} for

which the network throughput is maximised. Noting the above and

using (3) and (6), the achievable throughput under Gaussian code
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book assumption becomes

Ri = EGii

max
∑M

k=1
fk (g(1)ii

,...,g
(M )
ii

)≤1

log det[pe(Giixix
†
i G

†
ii

[

+ (N − 1)S+ s2
nI] − log2 det[pe((N − 1)S+ s2

nI)]
]

≤(a)
EGii

max
∑M

k=1
fk (g(1)ii

,...,g
(M )
ii

)≤1

∑

M

k=1

log

⎡

⎣

× 1+ |g(k)ii |2fk (g(1)ii , . . . , g
(M )
ii )

(N − 1)m(k) + s2
n

( )]

(7)

where (a) is a direct consequence of applying Hadamard inequality. It

should be noted that if one simply sets the off diagonal entries of

matrix xixi
† to zero, the inequality in (a) can be replaced with equality.

Also, m(k) represents the kth diagonal entry of diagonal matrix S.
Owing to the symmetrical properties of sub-channels, it can be con-

cluded that m(k) = E[ fk (g(1)ii , . . . , g
(M )
ii )] = m for the optimum power

allocation strategy. Noting the above and using the fact that the interfer-

ence is strong enough, i.e. (N − 1)m(k) = (N − 1)E[ fk (g(1)ii , . . . ,

g
(M )
ii )] = v(1). Thus considering log(1+ x) ≃ x for x ≪ 1, the afore-

mentioned problem can be cast as the following optimisation problem,

max
∑M

k=1
fk (g(1)ii

,...,g
(M )
ii

)≤1

∑

M

k=1

EGii
[|g(k)ii |2fk (g(1)ii , . . . , g

(M )
ii )]

s.t. E[ fk (g(1)ii , . . . , g
(M )
ii )] = w(1)

N − 1
, k [ {1,M}

(8)

Let us define |g(k)ii |2 W h
(k)
ii as the channel strength of the kth sub-channel

which has the exponential distribution. Thus, the real function fk(.) can

be considered as a function of hii
(k) for k ¼ 1, . . . , M. As a result, using

the method of Lagrange multipliers, (8) can be converted to

L( f1(.), . . . , fk (.), l1, . . . , lM )

=
[

∑

M

k=1

∫

. . .

∫

1

0

h
(k)
ii fk (h

(1)
ii , . . . , h

(M )
ii )e−

∑M

m=1
h
(m)
ii dh

(1)
ii . . . dh

(M )
ii

( )

+ lk (
w(1)
N

−
∫

. . .

∫

1

0

fK (h(1)ii , . . . , h
(M )
ii )e−

∑M

m=1
h
(m)
ii dh

(1)
ii . . . dh

(M )
ii )

]

s.t.
∑

M

k=1

fK (h(1)ii , . . . , h
(M )
ii ) ≤ 1

(9)

Again, owing to the symmetrical properties of sub-channels, it can be

verified that lk for k ¼ 1, . . . , M are the same. Thus, (9) simplifies to

L( f1(.), . . . , fM (.),l) =
∫

. . .

∫

1

0

∑

M

k=1

(h(k)ii − l)fk (h(1)ii , . . . , h
(M )
ii )

× e
−
∑M

m=1
h
(m)
ii dh

(1)
ii . . . dh

(M )
ii + lMw(1)

N

s.t.
∑

M

k=1

fk (h(1)ii , . . . , h
(M )
ii ) ≤ 1, l ≥ 0

(10)

Considering l is fixed, this problem can be thought of as a definite in-

tegral of weighted linear combination of unknown functions fk(.) subject

to the linear affine constraint
∑

k¼1
M fk ≤ 1. Noting the corresponding

weight of fk(.) is (h(k)ii − l)e−(h
(1)+...+h

(M )
ii

ii
), it can be easily verified that

for each realisation of h
(k)
ii for k ¼ 1, . . . , M, the aforementioned

optimisation problem is maximised when the function corresponding

to the maximum positive weight is set to one and others take zero

values. Also, if all weights are negative, i.e. h
(max)
ii , l, all functions

should take zero values. As a result, f
opt
k (h(1)ii , . . . , h

(M )
ii ) = 1 if h

(k)
ii =

max(h(1)ii , . . . , h
(M )
ii , l), otherwise it sets to zero. Thus, for the optimum

set of functions f
opt
k (.) for k = 1, . . . ,M , it follows,

L(f
opt
1 (.), . . . , f optM (.), l) = M

∫

1

l

(h(1)ii − l)e−h
(1)
ii

× (1− e−h
(1)
ii )M−1dh

(1)
ii + lMw(1)

N

(11)

According to the method of Lagrange multipliers, the optimum value

of l (lopt) can be obtained through setting the derivation of

L( f opt1 (.), . . . , f optM (.), l) to zero,

∂

∂l
L( f opt1 (.), . . . , f optM (.), l) = (1− e−l)M +Mw(1)

N
− 1 = 0

As a result, for a large value of N, and noting lopt should take a large

value, it follows

M log(1− e−lopt ) = log 1−Mw(1)
N

( )

≃ −Mw(1)
N

−Me−lopt ≃ −Mw(1)
N

⇒ lopt =(a) log(N ) − uN (log log(N ))

where (a) comes from the fact that according to the definition of w(1),

one can replace it with log(N). In [5], it is proved that the achievable

sum-rate of this strategy scales as

�R ≃ M logN − uN (log log(N )) (12)

Conclusion: The optimum power allocation strategy for multi-band

decentralised wireless networks under Gaussian code book assumption

is studied, showing the optimal solution is a threshold based sub-channel

selection together with an on-off scheme, inferring cooperation among

sub-channels does not increase the network throughput.
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