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On the Average Achievable Rate of

Block Fading Decentralized Interference Channel

Soroush Akhlaghi and Mina Baghani

Abstract—This paper aims to explore the average achievable
rate of two-user decentralized Gaussian interference channel in
a non-ergodic block fading environment, assuming the channel
gains are constant throughout one transmission block and vary
independently for the next block. It is assumed the channel
gains are not available at the transmitters, while direct and
cross channel gains are perfectly available at the corresponding
receivers. In this regard, under Gaussian codebook assumption
and considering the signal arising from the other co-channel
communication link is treated as an interference, a multi-layer
coding strategy is exploited at each transmitter. Then, under
individual transmit power constraints and in a Rayleigh block
fading environment, the optimum power allocation across code
layers is derived, showing the average achievable rate of using
multi-layer coding outperforms that of using a single layer code.

Index Terms—Decentralized interference channel, multi-layer
coding, fading channel.

I. INTRODUCTION

THIS paper concerns the average achievable rate of block

fading decentralized interference channel in which there

is not a central controller to share the existing resources,

meaning time sharing and/or bandwidth partitioning is not

allowed. Moreover, the interference signal is treated as an

additive noise, since each receiver merely knows the codebook

associated with the corresponding transmitter.

Recently, there have been some attempts to explore the

achievable rate of decentralized interference channels, how-

ever, the availability of channel state information at the

transmitters (CSIT) is the integral part of most of existing

works ( e.g., [1]). This motivated us to explore the achievable

rate of such channel when the channel gains are not available

at the transmitters.

This paper assumes block fading decentralized interference

channel in which the channel gains associated with direct

and cross links are merely available at the receiver sides. To

get an insight regarding the coding strategy exploited in the

current work, we simply assume a special case in which the

channel gains of cross links are zero. In this case, the network

subsumes two individual point-to-point communication links

for which due to the lack of CSIT, each link can be cast

as a degraded broadcast channel with an infinite number of

virtually ordered users, corresponding to channel realizations,

called the broadcast strategy [2]. Accordingly, the superposi-

tion code can be exploited to achieve the sum-rate capacity

of such channel. The objective in this work is to find the best

Manuscript received February 28, 2011. The associate editor coordinating
the review of this letter and approving it for publication was H. Shafiee.

The authors are with the Department of Electrical Engineering, Shahed
University, Tehran, Iran (e-mail: {akhlaghi, baghani}@shahed.ac.ir).

Digital Object Identifier 10.1109/LCOMM.2011.071811.110437

power allocation policy across code layers to maximize the

average sum-rate capacity of each link.

In what follows, Section II presents some background

information for point-to-point communication channel in the

absence of CSIT, where the broadcast strategy is employed to

maximize the throughput. Section III aims to extend the termi-

nology to decentralized interference channel in the presence

of Gaussian noise. Finally, Section IV illustrates the results

and Section V summarizes findings.

II. BACKGROUND INFORMATION

We assume a point-to-point communication link, owing to

transmit power constraint 𝑝𝑇 , in a block fading environment.

In this case, the received signal can be written as follows,

𝑦𝑖 = ℎ𝑥𝑖 + 𝑛𝑖 for 𝑖 = 1, . . . , 𝑁 , (1)

where 𝑥𝑖, 𝑦𝑖, and 𝑛𝑖 denote, respectively, the transmitted

signal, the received signal and additive Gaussian noise of unit

variance, i.e., 𝒩𝑐(0, 1). Moreover 𝑖 denotes the 𝑖𝑡ℎ channel

uses index of current transmission block. Also, it is assumed

the channel gain (ℎ) is constant throughout one transmission

block and varies independently for the next block. In this case,

when the channel gain is not available at the transmitter, it is

demonstrated that the broadcast strategy is optimal [2].

According to the broadcast strategy, the system can be

thought as if there are infinite number of virtual users, each

corresponds to a channel realization, i.e., 𝑠 = ∣ℎ∣2, which is

designated to get a fractional rate, i.e., 𝑑𝑅(𝑠). Accordingly,

as long as the channel strength exceeds 𝑠, this user is able

to decode this fractional rate. Moreover, according to the

broadcast approach, the users are indexed such that the 𝑗𝑡ℎ

user can decode the corresponding signals of all users indexed

from 1 to 𝑗 − 1. Thus, the achievable fractional rate of

the 𝑗𝑡ℎ user corresponding to the channel strength 𝑠 can be

expressed as 𝑑𝑅(𝑠) = ln(1 + 𝑠𝑝(𝑠)𝑑𝑠
1+𝑠𝐼(𝑠) ) ≃ 𝑠𝑝(𝑠)𝑑𝑠

1+𝑠𝐼(𝑠) , where

𝑝(𝑠)𝑑𝑠 is the transmit power of the 𝑗𝑡ℎ layer parameterized

by 𝑠, and 𝐼(𝑠) is the interference power arising from layers

indexed 𝑗 + 1 to ∞, that is 𝐼(𝑠) =
∫∞
𝑠
𝑝(𝑢)𝑑𝑢. It is worth

mentioning that 𝐼(0) = 𝑝𝑇 , and 𝐼(∞) = 0. Moreover, if

the instantaneous fading power is 𝑠, the total rate, 𝑅(𝑠), is

the sum of all fractional rates designated for the receivers

corresponding to the channel strengths lower than 𝑠, i.e.

𝑅(𝑠) =
∫ 𝑠

0
𝑑𝑅(𝑢) =

∫ 𝑠

0
𝑢𝑝(𝑢)𝑑𝑢
1+𝑢𝐼(𝑢) . Finally, taking expectation

with respect to the fading power, i.e., 𝑠, implies,

𝑅𝑎𝑣𝑒=

∫ ∞

0

𝑓(𝑠)𝑅(𝑠)𝑑𝑠 =

∫ ∞

0

(1− 𝐹 (𝑠))𝑑𝑅(𝑠), (2)

where in (2), 𝑓(.) and 𝐹 (.) denote, respectively, the prob-

ability density function (pdf) and cumulative distribution
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function (cdf) associated with the fading power 𝑠. Noting

𝑝(𝑠) = − 𝑑𝐼(𝑠)
𝑑𝑠

= −𝐼 ′(𝑠), the problem is to find the optimum

power allocation strategy across layers, such that 𝑅𝑎𝑣𝑒 is

maximized, i.e,

𝑅𝑎𝑣𝑒 = max
𝑝(.)

∫ ∞

0

(1− 𝐹 (𝑠))
𝑠𝑝(𝑠)

1 + 𝑠𝐼(𝑠)
𝑑𝑠

s.t.

∫ ∞

0

𝑝(𝑠)𝑑𝑠 = 𝑝𝑇 and 𝑝(𝑠) ≥ 0 . (3)

Noting 𝑝(𝑠) = −𝐼 ′(𝑠), using the method of Lagrange multi-

pliers and after some straight manipulations, we have,

𝐿=

∫ ∞

0

(

(1− 𝐹 (𝑠))
−𝑠𝐼 ′(𝑠)

1 + 𝑠𝐼(𝑠)
+ 𝐼 ′(𝑠)(𝜆− 𝑣(𝑠))

)

𝑑𝑠

+ 𝜆𝑝𝑇 , (4)

where 𝑣(𝑠) and 𝜆 are assumed to be, respectively, as an

arbitrary non-negative function and a non-negative coefficient

associated with the constraints of (3). The integrand of (4) can

be thought as a function 𝐺(𝑠, 𝐼, 𝐼 ′) = (1 − 𝐹 (𝑠))−𝑠𝐼′(𝑠)
1+𝑠𝐼(𝑠) +

𝐼 ′(𝑠)(𝜆− 𝑣(𝑠)). As a result, the optimization problem can be

solved using the Euler equation [3] as 𝐺𝐼 −
𝑑𝐺𝐼′

𝑑𝑠
= 0, where

𝐺𝐼 = ∂𝐺
∂𝐼

and 𝐺𝐼′ = ∂𝐺
∂𝐼′

. Thus, we have,

𝐺𝐼 −
𝑑𝐺𝐼′

𝑑𝑠
=

1− 𝐹 (𝑠)− 𝑠𝑓(𝑠)− 𝑠2𝑓(𝑠)𝐼(𝑠)

(1 + 𝑠𝐼(𝑠))2
+ 𝑣′(𝑠) = 0 .

(5)

Moreover, from complementary slackness conditions, we have

𝜆(𝑝𝑇 +

∫ ∞

0

𝐼 ′(𝑠)𝑑𝑠) = 0, and 𝐼 ′(𝑠)𝑣(𝑠) = 0 . (6)

Referring to (6), 𝑣(𝑠) = 0 when 𝐼 ′(𝑠) = −𝑝(𝑠) < 0. In this

case, noting (5), we have [2],

𝐼(𝑠) =
1− 𝐹 (𝑠)− 𝑠𝑓(𝑠)

𝑠2𝑓(𝑠)
. (7)

Thus, 𝐼 ′(𝑠) = (𝐹 (𝑠)−1)(2𝑠𝑓(𝑠)+𝑠2𝑓 ′(𝑠))
𝑠4𝑓(𝑠)2 = 𝐹 (𝑠)−1

𝑠4𝑓(𝑠)2
𝑑(𝑠2𝑓(𝑠))

𝑑𝑠
. As

a result, the following condition is required to have 𝐼 ′(𝑠) =
−𝑝(𝑠) < 0, i.e., to have non-zero power at point 𝑠 ,

𝑑(𝑠2𝑓(𝑠))

𝑑𝑠
> 0. (8)

In the sequel, we are going to show that if there are totaly 𝐾

disjoint intervals, i.e., [𝑠𝑘𝑙
, 𝑠𝑘𝑢

] for 𝑘 = 1, . . . ,𝐾 , in which (8)

holds, then there is at most one subinterval with positive power

allocation within each disjoint interval. Suppose otherwise,

assume 𝑠𝑘𝑙
< 𝑐1 < 𝑐2 < 𝑑1 < 𝑑2 < 𝑠𝑘𝑢

such that (8)

holds for 𝑠 ∈ [𝑠𝑘𝑙
, 𝑠𝑘𝑢

] and there are two positive subintervals,

i.e., [𝑐1, 𝑐2] and [𝑑1, 𝑑2], with zero power interval (𝑐2, 𝑑1)
between them. In [3], it is demonstrated that for a piece-

wise continuous extremal solution, the following Weierstrass-

Erdmann (corner) conditions hold at any corner point, i.e., 𝑠𝑐,

𝐺𝐼′ ∣𝑠=𝑠
+
𝑐

= 𝐺𝐼′ ∣𝑠=𝑠
−

𝑐

𝐺− 𝐼 ′𝐺𝐼′ ∣𝑠=𝑠
+
𝑐

= 𝐺− 𝐼 ′𝐺𝐼′ ∣𝑠=𝑠
−

𝑐
(9)

Thus, noting the first equation in (9), we have,
(

1− 𝐹 (𝑠𝑐)
) 𝑠𝑐

1 + 𝑠𝑐𝐼(𝑠
−
𝑐 )

+ 𝑣(𝑠−𝑐 )− 𝜆 =

(

1− 𝐹 (𝑠𝑐)
) 𝑠𝑐

1 + 𝑠𝑐𝐼(𝑠
+
𝑐 )

+ 𝑣(𝑠+𝑐 )− 𝜆 (10)

Again, referring to slackness conditions in (6) and noting

𝑐−2 ∈ [𝑐1, 𝑐2], we have 𝑣(𝑐−2 ) = 0. Thus, noting (10)

and using the fact that I(s) is a continues smooth function,

i.e., 𝐼(𝑠−) = 𝐼(𝑠+), thus it follows 𝑣(𝑐+2 ) = 0. By the

same token, we have 𝑣(𝑑−1 ) = 0. On the other hand, since

𝑝(𝑠) = −𝐼 ′(𝑠) = 0 in the interval 𝑠 ∈ (𝑐2, 𝑑1), thus using

(5), we have, 𝑣′(𝑠) =
𝑠2𝑓(𝑠)(𝐼(𝑐2)−

1−𝐹 (𝑠)−𝑠𝑓(𝑠)

𝑠2𝑓(𝑠)
)

(1+𝑠𝐼(𝑐2))2
. Since 𝑠2𝑓(𝑠)

has positive derivation in 𝑠 ∈ (𝑐2, 𝑑1), implying
1−𝐹 (𝑠)−𝑠𝑓(𝑠)

𝑠2𝑓(𝑠)

is a decreasing function, thus 𝑣′(𝑠) is strictly positive. As a

result, 𝑣(𝑠) would be an increasing function in the interval

𝑠 ∈ (𝑐2, 𝑑1). However, this contradicts the earlier finding that

𝑣(𝑐+2 ) = 𝑣(𝑑−1 ) = 0. Thus, there is at most one positive power

allocation interval in 𝑠 ∈ [𝑠1, 𝑠2].
Although, it is proved that there is at most one positive

subinterval within each interval [𝑠𝑘𝑙
, 𝑠𝑘𝑢

], it is still possible to

have totally more than one positive subinterval, each belongs

to one of disjoint intervals [𝑠𝑘𝑙
, 𝑠𝑘𝑢

] for 𝑘 = 1, . . . ,𝐾 .

III. MULTI-LAYER CODING IN BLOCK FADING GAUSSIAN

INTERFERENCE CHANNEL

This paper concerns two-user decentralized interference

channel in a block Rayleigh fading environment, as follows,

𝑌𝑘 = ℎ𝑘1𝑋1 + ℎ𝑘2𝑋2 + 𝑍𝑘 𝑘 = 1, 2 , (11)

where 𝑋𝑘, 𝑌𝑘 and 𝑍𝑘 denote, respectively, the transmitted

signal from the 𝑘𝑡ℎ transmitter, the received signal at the

𝑘𝑡ℎ receiver and additive white Gaussian noise at the 𝑘𝑡ℎ

receiver which is of unit power, i.e., 𝒩𝑐(0, 1). Also it is

assumed channel coefficients ℎ𝑘𝑖 ∼ 𝒩𝑐(0, 1) for 𝑘, 𝑖 ∈ {1, 2}
are constant throughout one transmission block and vary

independently for the next block. Moreover, the fading power

is defined as 𝑠𝑘𝑖 = ∣ℎ𝑘𝑖∣2, thus having exponential distribution

with probability density function 𝑓𝑠𝑖,𝑗 (𝑥) = 𝑒−𝑥. As is

mentioned in the preceding section, this work investigates the

case in which the transmitters are unaware of channel gains,

while 𝑠𝑖𝑘 for 𝑘 ∈ {1, 2} are perfectly available at the 𝑖𝑡ℎ

receiver. Moreover, the inputs are subject to the average power

constraint 𝐸[∣𝑋𝑘∣2] ≤ 𝑝𝑘 and transmitters employ Gaussian

codebooks. Thus, the interference signal is treated as an

additive Gaussian noise, assuming no cooperation is allowed at

the transmitter and receiver sides. Moreover, as transmissions

take place in a decentralized manner, time sharing and/or

bandwidth partitioning is not allowed.

We simply concentrate on the first link, as any findings can

be readily extended to the second link by using the same token.

Referring to (11), the received signal at the first receiver can

be modeled as 𝑌1 = ℎ11𝑋1 + ℎ12𝑋2 + 𝑍1.

Note that the intended signal at this receiver is 𝑋1, thus

interfering signal 𝑋2 is treated as an additive noise. Noting

𝐸[∣𝑋𝑘∣2] ≤ 𝑝𝑘 (𝑘 ∈ {1, 2}) are drawn from Gaussian

distributions and are independent of channel gains, so the

interfering signal ℎ12𝑋2 follows Gaussian distribution with

power 𝑠12𝑝2. This implies 𝑌1 = ℎ11𝑋1 + 𝑍, where 𝑍 is the

equivalent Gaussian noise with distribution 𝒩𝑐(0, 𝑠12𝑝2 + 1).
Multiplying the received signal by 1√

𝑠12𝑝2+1
, one arrives at

𝑌1 = ℎ11√
𝑠12𝑝2+1

𝑋1 +𝑍 , where 𝑍 ∼ 𝒩𝑐(0, 1). As a result, the

equivalent fading coefficient of the intended signal ( ℎ11√
𝑠12𝑝2+1

)
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Fig. 1. The average achievable rate of single-layer and multi-layer code
versus different transmit powers.

has power 𝑠 = 𝑠11
𝑠12𝑝2+1 . Thus, the cdf of equivalent fading

power 𝑠 can be computed as,

𝐹𝑆(𝑠) = 𝑃𝑟(𝑆 ≤ 𝑠) =

∫ ∫

𝑅

𝑓𝑆11(𝑠11)𝑓𝑆12(𝑠12)𝑑𝑠11𝑑𝑠12 ,

(12)

where 𝑅 = {𝑠11, 𝑠12 ∈ [0,∞)∣ 𝑠11
𝑠12𝑝2+1 ≤ 𝑠}. For instance, in

Rayleigh fading environment, it follows,

𝐹𝑆(𝑠)=

∫ ∞

0

∫ 𝑠𝑠12𝑝2+𝑠

0

𝑒−𝑠11𝑒−𝑠12𝑑𝑠11𝑑𝑠12 = 1−
𝑒−𝑠

𝑠𝑝2 + 1
. (13)

Thus, the corresponding pdf of 𝑠 (𝑠 ≥ 0) becomes,

𝑓𝑆(𝑠) =
𝑑𝐹𝑆(𝑠)

𝑑𝑠
=

𝑒−𝑠

(𝑠𝑝2 + 1)2
(𝑠𝑝2 + 𝑝2 + 1) . (14)

One can readily verify that
𝑑(𝑠2𝑓𝑆(𝑠))

𝑑𝑠
= 𝑒−𝑠𝑠

(𝑠𝑝2+1)3 𝑘(𝑠), where

𝑘(𝑠) = −𝑝22𝑠
3− 2𝑝2𝑠

2+(2𝑝2− 1)𝑠+2𝑝2+2. Assuming, the

derivative of 𝑠2𝑓𝑆(𝑠) is strictly positive for the interval 𝑠 ∈
[𝑠0, 𝑠1], i.e., 𝑓𝑆(𝑠) meets the condition of (8), thus plugging

𝐹𝑆(.) and 𝑓𝑆(.) into (7), it follows,

𝐼opt(𝑠) =

⎧

⎨

⎩

𝑝1 0 ≤ 𝑠 ≤ 𝑠0
1−𝑠2𝑝2−𝑠

𝑠3𝑝2+𝑠2+𝑠2𝑝2
𝑠0 ≤ 𝑠 ≤ 𝑠1

0 𝑠 ≥ 𝑠1

, (15)

where 𝑠0 and 𝑠1 are unknown parameters to be determined.

To this end, we note that 𝐼opt(𝑠0) = 𝑝1 and 𝐼opt(𝑠1) = 0. Thus,

after some manipulations, the feasible value for 𝑠1 becomes

𝑠1 = −1+
√
1+4𝑝2

2𝑝2
and similarly, it turns out 𝑠0 is the solution

of 𝑝2𝑝1𝑠
3 + (𝑝1 + 𝑝1𝑝2 + 𝑝2)𝑠

2 + 𝑠− 1 = 0, which has just

one positive root1. For instance, assuming 𝑝1 = 𝑝2 = 𝑝, we

have 𝑠0 = 1
2𝑝 (−𝑝− 1 +

√

𝑝2 + 6𝑝+ 1).

Again, since the polynomial function 𝑘(𝑠) = −𝑝22𝑠
3 −

2𝑝2𝑠
2+(2𝑝2−1)𝑠+2𝑝2+2 associated with

𝑑(𝑠2𝑓𝑆(𝑠))
𝑑𝑠

which

is derived earlier in this section has just one variation in sign

of consecutive non-zero coefficients, hence it has just one

1The number of positive roots of a polynomial with real coefficients ordered
in terms of ascending powers of the variable is either equal to the number of
variations in sign of consecutive non-zero coefficients or less than this by a
multiple of 2 [4].

positive root [4]. On the other hand, one can readily verify

that 𝑘(𝑠1) is positive. Noting lim𝑠−→+∞ 𝑘(𝑠) → −∞, thus

the positive root of 𝑘(𝑠) resides in the interval (𝑠1,+∞),
hence 𝑘(𝑠) is strictly positive for 𝑠 ≤ 𝑠1, confirming 𝑓𝑆(𝑠)
regardless of the power constraints 𝑝1 and 𝑝2 meets the

condition of (8) in the interval 𝑠 ∈ [𝑠0, 𝑠1]. Finally, the average

achievable rate associated with the first communication link

(𝑅ave) is determined by substituting (15) in (2). Moreover, the

limiting behavior of 𝑅ave is found to be 𝑅𝑎𝑣𝑒 = 2 ln 2− 1 as

𝑝1 = 𝑝2 → +∞, implying when the transmit powers go to

infinity, we are working in interference-limited regime.

IV. NUMERICAL RESULTS

This section aims at investigating the average achievable

rate of multi-layer code as compared to that of single-layer

code. For multi-layer code, the optimum power allocation

policy is derived through the use of (15), noting 𝑝𝑜𝑝𝑡(𝑠) =
−𝐼 ′𝑜𝑝𝑡(𝑠). On the other hand, for single layer code, the rate is

set to ln(1+𝑝1𝑠𝑡ℎ), which is achievable as long as the channel

strength 𝑠 exceeds 𝑠𝑡ℎ. Thus, the average achievable rate of

single layer code with parameter 𝑠𝑡ℎ becomes 𝑅 = 𝑃𝑟(𝑠 ≥
𝑠𝑡ℎ) ln(1+𝑝1𝑠𝑡ℎ) =

𝑒−𝑠𝑡ℎ

𝑠𝑡ℎ𝑝2+1 ln(1+𝑝1𝑠𝑡ℎ). As a result, taking

derivation of 𝑅 with respect to 𝑠𝑡ℎ and equating to zero, the

optimum value of 𝑠𝑡ℎ for which 𝑅 is maximized is computed

as (𝑠𝑜𝑝𝑡𝑡ℎ 𝑝2 + 𝑝2 + 1) ln(1 + 𝑝1𝑠
𝑜𝑝𝑡
𝑡ℎ ) =

𝑝1(𝑠
𝑜𝑝𝑡

𝑡ℎ
𝑝2+1)

𝑠
𝑜𝑝𝑡

𝑡ℎ
𝑝1+1

. Fig.

(1) depicts the resulting average achievable rate of each link

through using a single layer code for various equal transmit

powers (𝑝1 = 𝑝2) ranging 0 to 30dB and compares it to that

of using multi-layer code with infinite layers.

V. CONCLUSION

In this paper, the broadcast strategy approach is applied to

Gaussian interference channel, in which a multi-layer code

is employed at each transmitter. Accordingly, in a Rayleigh

block fading environment, the optimum power allocation

across layers is derived, showing the average achievable rate

outperforms that of using single layer code.
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