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Selective Regenerating Codes

Abbas Kiani and Soroush Akhlaghi

Abstract— Regenerating codes are mainly justified due to their
ability to reduce the repair bandwidth incurred by a newcomer
node. This happens when a node fails or leaves the network,
thus a new node is initiated, attempting to connect to existing
nodes to reconstruct the data. This paper aims to investigate the
case in which the newcomer can wisely select some of existing
nodes to connect to, so as to reduce the repair bandwidth.
Accordingly, selective regenerating codes are proposed, showing
the corresponding repair bandwidth is dramatically reduced as
compared to that of existing codes.

Index Terms—Network coding, information flow graph, regen-
erating codes.

I. INTRODUCTION

DATA in distributed storage systems should be stored

reliably over unreliable nodes. This requires to distribute

some redundancy information over storage nodes. Moreover,

to have a long term durability, the network should have the

possibility of self-repairing, meaning when a node is damaged,

it is replaced with a newcomer node. This, in turn, requires a

great deal of data transferring over the network, dubbed the

repair bandwidth. Dimakis et al. in [1] proposed a new coding

strategy, called regenerating code (RC), to make a balance

between the minimum achievable repair bandwidth and the

storage capacity per node. This problem is further investigated

in [2], [3] when there is a download cost associated with each

node. Accordingly, in [3] a new type of codes, called Gener-

alized Regenerating Codes (GRCs) is proposed, showing the

download cost of GRC is dramatically reduced as compared

to that of RC.

Distributed storage systems can be modeled as an informa-

tion flow graph [1], a directed acyclic graph, with three kinds

of nodes: (i) A single source (S), (ii) Some storage nodes,

(iii) Data collectors (DCs). The source node is the source of

original data file. The storage nodes store 𝛼 bits and according

to each request of reconstructing the original data file, a DC

is added to the network and connects to 𝑘 out of existing 𝑛

nodes. The edges departing the storage nodes and arriving at

a DC node are assumed to have an infinite capacity. When a

node is damaged, a newcomer connects to 𝑘 ≤ 𝑑≤𝑛−1 nodes

and downloads 𝛽 bits from each. So the repair bandwidth is

𝛾 = 𝑑𝛽 bits [1].

The authors in [1] showed that the repair problem can

be translated to a multicast problem over the corresponding

information flow graph. More importantly, it is demonstrated

that as long as the minimum cut set between S and the

affiliated DC is greater than the size of original data file,
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the entire data file can be successfully retrieved. Accordingly,

based on the minimum cut set bound, an optimal tradeoff

curve between the storage per node and repair bandwidth is

identified and is shown that any point on this curve can be

achieved through the use of network coding [4]. This curve

has two extremal points; one end of this curve corresponds to

the minimum storage per node and the other end corresponds

to minimum bandwidth point. These two extremal points can

be achieved by the use of Minimum Storage Regenerating

(MSR) and Minimum Bandwidth Regenerating (MBR) codes,

respectively. Accordingly, the storage per node (𝛼) and repair

bandwidth (𝛾) for MSR and MBR codes are computed,

respectively, as [1], (𝛼𝑀𝑆𝑅, 𝛾𝑀𝑆𝑅) = (𝑀
𝑘
, 𝑀𝑑
𝑘(𝑑−𝑘+1) ) and

(𝛼𝑀𝐵𝑅, 𝛾𝑀𝐵𝑅) = ( 2𝑀𝑑
2𝑘𝑑−𝑘2+𝑘

, 2𝑀𝑑
2𝑘𝑑−𝑘2+𝑘

), where 𝑀 repre-

sents data size and 𝑑 denotes the number of storage nodes a

newcomer is connected to. Moreover, 𝑘 is the total number of

storage nodes to which a DC connects. Note that as 𝛼(.) and

𝛾(.) are decreasing functions with respect to 𝑑, their minimum

values are achieved when 𝑑 takes its maximum value, i.e.,

𝑑 = 𝑛− 1.
Note that from the network management perspective, it is

desirable to keep the same number of storage nodes across

time, say 𝑛 nodes, where some of which are new comers which

are connected to other nodes. Regenerating codes introduced

in [1] are motivated by the assumption that a newcomer does

not have the capability of selection 𝑑 out of 𝑛 − 1 existing

nodes to connect to. However, it is interesting to explore the

case in which the new comer can wisely select these 𝑑 nodes

to reduce the resulting repair bandwidth. This motivated us

to investigate the aforementioned issue when a newcomer can

choose its own surviving nodes. Accordingly, a new type of

code, called Selective Regenerating Code (SRC), is proposed

and its performance is compared to that of RC codes.

The rest of this paper is organized as follows: Section II

presents system model. Sections III and IV propose SRC.

Finally, Section V concludes the paper.

II. SYSTEM MODEL

Figures 1 and 2 depict information flow graphs associated

with two distributed storage networks investigated in the

current work. Referring to these figures, the 𝑖𝑡ℎ node is

depicted with two distinct nodes 𝑋 𝑖
𝑖𝑛 and 𝑋 𝑖

𝑜𝑢𝑡, representing

input and output ports, respectively, which are connected

through a directed edge with capacity 𝛼, indicating the storage

capacity of this node. Moreover, there are two different types

of nodes: (i) solid-line circles (initial nodes) and (ii) dashed-

line circles (repaired/under construction nodes). Referring to

the aforementioned figures, S and DC nodes are connected

with infinite capacities to storage nodes, while newcomers

connect to existing nodes with edges of capacity 𝛽, indicating
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Fig. 1. The graph 𝒢∗ for (6,3) regenerating code, where the newcomer
should connect to 𝑑 = 4 surviving nodes.

Fig. 2. The graph 𝒢∗ for (6,3) selective regenerating code, where the
newcomer should select 𝑑 = 4 surviving nodes to connect to.

they can merely download 𝛽 bits from each surviving node.

In [1], it is argued that “If the minimum of the min-cuts

separating the source with each data collector is larger or equal

to the data object size M, then there exists a linear network

code defined over a sufficiently large finite field 𝐹 (whose

size depends on the graph size) such that all data collectors

can recover the data object”.

Note that the graph changes through the so called fail-

ure/repair stage in which an active node leaves the system, thus

a newcomer is added to the system. Noting this, one can divide

current 𝑛 active nodes in two parts: (i) the initial nodes, called

the first-type nodes, and (ii) the repaired/under construction

nodes, called the second-type nodes. Thus, depending on the

number of first-type and second-type nodes, we have sort of

graphs 𝒢 associated with each case, each having different min-

cut values. In this work, it is assumed DC is restricted to

connect to any 𝑘 consecutive active nodes, no matter if they

are of different types. Accordingly, assuming 𝒢∗ is the one

with minimum min-cut value, one can verify that this graph

is the one which has 𝑘 consecutive nodes of the second-type.

Figure 1 illustrates the graph 𝒢∗ associated with a (𝑛, 𝑘) =
(6, 3) regenerating code introduced in [1]. Recall that regener-

ating codes do not have the ability of selecting 𝑑 out of 𝑛− 1
surviving nodes, thereby any possible choices of selecting 𝑑

Fig. 3. The graph 𝒢∗ for (n,k) selective regenerating code when max{(𝑛−
𝑘 + 1), 𝑘}≤𝑑≤𝑛− 1.

out of 𝑛 − 1 nodes may happen. Thus, one need to rely on

the worst case scenario to define the minimum min-cut value.

Figure 1 is actually the corresponding worst case graph for a

(𝑛, 𝑘) = (6, 3) code after three failure/repair stages indexed

by i=0,1,2. In each stage, a newcomer is added to the system

and connects to 𝑑 = 4 active nodes. For instance, referring

to Fig. 1, it is assumed node 6 leaves the network during

the first stage, and thus node 7 is added to the network.

Similarly, nodes 5 and 4, respectively, leave the network, and

in turn, nodes 8 and 9 are initiated. Note that in the current

work, we investigate that case in which the newcomer can

wisely select 𝑑 surviving nodes, thereby improving the min-

cut value associated with worst case graph. For instance, Fig.

2 depicts the worst case graph 𝒢∗ associated with the code

(𝑛, 𝑘) = (6, 3) in which the newcomer prefers connecting to

the active nodes of the first type. The following section aims

at investigating the tradeoff curve for the storage capacity per

node versus the repair bandwidth for two different scenarios.

III. SELECTIVE REGENERATING CODES WHEN

MAX{(𝑛− 𝑘 + 1), 𝑘}≤𝑑≤𝑛− 1

Note that the newcomer prefers to connect to surviving

nodes of the first type. However, there are some cases in

which the newcomer can not find 𝑑 surviving nodes of the

first type to connect to. Figure 3 depicts an example in which

up to the stage 𝑖 = 𝑛 − (𝑑 + 1), newcomers can select 𝑑

surviving nodes of the first type, however, for the next stages

newcomers should connect to some of nodes of the second

type. This happens when max{(𝑛−𝑘+1), 𝑘}≤𝑑≤𝑛−1, and

referring to graph 𝒢∗ as is illustrated in Fig. 3, the following

condition is necessary to reconstruct the original data file

(Min-Cut theorem),

𝑛−𝑑−1
∑

𝑖=0

min{𝑑𝛽, 𝛼}+

𝑘−1
∑

𝑖=𝑛−𝑑

min{(𝑛− 𝑖− 1)𝛽, 𝛼} ≥ 𝑀 . (1)

Accordingly, noting (1) and after some manipulations, the

following tradeoff curve between the minimum storage capac-
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Fig. 4. The tradeoff curves between storage per node and repair bandwidth
for (15,10) RC and (15,10) SRC when 10≤𝑑≤14.

ity per node (𝛼𝑚𝑖𝑛) and repair bandwidth (𝛾) is identified 1,

𝛼𝑚𝑖𝑛(𝑛, 𝑘, 𝑑, 𝛾) =

⎧

⎨

⎩

𝑀
𝑘

𝛾 ∈
[

𝑓(−1),∞
)

2𝑀−𝑔(𝑖)𝛽
2(𝑘−𝑖−1) 𝛾 ∈

[

𝑓(𝑖), 𝑓(𝑖− 1)
)

,

(2)

where 𝑓(𝑖) ≜ 2𝑀𝑑
2𝑘(𝑛−𝑘)+(𝑖+1)(2𝑘−𝑖−2) and 𝑔(𝑖) ≜ (𝑖+1)(2𝑛−

2𝑘+𝑖) for−1 ≤ 𝑖 ≤ 𝑘+𝑑−𝑛−1. One can readily verify that

𝑓(.) is a decreasing function, hence, 𝛾𝑚𝑖𝑛 (the minimum repair

bandwidth) can be computed as 𝛾𝑚𝑖𝑛 = 𝑓(𝑘 + 𝑑− 𝑛− 1).

This tradeoff curve has two extremal points; One end

of this curve corresponds to minimum storage point and

the other end corresponds to minimum repair bandwidth

point. These points can be achieved through the use

of linear network codes that we call them Minimum

Storage Selective Regenerating (MSSR) codes and

Minimum Bandwidth Selective Regenerating (MBSR)

codes, respectively. It is worth mentioning that we have

(𝛼MSSR, 𝛾MSSR) = (𝑀
𝑘
, 𝑀𝑑
𝑘(𝑛−𝑘) ) and (𝛼MBSR, 𝛾MBSR) =

( 2𝑀𝑑
𝑛(2𝑘+2𝑑−𝑛+1)−𝑘(𝑘+1)−𝑑(𝑑+1) ,

2𝑀𝑑
𝑛(2𝑘+2𝑑−𝑛+1)−𝑘(𝑘+1)−𝑑(𝑑+1) ).

An interesting observation is that the minimum repair

bandwidth 𝛾 is an increasing function with respect to 𝑑 and,

hence, the minimum repair bandwidth takes its minimum value

for 𝑑 = max{(𝑛− 𝑘+1), 𝑘}, while for common regenerating

codes the minimum repair bandwidth is achieved when 𝑑

takes its maximum value, i.e, 𝑑 = 𝑛 − 1. One can readily

observe that both RC and SRC yield the same tradeoff curve

for 𝑑 = 𝑛 − 1, i.e., they have the same 𝛼𝑚𝑖𝑛 and 𝛾𝑚𝑖𝑛 for

𝑑 = 𝑛−1. As is argued earlier, one can readily verify that the

tradeoff curve of SRC outperforms that of RC when 𝑑 < 𝑛−1.
This is more conspicuous when 𝑑 takes its minimum value,

i.e., max{(𝑛 − 𝑘 + 1), 𝑘}. For instance, Fig. 4 compares the

tradeoff curves of SRC(15, 10) with that of RC(15, 10) and for

different values of 𝑑 ranging from max{(𝑛− 𝑘+ 1), 𝑘} = 10
to 𝑛 − 1 = 14, showing the best tradeoff curve for SRC is

achieved when 𝑑 = 10.

1To derive (2) from (1), we investigate every possible choice of 𝛽 (or
equivalently 𝛾 = 𝛽𝑑) for which min(𝛽𝑑, 𝛼) and min((𝑛− 𝑖− 1)𝛽, 𝛼) take
either their first or second arguments, then the corresponding values of 𝛼 are
derived.

Fig. 5. The graph 𝒢∗ for (n,k) selective regenerating code when 𝑘≤ 𝑑≤
𝑛− 𝑘.

IV. SELECTIVE REGENERATING CODES WHEN

𝑘≤𝑑≤𝑛− 𝑘

In this case, the newcomer can always select 𝑑 surviving

nodes of the first type to connect to. Figure 5 depicts the

corresponding 𝒢∗. Note that 𝑘 ≤ 𝑑 ≤ 𝑛 − 𝑘 implies 𝑘 ≤ 𝑛
2 ,

and referring to 𝒢∗, the necessary condition to reconstruct the

original data file becomes,
∑𝑘−1

𝑖=0 min{𝑑𝛽, 𝛼}≥𝑀 , thus after

some manipulations, it follows 𝛼𝑚𝑖𝑛(𝑛, 𝑘, 𝑑, 𝛾) =
𝑀
𝑘
, for 𝛾 ∈

[

𝑀
𝑘
,∞

]

, showing the tradeoff curve merges to the single point

(𝛼𝑚𝑖𝑛, 𝛾𝑚𝑖𝑛) = (𝑀
𝑘
, 𝑀

𝑘
), which can be achieved through the

use of network coding.

V. CONCLUSION

A new variation of regenerating codes, called selective

regenerating codes are introduced which outperform existing

codes. Accordingly, the corresponding tradeoff curve between

the storage per node and repair bandwidth is identified.
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