Rational groups and integer-valued characters of Thompson group Th

Hesam Sharifi

Received: 15 February 2011 / Accepted: 30 April 2011 / Published online: 12 May 2011
© Springer Science+Business Media, LLC 2011

Abstract

According to the main result of W. Feit and G. M. Seitz (Illinois J Math 33(1):103-131, 1988), the Thompson group Th is non-rational or unmatured group (S. Fujita in Bull Chem Soc Jpn 71:2071-2080, 1998). Using the concept of markaracter tables proposed by S. Fujita (Bull Chem Soc Jpn 71:1587-1596, 1998), we are able to obtain tables of integer-valued characters for finite unmatured groups. In this paper, the integer-valued character for Thompson group is successfully derived for the first time.

Keywords Rational group • Integer-valued characters • Matured groups • Dominant classes • Markaracter • Thompson group

1 Introduction

Shinsaku Fujita suggested a new concept called the markaracter table, which enables us to discuss marks and characters for a finite group on a common basis, and then introduced tables of integer-valued characters [5,10], which are acquired for such groups. Fujita's theory was further developed and utilized for a variety of enumeration problems of chemical species eventually [4-6,8-12]. A dominant class is defined as a disjoint union of conjugacy classes corresponding the same cyclic subgroups, which is selected as a representative of conjugate cyclic subgroups [5-7,10].

The Thompson group of order 90745943887872000 is an unmatured group according to the main result of W. Feit and G. M. Seitz in [3]. The motivation for this study is outlined in [2,4], and [5], and the reader is encouraged to consult the papers and

[^0][$1,13,15$], and [14] for background material as well as basic computational techniques. This paper is organized as follows: In Sect. 2, we introduce some necessary concepts, such as the maturity, \mathbb{Q}-group and \mathbb{Q}-conjugacy character of a finite group. In Sect. 3, we provide all the dominant classes and \mathbb{Q}-conjugacy characters for the the Thompson group $T h$.

2 Preliminaries

Throughout this paper we adopt the same notations as in [4,5]. We will use the ATLAS notations [1] for conjugacy classes. Thus, $n x, n$ is an integer and $x=a, b, c, \ldots$ denote conjugacy classes of G of elements of order n.

Before stating discussion, we will mention some well-known results about \mathbb{Q}-conjugation. An alternative characterization of \mathbb{Q}-conjugation is the following concepts which can be found $[5-7,10,11]$.

A dominant class is defined as a disjoint union of conjugacy classes that corresponds to the same cyclic subgroup, which is selected as a representative of conjugate cyclic subgroups. Let G be a finite group and $h_{1}, h_{2} \in G$. We say h_{1} and h_{2} are \mathbb{Q}-conjugate if $t \in G$ exists such that $t^{-1}\left\langle h_{1}\right\rangle t=\left\langle h_{2}\right\rangle$ which is an equivalence relation on group G and generates equivalence classes that are called dominant classes. The group G is partitioned in to dominant classes as follows: $G=K_{1}+K_{2}+\cdots+K_{s}$ in which K_{i} corresponding to the cyclic (dominant) subgroup G_{i} selected from a non-redundant set of cyclic subgroups of G denoted by $S C S G$.

Let C be a $m \times m$ matrix of the character table for an arbitrary finite group G. Then, C is transformed into a more concise form called the \mathbb{Q}-conjugacy character table denoted by $C_{G}^{\mathbb{Q}}$ containing integer-valued characters. By Theorem 4 in [5], the dimension of a \mathbb{Q}-conjugacy character table, $C_{G}^{\mathbb{Q}}$ is equal to its corresponding markaracter table, i.e., $C_{G}^{\mathbb{Q}}$ is an $n \times n$-matrix where n is the number of dominant classes or equivalently the number of $S C S G$. If $m=n$, then $C=C^{\mathbb{Q}}$ i.e. G is a maturated group. Otherwise, $n<m$ (is called unmaturated group) for each $G_{i} \in S C G G$ (the corresponding dominant class K_{i}) set $t_{i}=m\left(G_{i}\right) / \varphi\left(\left|G_{i}\right|\right)$ where $m\left(G_{i}\right)=$ $\left|N_{G}\left(G_{i}\right)\right| /\left|C_{G}\left(G_{i}\right)\right|$ (called the maturity discriminant), φ is the Euler function. If $t_{i}=1$ then, K_{i} is exactly a conjugacy class so there is no reduction in row and column of C but if $t_{i}>1$ then K_{i} is a union of t_{i}-conjugacy classes of G (i.e. reduction in column) therefore the sum of t_{i} rows of irreducible characters via the same degree in C (reduction in rows) gives us a reducible character which is called the \mathbb{Q}-conjugacy character.

Now, we recall some concepts of rational group theory. Let G be a finite group and χ be a complex character of G. Let $\mathbb{Q}(\chi)$ denote the subfield of the complex numbers \mathbb{C} generated by \mathbb{Q} and all the values $\chi(x), x \in G$, where \mathbb{Q} denotes the field of rational numbers. By definition, χ is called rational if $\mathbb{Q}(\chi)=\mathbb{Q}$. A finite group G is called a rational group or a \mathbb{Q}-group, if all irreducible complex characters of G are rational. For example, the symmetric group S_{n} and the Weyl groups of the classical complex Lie algebras are rational groups (for more details see [1]). A comprehensive description of rational groups can be found in [16].

Table 1 The integer-valued character table of Thompson group $T h$ where $A_{12}=12 a \cup 12 b$ is an unmatured dominat class

$C_{T h}^{\mathbb{Q}}$	$1 a$	$2 a$	$3 a$	$3 b$	3 c	$4 a$	$4 b$	$5 a$	$6 a$	$6 b$	6 c	$7 a$	$8 a$	$8 b$	$9 a$	$9 b$	$9{ }_{c}$	$10 a$	A_{12}
χ_{1}	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_{2}	248	-8	14	5	-4	8	0	-2	4	-2	1	3	0	0	5	-4	2	2	2
$\chi 3$	4,123	27	64	-8	1	27	-5	-2	9	0	0	7	3	-1	-8	1	4	2	0
$\chi 4$	54,000	240	-54	54	0	16	0	0	0	-6	6	2	0	0	0	0	0	0	-2
χ_{5}	30,628	-92	91	10	10	36	4	3	10	-5	-2	3	-4	0	10	10	1	3	3
$\chi 6$	30,875	155	104	14	5	27	-5	0	5	8	2	5	3	-1	14	5	2	0	0
χ_{7}	61,256	72	182	20	20	56	0	6	12	6	0	6	0	0	-7	-7	2	2	2
$\chi 8$	171,990	-42	0	-54	54	-42	22	-10	6	0	-6	0	6	-2	0	0	0	-2	0
$\chi 9$	147,250	50	181	-8	-35	34	10	0	5	5	-4	5	2	-2	19	-8	1	0	1
χ_{10}	1,535,274	810	0	0	0	-54	-6	24	0	0	0	6	-6	-6	0	0	0	0	0
χ_{11}	1,558,494	-546	-378	-108	0	126	-18	-6	0	6	12	0	-2	6	0	0	0	-6	6
χ_{12}	957,125	-315	650	-52	-25	133	5	0	15	-6	0	8	-3	1	-25	2	2	0	-2
χ_{13}	3,414,528	-1,536	0	-108	108	0	0	28	-12	0	12	12	0	0	0	0	0	4	0
χ_{14}	2,450,240	832	260	71	44	64	0	-10	4	4	-5	-5	0	0	17	-10	-1	2	4
χ_{15}	2,572,752	-1,072	624	111	84	48	0	2	-4	-16	-1	7	0	0	30	3	3	-2	0
χ_{16}	3,376,737	609	819	9	9	161	1	-13	9	3	-3	0	1	1	9	9	0	-1	-1
χ_{17}	8,192,000	0	128	-16	-160	0	0	0	0	0	0	-16	0	0	-16	2	8	0	0
χ_{18}	4,123,000	120	118	19	-80	8	0	0	0	6	3	-7	0	0	19	1	4	0	2
χ_{19}	4,881,384	1,512	729	0	0	72	24	9	0	9	0	4	8	0	0	0	0	-3	-3

Table 1 continued

$\overline{C_{T h}^{\mathbb{Q}}}$	$1 a$	$2 a$	$3 a$	$3 b$	3 c	$4 a$	$4 b$	$5 a$	$6 a$	$6 b$	$6 c$	$7 a$	$8 a$	$8 b$	$9 a$	$9 b$	$9{ }^{\text {c }}$	$10 a$	A_{12}
$\chi 20$	4,936,750	-210	637	-38	-65	126	-10	0	15	-3	6	0	-2	2	16	-11	-2	0	-3
$\chi 21$	13,338,000	-2,160	-702	216	0	112	0	0	0	18	0	4	0	0	0	0	0	0	-2
$\chi 22$	13,392,000	-1,920	-756	270	0	128	0	0	0	12	6	6	0	0	0	0	0	0	-4
$\chi 23$	10,822,875	-805	924	141	-75	91	-5	0	5	-4	5	0	3	-1	-21	6	-3	0	4
χ_{24}	11,577,384	552	351	135	0	-120	24	9	0	15	3	7	-8	0	0	0	0	-3	3
$\chi 25$	16,539,120	2,544	0	297	-54	48	16	-5	-6	0	-3	3	0	0	0	0	0	-1	0
$\chi 26$	18,154,500	1,540	-273	213	-30	-28	20	0	10	-17	1	0	-4	0	-3	-3	-3	0	-1
< 27	42,653,520	336	0	-270	-216	-336	0	20	24	0	-6	0	0	0	0	0	0	-4	0
$\chi 28$	28,861,000	840	1,078	-110	160	56	0	0	0	6	-6	0	0	0	-29	-2	-2	0	2
χ_{29}	30,507,008	0	896	-184	32	0	0	8	0	0	0	0	0	0	32	5	-4	0	0
χ_{30}	40,199,250	3,410	-78	3	165	-62	10	0	5	2	-1	-7	-6	2	3	3	3	0	-2
χ_{31}	44,330,496	3,584	168	6	-156	0	0	-4	-4	8	2	0	0	0	6	6	-3	4	0
χ_{32}	51,684,750	2,190	0	108	135	-162	-10	0	15	0	12	-9	6	-2	0	0	0	0	0
$\chi 33$	72,925,515	-2,997	0	0	0	27	51	15	0	0	0	-9	3	3	0	0	0	3	0
χ_{34}	76,271,625	-2,295	729	0	0	153	-15	0	0	9	0	-11	-7	-3	0	0	0	0	-3
χ_{35}	77,376,000	2,560	1,560	-60	-60	0	0	0	-20	-8	4	2	0	0	-6	-6	3	0	0
χ_{36}	81,153,009	-783	-729	0	0	225	9	9	0	-9	0	-7	1	-3	0	0	0	-3	3
$\chi 37$	91,171,899	315	0	243	0	-21	-45	24	0	0	-9	0	3	3	0	0	0	0	0
$\chi 38$	111,321,000	3,240	-1,728	-216	0	216	0	0	0	0	0	7	0	0	0	0	0	0	0
$\underline{\chi} \times \underline{ }$	190,373,976	-3,240	0	0	0	-216	0	-24	0	0	0	9	0	0	0	0	0	0	0

Table 2 The integer-valued character table of Thompson group $T h$ where $A_{n}=n a \cup n b$ for $n=15,24,30,31,39 A_{k}=k b \cup k c$ for $k=27,36$ and $B_{24}=24 c \cup 24 d$ are unmatured dominat class

$\overline{C_{T h}^{\mathbb{Q}}}$	$12 c$	$12 d$	$13 a$	$14 a$	A_{15}	$18 a$	$18 b$	$19 a$	$20 a$	$21 a$	A_{24}	B_{24}	$27 a$	A_{27}	$28 a$	A_{30}	A_{31}	$36 a$	A_{36}	A_{39}
χ_{1}	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$\chi 2$	-1	0	1	-1	1	1	-2	1	0	0	0	0	2	-1	1	-1	0	-1	-1	1
$\chi 3$	0	1	2	-1	1	0	0	0	0	1	0	-1	-2	1	-1	-1	0	0	0	-1
$\chi 4$	-2	0	-2	2	0	0	0	2	0	2	0	0	0	0	2	0	-2	4	-2	-2
$\chi 5$	0	-2	0	-1	0	-2	1	0	-1	0	-1	0	1	1	1	0	0	0	0	0
$\chi 6$	0	1	0	1	0	2	2	0	0	-1	0	-1	2	-1	-1	0	-1	0	0	0
$\chi 7$	2	0	0	2	0	-3	0	0	0	0	0	0	-1	-1	0	2	0	-1	-1	0
$\chi 8$	-6	-2	0	0	-1	0	0	2	2	0	0	-2	0	0	0	1	2	0	0	0
$\chi 9$	-2	1	-1	1	0	-1	-1	0	0	-1	-1	1	1	1	-1	0	0	1	1	-1
$\chi 10$	0	0	0	-2	0	0	0	-2	4	0	0	0	0	0	2	0	-1	0	0	0
$\chi 11$	0	0	2	0	0	0	0	0	2	0	-2	0	0	0	0	0	0	0	0	-1
$\chi 12$	-2	-1	0	0	0	3	0	0	0	-1	0	1	-1	-1	0	0	0	1	1	0
$\chi 13$	0	0	0	4	-2	0	0	0	0	0	0	0	0	0	0	-2	2	0	0	0
$\chi 14$	1	0	0	-1	-1	1	1	0	0	1	0	0	-1	-1	1	-1	0	1	1	0
$\chi 15$	3	0	0	-1	-1	2	-1	0	0	1	0	0	0	0	-1	1	0	0	0	0
$\chi 16$	-1	1	0	0	-1	-3	0	0	1	0	1	1	0	0	0	-1	0	-1	-1	0
$\chi 17$	0	0	-2	0	0	0	0	-2	0	2	0	0	2	-1	0	0	2	0	0	-2
$\chi 18$	-1	0	-2	1	0	3	0	0	0	-1	0	0	-2	1	1	0	0	-1	-1	1
$\chi 19$	0	0	1	0	0	0	0	-1	-1	1	-1	0	0	0	2	0	0	0	0	1
$\chi 20$	0	-1	0	0	0	0	0	-1	0	0	1	-1	1	1	0	0	0	0	0	0

Table 2 continued

$\overline{C_{T h}^{\mathbb{Q}}}$	$12 c$	$12 d$	$13 a$	$14 a$	A_{15}	$18 a$	$18 b$	$19 a$	$20 a$	$21 a$	A_{24}	B_{24}	$27 a$	A_{27}	$28 a$	A_{30}	A_{31}	$36 a$	A_{36}	A_{39}
$\chi 21$	4	0	0	-4	0	0	0	0	0	-2	0	0	0	0	0	0	2	4	-2	0
$\chi 22$	2	0	-2	-2	0	0	0	2	0	0	0	0	0	0	2	0	0	-4	2	-2
$\chi 23$	1	1	-2	0	0	-1	-1	0	0	0	0	-1	0	0	0	0	0	1	1	1
$\chi 24$	-3	0	0	-1	0	0	0	0	-1	1	1	0	0	0	-1	0	0	0	0	0
$\chi 25$	3	-2	0	3	1	0	0	0	1	0	0	0	0	0	-1	-1	0	0	0	0
$\chi 26$	-1	2	0	0	0	1	1	0	0	0	-1	0	0	0	0	0	1	-1	-1	0
$\chi 27$	6	0	0	0	-1	0	0	2	0	0	0	0	0	0	0	-1	0	0	0	0
$\chi 28$	2	0	-1	0	0	3	0	0	0	0	0	0	1	1	0	0	0	-1	-1	-1
$\chi 29$	0	0	-1	0	2	0	0	0	0	0	0	0	-1	-1	0	0	1	0	0	-1
$\chi 30$	1	1	0	1	0	-1	-1	0	0	-1	0	-1	0	0	1	0	0	1	1	0
$\chi 31$	0	0	2	0	-1	2	-1	0	0	0	0	0	0	0	0	1	0	0	0	-1
$\chi 32$	0	-1	0	-1	0	0	0	0	0	0	0	1	0	0	-1	0	0	0	0	0
$\chi 33$	0	0	0	-1	0	0	0	0	1	0	0	0	0	0	-1	0	-1	0	0	0
$\chi 34$	0	0	1	1	0	0	0	1	0	1	-1	0	0	0	-1	0	0	0	0	1
$\chi 35$	0	0	0	-2	0	-2	1	1	0	-1	0	0	0	0	0	0	0	0	0	0
$\chi 36$	0	0	2	1	0	0	0	0	-1	-1	1	0	0	0	1	0	0	0	0	-1
χ_{37}	-3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\chi 38$	0	0	-2	-1	0	0	0	0	0	1	0	0	0	0	-1	0	0	0	0	1
$\underline{\chi} 39$	0	0	0	1	0	0	0	-1	0	0	0	0	0	0	1	0	0	0	0	0

Theorem 2.1 [16] A group G is $a \mathbb{Q}$-group if and only if for every $x \in G$ of order n the elements x and x^{m} are conjugacy in G, whenever $(m, n)=1$. Equivalency, for each $x \in G$ we must have $\frac{N_{G}(\langle x\rangle)}{C_{G}(\langle x\rangle)} \simeq \operatorname{Aut}(\langle x\rangle)$.

The following depth Theorem due to Fiet and Siet [3].
Theorem 2.2 Let G be a noncyclic simple group. Then G is a \mathbb{Q}-group if and only if $G \simeq S p_{6}(2)$ or $O_{8}^{+}(2)^{\prime}$.

By Definition \mathbb{Q}-conjugacy class and Theorems 2.1 and 2.2 , every \mathbb{Q}-group is matured.

3 Results and discussions

According to the Theorem 2.2, the Thompson group Th is an unmatured group. Now we are equipped to compute all the dominant classes and \mathbb{Q}-conjugacy characters for the above group, using a GAP program [13]. ${ }^{1}$

Theorem 3.1 The Thompson group Th has thirty nine dominant classes. Moreover, the unmaturated dominant classes of Th have orders 12, 15, 24, 24, 27, 30, 31, 36 and 39 with the corresponding maturities 2, 2, 2, 2, 2, 2, 2 and 2, respectively.

Proof The dimension of a \mathbb{Q}-conjugacy character table, $C_{T h}^{\mathbb{Q}}$ is equal to its corresponding markaracter table for $T h$. To find the number of dominant classes, at first, we calculate the table of marks for Th $[14,15]$ via GAP system, see GAP programs in [13] for more details.Hence, the markaracter table for $T h$ corresponding to nine non-conjugate cyclic subgroups(i.e., $G_{i} \in S C S_{T h}$) of orders $12,15,24,24,27,30$, 31, 36 and 39.

Therefore, by using the above table, the character table of $T h$ and Definition dominant class, since $\left|S C S_{T h}\right|=9$, the dominant classes of $T h$ are $A_{12}=12 a \cup 112 b$, $A_{n}=n a \cup n b$ for $n=15,24,30,31,39, A_{k}=k b \cup k c$ for $k=27,36$ and $B_{24}=24 c \cup 24 d$ with maturity (i.e., $\left.t=\varphi(n) / m(H)\right) 2,2,2,2,2,2,2,2$ and 2 respectively.

The Thompson group $T h$ has nine unmatured \mathbb{Q}-conjugacy characters. Furthermore $T h$ has nine unmatured \mathbb{Q}-conjugacy characters $\chi_{4}, \chi_{8}, \chi_{10}, \chi_{11}, \chi_{13}, \chi_{17}, \chi_{21}$, χ_{22} and χ_{27} which are the sum of two irreducible characters. Therefore, there are nine column-reductions (similarly nine row-reductions) in the character table of Th [4,5]. We provide all \mathbb{Q}-conjugacy characters of $T h$ in Tables 1 and 2.

[^1]
References

1. J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, ATLAS of finite groups (Oxford University Press (Clarendon), Oxford, 1985)
2. M.R. Darafsheh, A. Moghani, S. Naghdi Sedeh, Group theory for tetramethylethylene II. Acta Chim. Slov. 55, 602-607 (2008)
3. W. Feit, G.M. Seitz, On finite rational groups and related topics. Illinois J. Math. 33(1), 103-131 (1988)
4. S. Fujita, Diagrammatical approach to molecular symmetry and enumeration of stereoisomers. Croat. Chem. ACTA, CCACAA 81(2), A27-A28 (2008)
5. S. Fujita, Inherent automorphism and \mathbb{Q}-conjugacy character tables of finite groups, an application to combinatorial enumeration of isomers. Bull. Chem. Soc. Jpn. 71, 2309-2321 (1998)
6. S. Fujita, Direct subduction of \mathbb{Q}-conjugacy representations to give characteristic monomials for combinatorial enumeration. Theor. Chem. Acc. 99, 404-410 (1998)
7. S. Fujita, Dominant representations and a markaracter table for a group of finite order. Theor. Chim. Acta. 91, 291-314 (1995)
8. S. Fujita, Enumeration of non-rigid molecules by means of unit subduced cycle indices. Theor. Chim. Acta. 77, 307-321 (1990)
9. S. Fujita, The unit-subduced-cycle-index methods and the characteristic-monomial method. Their relationship as group-theoretical tools for chemical combinatorics. J. Math. Chem. 30(3), 249-270 (2001)
10. S. Fujita, Mark tables and \mathbb{Q}-conjugacy character tables for cyclic groups. An application to combinatorial enumeration. Bull. Chem. Soc. Jpn. 71, 1587-1596 (1998)
11. S. Fujita, Maturity of finite groups. An application to combinatorial enumeration of isomers. Bull. Chem. Soc. Jpn. 71, 2071-2080 (1998)
12. S. Fujita, A simple method for enumeration of non-rigid isomers. An application of characteristic monomials. Bull. Chem. Soc. Jpn. 72, 2403-2407 (1999)
13. GAP, Groups, Algorithms and Programming, Lehrstuhl De für Mathematik (RWTH, Aachen, 1995)
14. A. Kerber, K. Thurlings, Combinatorial Theory (Springer, Berlin, 1982)
15. A. Kerber, Applied Finite Group Actions (Springer, Berlin, 1999)
16. D. Kletzing, Structure and Representations of \mathbb{Q}-Group, Lecture Notes in Math. 1084. (Springer, Berlin, 1984)

[^0]: H. Sharifi ($\boxtimes)$

 Department of Mathematics Faculty of Science, Shahed University, Tehran, Iran
 e-mail: hsharifi@shahed.ac.ir

[^1]: 1 which is available freely from: http://www.gap-system.org.

