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 The paper discusses about the effect of outliers and trends on the response surface design fitted 

to the experiments results. The common way to analyze the response surface is to fit the 

polynomial regression to the response variable by ordinary least square method and to find the 

significant controllable variables by ANOVA. In this case, the outliers can have confusing 

effect on the regression model, which derives the experiment results and lead to wrong 

interpretation of the data. The proposed moving average iterative method (MAIW) of this paper 

is a robust approach to decrease the effect of these faulty points by considering the previous 

data to detect the outliers or detect the probable trends in residuals. The iterative weighting 

method is used to estimate the coefficients of the regression model and a numerical example 

illustrates the proposed approach. 
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1. Introduction 

There are many cases especially in experimental results where there some wrong data treated as 

outliers. These points, which may occur for different reasons such as reading faults by operator 

reading it would be confusing to interpret the results. A common method of explaining and analyzing 

the results of experiments is to use response surface design. This term is used for a regression 

equation that shows behavior of the control variables and one or more responses. We can use the 

estimated function to predict the response according to the controllable factors. Once we have 

performed an experimental design and experiments, we need to do a statistical analysis to select the 

appropriate values for the input variables in an attempt to optimize the output. This can be done by 

fitting a regression model between the controllable factors and the response variables.  

Future interpretations are based on this regression model, so the exact model is very important and 

may affect the optimization stage. This model is generally constructed by the ordinary least squares 

(OLS) method. OLS is very sensitive to outliers, and they may have an inordinate effect on the 

ultimate conclusion. The detection and accommodation of outliers has been studied for many years. 

The wrong model can be resulted to outliers, but we know that the cause of outlier is not as important 

as their effect and we follow the methods that can modify their effects. The trend in residuals is 

another problem in the response surface design. This issue is associated with model adequacy 

checking. In general, it is always necessary to examine the fitted model to ensure that it provides an 

adequate approximation to the true system and verify that none of the least square regression 
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assumptions is violated. Any way better coefficient estimation contains no specific trend in residual 

analysis. There are some primary tools such as half-normal probability plot to perform outlier 

detection, which can be used in presence of single outlier and can be categorized as observable tools. 

The other methods focus on significance tests to detect the outliers. Marrona et al. (2006) emphasized 

that the OLS method is very sensitive to outliers, so some alternative methods such as least-absolute-

deviations or robust partial least squares or generalized linear models are used instead of OLS to 

decrease outliers’ effects but robust approaches simplify the task of outlier identification by 

weighting the large residuals. Wisnowskia et al. (2001) studied analysis of multiple outlier detection 

procedures for linear regression model. The robust and efficient response surface is a goal of many 

studies.  

Hejazi et al. (2010) proposed a novel approach based on goal programming, to find the best 

combination of factors, to optimize multi response multi covariate surfaces with by considering 

location and dispersion effects. Kazemzadeh et al. (2008) proposed a method to optimize multi 

response surfaces based on goal programming method. Bashiri et al. (2009) studied multiple 

simulation response surfaces for robust optimization in inventory system. Huber (1981) proposed M-

estimators methods to obtain robust regression. Morgenthaler et al.(1999) discussed robust response 

surface in chemistry based on design of experiment. Hund et al. (2002) presented methods of outlier 

detection and evaluate robustness tests with different experimental designs. Bickela (2006) compared 

robust estimators with their applications. The M and GM estimators presented iterative procedures. 

Therefore, several authors (e.g. Cummins & Andrews, 1995) renamed these estimators as iteratively 

reweighted least squares (IRLS). Ortiz et al. (2006) discussed some of the robust methods used for 

robust regression in analytical chemistry. Another useful robust method is least median squared 

proposed by Rousseeuw (1984) and the other useful method is least trimmed squared proposed by 

Rousseeuw and Leroy (1987).  

 

The Fast-LTS was discovered by Rousseeuw and van Driessen (2006) and it is probably the best one 

in practice. The method can be viewed as a combination of a gradient method and a genetic 

algorithm. Nguyena (2010) studied outlier detection and proposed new least trimmed squares 

approximate. Recently a “partial” version of the M-estimator based on the “fair” ψ function and an 

appropriate weighting scheme was proposed by Serneels et al. (2005). The authors claim that the 

partial robust M-regression outperforms existing methods for robust partial least square regression. In 

order to obtain a robust method with higher efficiency, Siegel (1982) proposed the repeated median 

estimator. Massart et al. (1986) explained the advantages of its use in chemical analysis. Bertsimas 

and Shioda (2007) presented mixed integer programming (MIP) models for the classification and 

robust regression problems.  

 

Zioutas and Avramidis (2005) presented the effect of deleting outliers in regression model obtained 

by MIP, and its performance compared with LS and LMS. Another new method in robust regression 

is the mixed linear model surveyed by Dornheim and Brazouskas (2011). Pop and Sârbu (1996) 

proposed a new fuzzy regression algorithm to obtain robust model. Marrona et al. (2006) proposed 

many M-estimators using in robust regression methods in both single response and multiple 

responses. Wiens (2010) surveyed a comparative study of robust designs for M-estimated regression 

models. This study tries to find better regression function with adequate residual analysis result based 

on moving average and it is compared to M-estimator method result. For better illustration of 

proposed method, the literature review is classified in Table 1. 

This paper is organized as follows. In section 2 detailed analysis based on the least-square fit is 

discussed. In section 3, modifying the response surface by iterative weighting procedure is presented. 

The moving average method is presented in section 4. The robust method based on moving average 

and iterative weighting method as proposed approach is presented in section 5. The numerical 

example illustrates the proposed approach in section 6 and section 7 summarizes the contribution of 

this paper. 
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Table 1 

A review of the robust regression model 
References OWDE RMR IM RRB CRB OLS DM MO SO others 

Huber (1981) *  *  *  *  *  

Siegel (1982) * * * *  * 

Rousseeuw (1984) *  *  *  *  *  

Massart et al. (1986) *  *  *  *  *  

Rousseeuw& Leroy (1987) *  *  *  *  *  

Cummins & Andrews 

(1995) 
*  *  * *   *  

Pop &Sârbu(1996)     *    * * 

Morgenthaler et al. (1999) *  *  * * *  *  

Wisnowskia et al. (2001)        *   

Hund et al. (2002)     * *   *  

Zioutas & Avramidis 

(2005) 
    *    * * 

Serneels et al. (2005) *  *  *  *  *  

Marrona et al. (2006) *  *  * * *  *  

Bickela (2006) *  *  *  *  *  

Ortiz et al. (2006) *  *  * * *  *  

Bertsimas &Shioda (2007)     *    * * 

Kazemzadeh et al. (2008)  *    *   *  

Bashiri et al. (2009)  *    *   *  

Hejazi et al. (2010)  *    *   *  

Nguyena (2010) *  *  *  *  *  

Dornheim&Brazouskas 

(2011) 
    *    * * 

Proposed MAIW method *  * *  *   *  
OWDE: Outlier weighting during estimation, RMR: Robust Multiple response, IM: Iterative method, RRB: Flexible (Moving Average) residual bound, 

CRB: Constant residual bound, OLS: Ordinary least square, DM: different M-estimators, MO: Multiple outliers, SO: Single outlier,  
 

2.  Ordinary-least-squares 

The least squares method is used to estimate the regression coefficients in a multiple linear regression 

model where there are n observations, ݕ௜  is the response and the variable ݔ௜௝ denotes the ith 

observation of variable ݔ௝ . The error term ߝ௜ represents the error in the model, and it is supposed that 

the error (residual) has normal distribution with ܧሺߝሻ ൌ 0 and ܸܽݎሺߝሻ ൌ  ௜ areߝ ଶ and that theߪ

uncorrelated random variables. The model equation can be written as follows: 
௜ݕ  ൌ ଴ߚ  ൅ ௜ଵݔଵߚ ൅ ௜ଶݔଶߚ ൅ ڮ ൅ ௜௞ݔ௞ߚ ൅ ௜ߝ ൌ ଴ߚ ൅ ∑ ௜௝ݔ௝ߚ ൅௞௝ୀଵ ௜ߝ ݅ ൌ 1,2,3, … , ݊. 
 

 

   (1) 

The aim is to choose the coefficients to minimize the sum of the squares of the errors ߝ௜. The least 

squares function is 
ܮ  ൌ ∑ ௜ଶߝ ൌ ∑ ሺݕ௜ െ ଴ߚ െ ∑ ௜௝ሻ௞௝ୀଵݔ௝ߚ ଶ௡௜ୀଵ௡௜ୀଵ . 
 

(2)

The function L is minimized by considering the coefficients and the least square estimators, ߚመ௜must 

satisfy  
 డ௅డఉబ ൌ െ2ሺ∑ ௜ݕ െ መ଴ߚ െ ∑ ௜௝ሻ௞௝ୀଵݔ௝ߚ ൌ 0௡௜ୀଵ , డ௅డఉೕ ൌ െ2ሺ∑ ௜ݕ െ መ଴ߚ െ ∑ ௜௝௞௝ୀଵݔ௜௝ሻݔ௝ߚ ൌ 0         ݆ ൌ 1,2,3, … , ݇௡௜ୀଵ . 

There are k+1equations, and solving them simultaneously determines the values of all the 

coefficients.  

If the hypotheses on ε are satisfied, the LS estimate has the minimum variance in the class of all 

unbiased linear estimates. If, in addition, the error ε is normally distributed, then this estimator has 
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minimum variance among all unbiased estimators. Linearity is a significant restriction; many 

maximum likelihood estimators (e.g., under logistic and all t-distributions of the errors) are not linear. 

The rejection of outliers is also a non-linear operation. In fact, the LS estimator is optimal in the class 

of all unbiased estimators only if the errors are normally distributed. Therefore, the restriction to 

linear estimators can be justified only by normality. 

 

3. Iterative weighting and modifying 

To compensate for the effects of the outlier values, we can either remove the outlier data or modify 

them by weighting the residuals. The first approach is not rational, so we choose to modify them in 

order to decrease the effect of outliers in the coefficient estimation stage. The proposed idea is as 

follows: ܧሺݕ௜ሻ ൌ ,ଵߚ௜൫ߤ … , ௣൯.            (3)ߚ

In this equation, ߤ௜ is a function defined by unknown coefficients (ߚ௜). For example, if ߤ௜ ൌ ଵߚ ൅ߚଶݔଵ and ݔ௜ are constants, the response ݕ௜ can be obtained from the experimental results and the 

regression model describes the relationship between the variables and the expected values of theݕ௜ . If 
all the measurements are good, then the OLS method provides a reasonable model and the 

coefficients are estimated by minimizing the following equation.  ቀݕଵ െ መଵߚଵ൫ߤ … መ௣൯ቁଶߚ ൅ ڮ ൅ ቀݕ௡ െ መଵߚ௡൫ߤ … መ௣൯ቁଶߚ
 

       (4)

However, if the results appear abnormal, which may be a consequence of residual behavior in the 

experiments; the coefficients are determined by minimizing the following equation. The abnormality 

occurs when a residual behaves like an outlier. ݓଵ ቀݕଵ െ መଵߚଵ൫ߤ … መ௣൯ቁଶߚ ൅ ڮ ൅ ௡ݓ ቀݕ௡ െ መଵߚ௡൫ߤ … መ௣൯ቁଶߚ
 

      (5)

The weights are not pre-assigned values because the quality of each ݕ௜ is not known in advance. The 

reasonable values for the weights are based on the residuals defined by the following equation: ݎ௜ ൌ ௜ݕ െ መଵߚ௜൫ߤ … መ௣൯. (6)ߚ

The weights should be inversely proportional to the value of the residuals, ݓ௜ ൌ ௖|௥೔| . In other words, 

the residuals with large values are weighted less, and this method produces better coefficient 

estimates. These weights can be chosen by a function such as the Huber weight function: ቊݓ௜ ൌ |௜ݎ|݂݅       1 ൏ ௜ݓ ܿ ൌ ௖|௥೔| |௜ݎ|݂݅     ൐ ܿ ,  

(7)

where c is a constant. The procedure is as follows: compute the first coefficients of the regression 

model, compute the residuals and weights, and then compute the new coefficients by the equation. 

This procedure can be repeated because the values of the coefficients and the values of the residuals 

and weights are different, so this procedure can be repeated until a good solution is obtained. This 

procedure is known as iterative weighting OLS. The procedure terminates when the change in the 

estimation from one iteration to the next is sufficiently small. 

However, there is a probability that some residuals become less than the specified limit they are 

ignored in coefficient estimation stage. Therefore, a new approach is to identify the flexible limits is 

proposed in the next section. 

4.  Moving average method 

Supposed that we have some individual process observations ݔ௜ , then the moving average with ߱ 

observation at t is proposed as the following equation: ܯ௧ ൌ ௧ݔ ൅ ௧ିଵݔ ൅ ڮ ൅ ௧ିఠାଵ߱ݔ  
(8)
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Actually at t, the oldest observation is omitted and the newest observation is added to the 

observations. The variation of this statistic is calculated as follows: 

௧ሻܯሺݎܸܽ ൌ 1߱ଶ ෍ ௜ሻݔሺݎܽݒ ൌ 1߱ଶ ෍ ଶߪ ൌ ଶ߱௧ߪ
௜ୀ௧ି௪ାଵ

௧
௜ୀ௧ି௪ାଵ .  

(9)

In this method, the statistic ܯ௧ for each new observation is calculated and these statistics can be 

compared with the upper control limit (ULC) and lower control limit (LCL) and if they violate the 

limits, we can say that the statistics are not in control. If we want to recognize the small shift, we can 

increase the size of ߱. 

5.  Robust fitting response surface using moving average iterative weighting method (MAIW) 

In this section, the method is proposed to modify the outliers and the trends in the residuals, which do 

not violate the accuracy of the model and finally estimate a robust regression model for the 

experiments. First, as mentioned in section 2, the primary estimation is obtained by OLS method and 

then the residuals are calculated. As mentioned in section 3 the weights are proportion to residual 

values, they are computed by Eq. (7), and the procedure continues until the coefficients changes are 

negligible. Since we consider a constant bound for outlier detection, residual trends cannot be 

detected. It seems that by considering the variation of previous residuals and their trends, better 

regression coefficients estimation and consequently reliable analysis can be performed. The flexible 

residual bound, instead of constant c in Eq. (7) can be considered as more robust alternative, Eq. (10) 

illustrates it clearly. We can compute the variation of the residuals in experiment and by selecting the 

proper ߱ the residual bound can easily be computed. If the residuals are greater than the values of the 

computed bounds at specific run order, the weight is computed using the previous formulation and 

iterative process continues. By these flexible bounds, we can find and modify the small shift faster. 

In our problem, we suppose that the residuals have normal distribution with mean of zero and 

standard deviation ߪ and the residuals are computed for each observation by Eq. (6) and (8). 

Then the weights are calculated as follows:  
 ቐ ௜ݓ ൌ |௜ݎ|  ݂݅     1 ൑ ௜ݓ|௜ܯ| ൌ |௜ݎ|௜ܯ .݋                       ݓ

(10)

 
Fig.1.  Flowchart of the proposed MAIW 
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Then after computing the weights, by minimizing the Eq. (5) associated with the weights and the 

procedure continues. The method will be explained in the next section by numerical example and the 

flowchart of the MAIW method is presented in Fig. 1. 
 

6.  Numerical example 

Consider an experiment design, which contains one response variable and four explanatory control 

variables. Each variable is at three levels and the primary objective of the study is to optimize the 

yield of a product. Table 2 shows the input data for our experiment. We want to explore the yield 

response surface by using a second-order regression model. A Box-Behnken design with 27 

treatments is used for this experiment, the blocking is used to decrease the effect of nuisance factors, 

and the blocks are assigned for example to three days.  

 

Table 2  

A hypothetical data created according to Box- Behnken design 

Material1 Material2 Material3 Material4 Block Y x1 x2 x3 x4 

0.82 1 -55 0 1 96.49 -0.1 -0.1 0 0 

0.82 1 -45 -25 1 93.22 -0.1 -0.1 1 -1 

0.82 1 -65 -25 1 94.24 -0.1 -0.1 -1 -1 

0.91 0.91 -55 0 1 77.2 0.8 -1 0 0 

0.91 1.09 -55 0 1 89.86 0.8 0.8 0 0 

0.73 0.91 -55 0 1 94.87 -1 -1 0 0 

0.73 1.09 -55 0 1 63.46 -1 0.8 0 0 

0.82 1 -65 25 1 91.88 -0.1 -0.1 -1 1 

0.82 1 -45 25 1 91.88 -0.1 -0.1 1 1 

0.83 1.02 -55 0 2 100.28 0 0.1 0 0 

0.92 1.02 -55 -25 2 90.44 0.9 0.1 0 -1 

0.74 1.02 -55 -25 2 92.53 -0.9 0.1 0 -1 

0.83 0.93 -65 0 2 86.55 0 -0.8 -1 0 

0.83 1.11 -65 0 2 82.12 0 1 -1 0 

0.83 1.11 -45 0 2 90.85 0 1 1 0 

0.83 0.93 -45 0 2 69.08 0 -0.8 1 0 

0.92 1.02 -55 25 2 88.55 0.9 0.1 0 1 

0.74 1.02 -55 25 2 91.55 -0.9 0.1 0 1 

0.83 1.02 -55 0 3 90.96 0 0.1 0 0 

0.83 0.92 -55 -25 3 71.99 0 -0.9 0 -1 

0.83 1.11 -55 -25 3 80.21 0 1 0 -1 

0.74 1.02 -45 0 3 86.8 -0.9 0.1 1 0 

0.93 1.02 -65 0 3 93.7 1 0.1 -1 0 

0.74 1.02 -65 0 3 95.54 -0.9 0.1 -1 0 

0.93 1.02 -45 0 3 95.6 1 0.1 1 0 

0.83 1.11 -55 25 3 87.83 0 1 0 1 

0.83 0.92 -55 25 3 83.21 0 -0.9 0 1 
 

 

The primary fitted response regression model is presented as follow: yො ൌ 94.45 ൅ 0.42xଵ ൅ 0.65xଶ െ 1.56xଷ െ 0.16xସ െ 3.1xଵଶ െ 11.43xଶଶ െ 0.91xଷଶ െ 0.54xସଶ ൅ 13.75xଵxଶ൅ 2.5xଵxଷ െ 0.19xଵxସ ൅ 6.72xଶxଷ ൅ 2.69xଶxସ ൅ 0.25xଷxସ ൅ block effect  

(11) 
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Table 3  

The ANOVA results 

Term Coefficient SE T P 

Constant 94.4542 3.886 24.308 0 

Block1 -0.3303 1.893 -0.175 0.865 

Block2 -0.5242 1.876 -0.279 0.786 

x1 0.4249 2.164 0.196 0.848 

x2 0.6502 2.164 0.3 0.77 

x3 -1.5659 1.984 -0.789 0.448 

x4 -0.1687 1.984 -0.085 0.934 

x1*x1 -3.1084 3.461 -0.898 0.39 

x2*x2 -11.4325 3.427 -3.336 0.008 

x3*x3 -0.9171 2.932 -0.313 0.761 

x4*x4 -0.5489 2.938 -0.187 0.856 

x1*x2 13.7575 4.15 3.315 0.008 

x1*x3 2.5003 3.585 0.697 0.501 

x1*x4 -0.1903 3.793 -0.05 0.961 

x2*x3 6.7263 3.748 1.795 0.103 

x2*x4 2.6914 3.566 0.755 0.468 

x3*x4 0.255 3.427 0.074 0.942 

S = 6.855            R-Sq = 73.5%           R-Sq(adj) = 31.1%  

 

In order to determine the most important items we perform ANOVA test and the results are 

summarized in Table 3. Fig. 2 shows residuals of primary fitted model for different runs. 

 

 

Fig. 2. The least squares residuals of the model for different runs 

As we can observe from Fig. 2, the points 4,7 and 16 indicate there are some outliers and we repeat 

the regression to determine the outliers and the summarize them in Table 4. 

In our study the residuals show trend behavior in some periods of runs and to obtain more reliable 

and more robust regression model, the moving average iterative weighting (MAIW) method is 

applied and the results are compared with Huber, P.J. (1981) method as a common robust regression 

fitting method. 

Fig. 3 shows that by Huber (c=3), the points outsides the green lines are modified by weighting, but 

as it is shown in Fig. 4 the proposed method contains flexible residual bounds. 

 

Moreover, it is obvious that the proposed approach in the first iteration can identify residual trends in 

the last experimental runs. However, the previous approaches such as Huber method cannot detect 

residual trends (as can be seen in Fig. 3 and Fig. 4)  
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Table 4  

The coefficients of OLS method in the case of omitting outliers 

 OLS OLS(without 4) OLS (without 7) OLS (without 16) 

Intercept 94.45 94.62 94.55 95.21 ݔଵ 0.42 -2.34 -1.41 0.38 ݔଶ 0.65 3.42 2.52 -1.38 ݔଷ -1.56 -1.56 -1.56 0.47 ݔସ -0.16 -0.16 -0.16 -0.16 ݔଵݔଶ 13.75 22.45 6.98 13.54 ݔଵݔଷ 2.5 2.5 2.5 2.7 ݔଵݔସ -0.19 -0.19 -0.19 -0.19 ݔଶݔଷ 6.72 6.72 6.72 1.19 ݔଶݔସ 2.69 2.69 2.69 2.69 ݔଷݔସ 0.25 0.25 0.25 0.55 ݔଵଶ -3.1 -5.34 -0.08 -4.45 ݔଶଶ -11.43 -15.16 -9.95 -10.24 ݔଷଶ -0.91 0.09 -2.05 0.75 ݔସଶ -0.54 0.53 -1.62 -1.82 

Block1 -0.33 -2.27 1.63 -1.4 

Block2 -0.54 0.28 -1.46 1.26 

Block3 0.87 1.99 -0.17 0.14 

MSE 6.85 5.38 5.21 5.44 ܴଶ 0.73 0.84 0.78 0.8 ܴ௔ௗ௝ଶ  0.31 0.55 0.4 0.46 
 

 

The iterative weighting method applied in this numerical example has been coded in Matlab 7.8 and 

the results of Huber method are presented too and the variation of residuals in these methods are 

compared and coefficients and residuals results have been reported in Table 5 and 6.  
 

Table 5 

The coefficients of the OLS, Huber (c=3) and MAIW (with three different ߱) method 

 OLS Huber(c=3) MAIW(߱=9) MAIW(߱=4) MAIW(߱=2)

Intercept 94.45 94.1 94.46 94.16 94.96 ݔଵ 0.42 0.17 0.74 2 -044 ݔଶ 0.65 4.79 2.80 2.82 0.61 ݔଷ -1.56 -1.76 -0.57 -0.47 -046 ݔସ -0.16 1.64 0.43 0.81 0.33 ݔଵݔଶ 13.75 10.68 13.08 16.16 14.66 ݔଵݔଷ 2.5 2.60 3.00 1.31 3.71 ݔଵݔସ -0.19 1.05 1.99 -2.95 -0.34 ݔଶݔଷ 6.72 6.47 3.96 5.18 4.72 ݔଶݔସ 2.69 -0.43 -2.43 0.35 -0.56 ݔଷݔସ 0.25 1.28 0.62 0.54 0.43 ݔଵଶ -3.1 1.73 0.55 -1.78 -3.54 ݔଶଶ -11.43 -10.27 -11.91 -10.47 -11.4 ݔଷଶ -0.91 -1.93 0.003 -0.84 0.53 ݔସଶ -0.54 -2.86 -3.81 -1.96 -2.65 

Block1 -0.33 2.78 2.07 1.63 -0.11 

Block2 -0.54 -1.07 0.26 -0.57 0.97 

MSE 6.85 5.96 5.6 5.32 4.96 
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Fig. 3. Regression outlier bounds on Huber 

method 

Fig. 4. Regression outlier bounds on proposed 

MAIW method 

 
 

Table 6  

The residuals of the OLS, Huber (c=3) and MAIW (with three different ߱) 

OLS Huber(c=3) MAIW(߱=9) MAIW(߱=4) MAIW(߱=2) 

2.48153 0.074 0.28 1.13 1.54 

3.00221 7.13 3.21 3.4 3.25 

-1.46486 0.23 0.43 1.09 -0.09 

7.81433 2.67 4.91 7.16 9.31 

-4.62262 -12.38 -10.63 -12.31 -5.5 

2.60467 0.79 0.16 0 0.43 

-9.32787 -23.7 -17.04 -11.17 -10.38 

-2.47723 -2.7 -1.64 -2.34 -2.5 

1.98984 0.057 -0.33 -1.16 -0.01 

6.39930 6.87 5.38 6.51 5.82 

-2.06548 -0.07 -0.94 -4.99 -0.79 

3.60827 2.34 1.25 8.94 3.83 

-5.57282 -1.07 -2.06 -1.85 -5.8 

5.04979 1.21 -0.128 1.72 6.43 

3.45895 0.516 1.81 1.03 0.66 

-9.14902 -4.66 -12.02 -10.08 -9.7 

-3.81385 -7.06 -6.8 -3.26 -2.67 

2.08487 0.07 3.46 0.93 1.47 

-4.29938 -1.81 -1.32 -2.32 -3.08 

-1.83532 -2.86 -1.5 -7.62 -8.51 

-1.24482 -2.64 -0.98 -2.12 -0.9 

-0.26031 -0.6 -1.2 0.2 -0.54 

2.27253 1.37 1.62 0.77 5.76 

2.19259 0.95 1.77 6.65 1.8 

0.95833 0.29 -2.11 -0.05 -0.39 

1.32969 2.56 10.6 3.16 7.05 

0.88669 4.27 4.46 2.58 0.89 
 
 
 

 
 
 

As it is shown in Table 5, the MAIW (߱=2), in this case can provide better estimation among others. 

Moreover it is clear that the variation between residuals for the proposed model is less than the OLS 

method and also Huber(c=3). The Fig. 5, 6, 7, 8 show the residuals plot of Huber (c=3), MAIW 

(߱=9), MAIW (߱=4) and MAIW (߱=4) respectively. 
]]] 
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Fig. 5. The Huber (c=3) residuals 

  

 
Fig. 6. The MAIW (w=4) residuals  

Fig. 7. The MAIW (w=9) residuals  Fig. 8. The MAIW (w=2) residuals  
 

If we decrease the value of ߱in this model, the variation between residuals after coefficients 

estimation in the last model will be reduced. By this method consequently the Mean square error of 

the model is decreased as well. Fig. 9 illustrates the results clearly. 

 

Fig. 9.   Comparison of MSE values of proposed method and other regression coefficient estimators 

7.  Conclusion 

We have presented a new robust estimation for response surface modeling. The main advantage of 

the proposed model of this paper is to detect outliers using some moving average technique. The 

proposed moving average iterative weighting (MAIW) method of this paper is based on moving 

average residual bounds for iterative weighting method in which the flexible bounds for residuals is 

supposed to consider both little trends and outliers. We have examined the performance of the 

proposed model of this paper for some benchmark problems from the literature. The preliminary 

results indicated that the proposed model of this paper outperform the previously existed methods of 
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the literature. This paper can extended for coefficients estimation for non-equal residual variances 

and we leave it as a future study. 
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