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Abstract: A finite group whose irreducible complex characters are rational valued is

called a rational group or Q-group. We prove that if G is a finite group that the number

of kernels is equal to the number of classes, then every rationally represented character

is a generalized permutation character.
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1. Introduction

Let CharQ(G) and P (G) denote the ring of Z-linear combination of rationally rep-

resented characters and permutation characters of a finite group G, respectively.

It is easy to see that P (G) a is subring of CharQ(G). By a theorem of Artin,

| G | χ ∈ P (G) for all χ ∈ CharQ(G). The minimal number d ∈ N such that

dχ ∈ P (G) for all χ ∈ CharQ(G), is called the Artin exponent of G and is denoted

by γ(G). Indeed, γ(G) is the exponent of CharQ(G)/P (G). A nice description of

Q-groups and Artin exponent can be found in [1,4]. The Artin exponent induced

from cyclic subgroups of finite groups was studied extensively by T. Y. Lam in [3].

He proved that A(G) = exponent ( CharQ(G)
P (G)cyclic

)=1 if and only if G is cyclic. One can

show that γ(G) divides the A(G) and therefore divides | G |. There is a fundamental

distinction between γ(G) and A(G). While groups satisfying A(G) = 1 have been

characterized, there is no such characterization for groups satisfying γ(G) = 1. In

this paper, we prove that if a Q-group that the number of kernels is equal to the

number of classes, then γ(G/O2(G)) = 1.

2. Main Theorem

The definition and next theorem can be found in [4].

Definition 1. An involution a in a group G is called irreducible, if a can not be

factored as a product of two involutions or a is only involution in its centralizer

CG(a).

Theorem 2. Let G be a Q-group. Then G is counting an irreducible involution if
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and only if a Sylow 2-subgroup of G is either Z2 or Q8, where, Z2 is the cyclic group

of order 2 and Q8 is the quaternion group of order 8.

Theorem 3. [2] Let G be a Q-group having a irreducible involution. Then G is

isomorphic to one of the following groups:

• G ≃ G′ : Z2

• G ≃ E(pn) : Q8

where E(pn) is an elementary abelian p-group of odd order pn, G′ is the com-

mutator subgroup of G and “:” is semidirect product of two groups.

Corollary 4. If G is a Q-group counting an irreducible involution, then γ(G) = 1.

By a theorem in [5], we can prove that:

Theorem 5. Let G be a finite group that the number of kernels is equal to the

number of classes. Then γ(G/O2(G)) = 1.
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