International Journal of Algebra, Vol. 6, 2012, no. 1, 49-53

On a Graph Associated to a \mathbb{Q}-Group

Hesam Sharifi
Department of Mathematics, Faculty of Science
Shahed University, Tehran, Iran
hsharifi@shahed.ac.ir

Abstract

A finite group whose irreducible complex characters are rational valued is called a \mathbb{Q}-group. First, we define an integer valued function α on the set $\Omega(G) \times \Omega(G)$, where $\Omega(G)$ is the set of conjugacy classes of G. The conjugacy class of the identity element of G is denoted by 1 . Then, we classify \mathbb{Q}-groups G such that there exists a unique $k(s) \in \Omega(G)$ with the property $\alpha(1, k(s))=p$, where p is a prime number. This classification covers all finite \mathbb{Q}-groups in the case of $p=2$, but if p is an odd prime our classification covers only solvable groups. .

Mathematics Subject Classification: 20C15
Keywords: \mathbb{Q}-group, graph

1 Introduction

A finite group G is called a rational or a \mathbb{Q}-group if every irreducible complex character of G is rational valued. In particular, the symmetric group S_{n} and the Weyl groups of the complex Lie algebras are \mathbb{Q}-group, see [2]. Some recent works about classification of these groups can be found in $[3,4,9]$.

Let G be a \mathbb{Q}-group and $\Omega(G)=\{k(s) \mid s \in G\}$ be the set of conjugacy classes of G with $k(s)$ a conjugacy class with representative s. We define the relation \Re on $\Omega(G)$ by setting $k(s) \Re k(t)$ whenever for $k(s), k(t) \in \Omega(G)$ and $s \sim t^{n}$ for some integer n. The relation \Re is a well-defined partial ordering on $\Omega(G)$. We associate with $(\Omega(G), \Re)$ a labeled graph $\Gamma(G)$ as follows. The vertices of $\Gamma(G)$ are the elements in $\Omega(G), k(s)$ is joined to $k(t)$, if $k(s) \Re k(t)$ and there is no $k(u)$ such that $k(s) \Re k(u)$ and $k(u) \Re k(t)$. In this case, the edge $k(s) k(u)$ is labeled n, where n is the least positive integer for which $s \sim t^{n}$.
" $A: B$ " as semidirect product of two groups A and B, Q_{8} is the quaternion group of order $8, C_{n}$ is the cyclic group of order n and $E\left(p^{n}\right)$ is the elementary abelian p-group of order p^{n}.

We mention some well-known facts about \mathbb{Q}-group (see [1] and [10]).
Theorem A. A group G is a \mathbb{Q}-group if and only if for each $x \in G$, $\frac{N_{G}(<x>)}{C_{G}(<x>)} \simeq \operatorname{Aut}(<x>)$.

Theorem B. If P is Sylow 2-group of a \mathbb{Q}-group then $Z(P)$, the center of P, is an elementary abelian 2 -group.

2 Some Results

Lemma 2.1. The label on every edge of $\Gamma(G)$ is a prime number.
Proof. Let $k(s)$ and $k(t)$ be connected in $\Gamma(G)$ with label n. By definition, $k(s) \Re k(t)$, and there is no $k(u) \in \Omega(G)$ such that $k(s) \Re k(u)$ and $k(u) \Re k(t)$.

Suppose that $n=a b$, where $1<a, b<n$. Then $k(s) \Re k\left(t^{a}\right)$ and $k\left(t^{a}\right) \Re k(t)$ since $s \sim t^{n}=\left(t^{a}\right)^{b}$. If $k\left(t^{a}\right)=k(t)$, then $t^{a} \sim t$ and hence $s \sim t^{n}=t^{a b} \sim t^{b}$ where $b<n$. This contradiction violates the minimality of n. On the other hand, if $k(s)=k\left(t^{a}\right)$, then $s \sim t^{a}$ where $a<n$, and this again violates the minimality of n. Therefore $k(s) \Re k\left(t^{a}\right)$ and $k\left(t^{a}\right) \Re k(t)$, which is not the case. It follows that n does not have a proper factorization.

Let $k(s), k(t) \in \Omega(G)$ and $k(s) \Re k(t)$, then there is a least positive integer n such that $s \sim t^{n}$. Let $\alpha(s, t)$ stand for this integer. The integers $\alpha(s, t)$ may be used to define a function $\alpha: \Omega(G) \times \Omega(G) \longrightarrow \mathbb{Z}$ as follows: If $k(s)$ and $k(t)$ are not related by \Re, then put $\alpha(k(s), k(t))=0$, otherwise, put $\alpha(k(s), k(t))=p$ where $s \sim t^{p}$. For simplicity in notation, we denote $\alpha(k(s), k(t))$ by $\alpha(s, t)$.

Corollary 2.2. (a) $\alpha(1, s)=o(s)$ for every $s \in G$.
(b) If $k(s) \Re k(u)$ and $k(u) \Re k(t)$, then $\alpha(s, u) \times \alpha(u, t)=\alpha(s, t)$.

Proof. (a) is obvious.
(b) Let $s \in G$ and let n be a positive integer. Then $s^{n} \sim s^{(n, o(s))} .(n, o(s))=$ $a n+b o(s)$ for some integers a, b and $\left(a, \frac{o(s)}{(n, o(s))}\right)=\left(a, o\left(s^{n}\right)\right)=1$. Hence $s^{(n, o(s))}=s^{a n} \sim s$. It follows that, if $\alpha(s, t)=m$, then $t^{(m, o(t))} \sim t^{m} \sim s$ and hence $(m, o(t))=m$ by the minimality of m. Hence m divides $o(t)$. Therefore

$$
\alpha(1, t)=\frac{o(t)}{m} m=o\left(t^{m}\right) m=o(s) m=\alpha(1, s) \times \alpha(s, t)
$$

Now, suppose that $k(s) \Re k(u) \Re k(t)$. Then

$$
\alpha(1, s) \times \alpha(s, u) \times \alpha(u, t)=\alpha(1, u) \times \alpha(u, t)=\alpha(1, t)=\alpha(1, s) \times \alpha(s, t)
$$

It follows that $\alpha(s, u) \times \alpha(u, t)=\alpha(s, t)$.

Corollary 2.3. Suppose that $k(s) \Re k(t)$. Then every path from $k(s)$ to $k(t)$ has the same cardinality.

Proof. It suffices to show that every path from $k(1)$ to $k(t)$ has the same cardinality. Let C_{1} and C_{2} be two such paths and let $o(t)=q_{1}^{n_{1}} \ldots q_{m}^{n_{m}}$ where the q_{i} are prime. It follows from Lemma 2.1 that every edge in both C_{1} and C_{2} must be labeled with one of the primes q_{i}. Let

$$
\begin{aligned}
& c_{i}=\text { the number of edges in } C_{1} \text { labeled } q_{i}, \\
& d_{i}=\text { the number of edges in } C_{2} \text { labeled } q_{i} .
\end{aligned}
$$

Applying Result 2.2 to both paths, we have

$$
o(t)=\alpha(1, t)=q_{1}^{c_{1}} \ldots q_{m}^{c_{m}}=q_{1}^{d_{1}} \ldots q_{m}^{d_{m}},
$$

which implies that $c_{i}=d_{i}$ for each $i=1,2, \ldots, m$. Hence

$$
\text { length } C_{1}=c_{1}+\ldots+c_{m}=d_{1}+\ldots+d_{m}=\text { length } C_{2} .
$$

It follows that all chains from $k(s)$ to $k(t)$ have the same cardinality.
Theorem 2.4. Suppose that G is $a \mathbb{Q}$-group and there is only one $k(s) \in$ $\Omega(G)$ such that $\alpha(1, s)=p$, where p is prime. Then one of the following holds:
(a) if $p=2$, then a Sylow 2-subgroup of G is isomorphic to C_{2} or Q_{8} and G is isomorphic to one of the following groups:
(i) $G \simeq G^{\prime}: C_{2}$ where G^{\prime} is the commutator subgroup of G and a Sylow 3-subgroup of G as well
(ii) $G \simeq E\left(p^{n}\right): Q_{8}$ where $n \in \mathbb{N}$ and $p=3,5$
(b) if $p \neq 2$ and G is solvable, then a Sylow p-subgroup of G is abelian and $p=3$ or 5 .

Proof. Suppose that $p=2$. If $k(s)$ is the only vertex that is connected to $k(1)$ by an edge with label 2 , then there is a unique conjugacy class of involutions. Therefore a Sylow 2-subgroup P of G is the cyclic group of order 2^{n} or the generalized quaternion group of order 2^{n}. If $P \simeq C_{2^{n}}$, then $n=1$ since $Z(P)$ is elementary abelian by Theorem B. Otherwise, $P=Q_{2^{n}}=\langle a, b| a^{2^{n-1}}=$ $\left.1, b^{2}=a^{2^{n-2}}, b a b^{-1}=a^{-1}\right\rangle$. Hence $\left|\frac{N_{G}(<a>)}{C_{G}(\langle a>)}\right|=\varphi(o(a))=2^{n-2}$ and therefore \mid $N_{G}(a)_{2}\left|=2^{n-2}\right| C_{G}(a)_{2} \mid \geq 2^{n-2} o(a)=2^{n-3}$. But $Q_{2^{n}}$ is a Sylow 2-subgroup of G. Therefor $2 n-3 \leq n$. It follows that $n=3$ and $P=Q_{8}$. If $P \simeq C_{2}$ then by [7] case(i) holds and if $P \simeq Q_{8}$ then by ([10], p. 35) case(ii) holds.

Now, Suppose that $p \neq 2$. In the case $\alpha(1, s)=p$, all elements of odd prime order p are conjugate and if G is solvable, then its Sylow p-subgroup is abelian, due to a consequence of a result of Gaschütz and Yen [5] (see also Theorem 8.7, p. 512 of [8]). On the other hand, if G is a solvable \mathbb{Q}-group, then $\pi\{G\} \subseteq\{2,3,5\}$ (see [6]). The proof is done.

Remark 2.5. It is well known theorem in character theory (for an example see [1] page 227), that if character $\chi \in C h(G)$ (characters ring) takes values in \mathbb{Q} and $s, t \in G$ such that p-parts s and t be conjugate, then $\chi(s) \equiv \chi(t)(\bmod$ $p)$, where p is a prime number. Therefore, if G is $a \mathbb{Q}$-group and $\alpha(s, t)=p$ for $k(s), k(t) \in \Omega(G)$, then for every character $\chi \in C h(G), \chi(s) \equiv \chi(t)(\bmod$ $p)$.

The converse of the theorem is not always true. For example, consider the Weyl group G of the exceptional Lie algebra F_{4}. It is easy to see that there are two elements s and t in G such that, $\chi(s) \equiv \chi(t)(\bmod 2)$ for every $\chi \in C h(G)$, but $\alpha(s, t) \neq 2$. The following problem is reasonable to be asked:

Problem. Suppose that G is a \mathbb{Q}-group for which every $\chi \in C h(G)$ satisfies $\chi(s) \equiv \chi(t)(\bmod p)$ if and only if $k(s), k(t) \in \Gamma(G)$. Then, what is the structure of G ?

ACKNOWLEDGEMENTS. The author would like to thank the referee for useful comments.

References

[1] Ya. G. Berkovich and E. M. Zhmud, Characters of finite groups, Part 1. Transl. Math. Monographs 172, Amer. Math. Soc. Providence, Rhode Island, 1997.
[2] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of finite groups. Oxford, 1985.
[3] M. R. Darafsheh and H. Sharifi, Frobenius \mathbb{Q}-group, Arch. Math.(Basel) 83, (2004), 102-105.
[4] M. R. Darafsheh, A. Iranmanesh, and S. A. Moosavi, 2-Frobenius \mathbb{Q} groups, Indian J. Pure Appl. Math. 40, (2009), 29-34.
[5] W. Gaschütz and T. Yen, Groups with an automorphism group which is transitive on the elements of prime power order, Math. Z. 86, (1967), 123-127.
[6] R. Gow, Groups whose characters are rational-valued, J. Algebra 40, (1976), 280-299.
[7] M. Hayashi, On representations of F. M. Markel's theorem, Hokkaido Math. J. 4, 1975.
[8] B. Hupert and N. Blackburn, Finite Group II, Springer Verlag, 1982.
[9] P. Hegedus, Structure of solvable rational groups, Proc. London Math. Soc. (3), 90, (2005), 439-471.
[10] D. Kletzing, Structure and representations of \mathbb{Q}-group, Lecture Notes in Math. 1084, Springer-Verlag, 1984.

Received: September, 2011

