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Abstract

A finite group whose irreducible complex characters are rational val-
ued is called a Q-group. First, we define an integer valued function α on
the set Ω(G) × Ω(G), where Ω(G) is the set of conjugacy classes of G.
The conjugacy class of the identity element of G is denoted by 1. Then,
we classify Q-groups G such that there exists a unique k(s) ∈ Ω(G) with
the property α(1, k(s)) = p, where p is a prime number. This classifi-
cation covers all finite Q-groups in the case of p = 2, but if p is an odd
prime our classification covers only solvable groups. .
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1 Introduction

A finite group G is called a rational or a Q-group if every irreducible complex
character of G is rational valued. In particular, the symmetric group Sn and
the Weyl groups of the complex Lie algebras are Q-group, see [2]. Some recent
works about classification of these groups can be found in [3, 4, 9].

Let G be a Q-group and Ω(G) = {k(s)|s ∈ G} be the set of conjugacy
classes of G with k(s) a conjugacy class with representative s. We define the
relation ℜ on Ω(G) by setting k(s)ℜk(t) whenever for k(s), k(t) ∈ Ω(G) and
s ∼ tn for some integer n. The relation ℜ is a well-defined partial ordering
on Ω(G). We associate with (Ω(G),ℜ) a labeled graph Γ(G) as follows. The
vertices of Γ(G) are the elements in Ω(G), k(s) is joined to k(t), if k(s)ℜk(t)
and there is no k(u) such that k(s)ℜk(u) and k(u)ℜk(t). In this case, the edge
k(s)k(u) is labeled n, where n is the least positive integer for which s ∼ tn.

“ A : B ” as semidirect product of two groups A and B, Q8 is the quaternion
group of order 8, Cn is the cyclic group of order n and E(pn) is the elementary
abelian p-group of order pn.
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We mention some well-known facts about Q-group (see [1] and [10]).
Theorem A. A group G is a Q-group if and only if for each x ∈ G,

NG(< x >)

CG(< x >)
≃ Aut(< x >) .

Theorem B. If P is Sylow 2-group of a Q-group then Z(P ), the center of
P , is an elementary abelian 2-group.

2 Some Results

Lemma 2.1. The label on every edge of Γ(G) is a prime number.

Proof. Let k(s) and k(t) be connected in Γ(G) with label n. By definition,
k(s)ℜk(t), and there is no k(u) ∈ Ω(G) such that k(s)ℜk(u) and k(u)ℜk(t).

Suppose that n = ab, where 1 < a, b < n. Then k(s)ℜk(ta) and k(ta)ℜk(t)
since s ∼ tn = (ta)b. If k(ta) = k(t), then ta ∼ t and hence s ∼ tn = tab ∼ tb

where b < n. This contradiction violates the minimality of n. On the other
hand, if k(s) = k(ta), then s ∼ ta where a < n, and this again violates the
minimality of n. Therefore k(s)ℜk(ta) and k(ta)ℜk(t), which is not the case.
It follows that n does not have a proper factorization.

Let k(s), k(t) ∈ Ω(G) and k(s)ℜk(t), then there is a least positive integer n

such that s ∼ tn. Let α(s, t) stand for this integer. The integers α(s, t) may be
used to define a function α : Ω(G)×Ω(G) −→ Z as follows: If k(s) and k(t) are
not related by ℜ, then put α(k(s), k(t)) = 0, otherwise, put α(k(s), k(t)) = p

where s ∼ tp. For simplicity in notation, we denote α(k(s), k(t)) by α(s, t).

Corollary 2.2. (a) α(1, s) = o(s) for every s ∈ G.
(b) If k(s)ℜk(u) and k(u)ℜk(t), then α(s, u) × α(u, t) = α(s, t).

Proof. (a) is obvious.
(b) Let s ∈ G and let n be a positive integer. Then sn ∼ s(n,o(s)). (n, o(s)) =

an + bo(s) for some integers a, b and (a,
o(s)

(n, o(s))
) = (a, o(sn)) = 1. Hence

s(n,o(s)) = san ∼ s. It follows that, if α(s, t) = m, then t(m,o(t)) ∼ tm ∼ s and
hence (m, o(t)) = m by the minimality of m. Hence m divides o(t). Therefore

α(1, t) =
o(t)

m
m = o(tm)m = o(s)m = α(1, s) × α(s, t)

Now, suppose that k(s)ℜk(u)ℜk(t). Then

α(1, s) × α(s, u) × α(u, t) = α(1, u) × α(u, t) = α(1, t) = α(1, s) × α(s, t).

It follows that α(s, u) × α(u, t) = α(s, t).
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Corollary 2.3. Suppose that k(s)ℜk(t). Then every path from k(s) to k(t)
has the same cardinality.

Proof. It suffices to show that every path from k(1) to k(t) has the same
cardinality. Let C1 and C2 be two such paths and let o(t) = qn1

1 ...qnm

m where
the qi are prime. It follows from Lemma 2.1 that every edge in both C1 and
C2 must be labeled with one of the primes qi. Let

ci = the number of edges in C1 labeled qi,
di = the number of edges in C2 labeled qi.

Applying Result 2.2 to both paths, we have

o(t) = α(1, t) = qc1
1 ...qcm

m = qd1

1 ...qdm

m ,

which implies that ci = di for each i = 1, 2, ..., m. Hence

length C1 = c1 + ... + cm = d1 + ... + dm = length C2.

It follows that all chains from k(s) to k(t) have the same cardinality.

Theorem 2.4. Suppose that G is a Q-group and there is only one k(s) ∈
Ω(G) such that α(1, s) = p, where p is prime. Then one of the following holds:

(a) if p = 2, then a Sylow 2-subgroup of G is isomorphic to C2 or Q8 and G

is isomorphic to one of the following groups:

(i) G ≃ G
′

: C2 where G
′

is the commutator subgroup of G and a Sylow
3-subgroup of G as well

(ii) G ≃ E(pn) : Q8 where n ∈ N and p = 3, 5

(b) if p �= 2 and G is solvable, then a Sylow p-subgroup of G is abelian and
p = 3 or 5.

Proof. Suppose that p = 2. If k(s) is the only vertex that is connected to k(1)
by an edge with label 2, then there is a unique conjugacy class of involutions.
Therefore a Sylow 2-subgroup P of G is the cyclic group of order 2n or the
generalized quaternion group of order 2n. If P ≃ C2n , then n = 1 since Z(P )
is elementary abelian by Theorem B. Otherwise, P = Q2n = 〈a, b | a2n−1

=

1, b2 = a2n−2

, bab−1 = a−1〉. Hence | NG(<a>)
CG(<a>)

|= ϕ(o(a)) = 2n−2 and therefore |

NG(a)2 |= 2n−2 | CG(a)2 |≥ 2n−2o(a) = 2n−3. But Q2n is a Sylow 2-subgroup
of G. Therefor 2n− 3 ≤ n. It follows that n = 3 and P = Q8. If P ≃ C2 then
by [7] case(i) holds and if P ≃ Q8 then by ([10], p. 35) case(ii) holds.

Now, Suppose that p �= 2. In the case α(1, s) = p, all elements of odd
prime order p are conjugate and if G is solvable, then its Sylow p-subgroup
is abelian, due to a consequence of a result of Gaschütz and Yen [5] (see also
Theorem 8.7, p. 512 of [8]). On the other hand, if G is a solvable Q-group,
then π{G} ⊆ {2, 3, 5} (see [6]). The proof is done.
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Remark 2.5. It is well known theorem in character theory (for an example
see [1] page 227), that if character χ ∈ Ch(G) (characters ring) takes values in
Q and s, t ∈ G such that p-parts s and t be conjugate, then χ(s) ≡ χ(t) (mod

p), where p is a prime number. Therefore, if G is a Q-group and α(s, t) = p

for k(s), k(t) ∈ Ω(G), then for every character χ ∈ Ch(G), χ(s) ≡ χ(t) (mod

p).
The converse of the theorem is not always true. For example, consider the

Weyl group G of the exceptional Lie algebra F4. It is easy to see that there are
two elements s and t in G such that, χ(s) ≡ χ(t) (mod 2) for every χ ∈ Ch(G),
but α(s, t) �= 2. The following problem is reasonable to be asked:

Problem. Suppose that G is a Q-group for which every χ ∈ Ch(G) sat-
isfies χ(s) ≡ χ(t) (mod p) if and only if k(s), k(t) ∈ Γ(G). Then, what is the
structure of G?
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