On a Graph Associated to a Q-Group

Hesam Sharifi

Department of Mathematics, Faculty of Science Shahed University, Tehran, Iran hsharifi@shahed.ac.ir

Abstract

A finite group whose irreducible complex characters are rational valued is called a \mathbb{Q} -group. First, we define an integer valued function α on the set $\Omega(G) \times \Omega(G)$, where $\Omega(G)$ is the set of conjugacy classes of G. The conjugacy class of the identity element of G is denoted by 1. Then, we classify \mathbb{Q} -groups G such that there exists a unique $k(s) \in \Omega(G)$ with the property $\alpha(1,k(s))=p$, where p is a prime number. This classification covers all finite \mathbb{Q} -groups in the case of p=2, but if p is an odd prime our classification covers only solvable groups.

Mathematics Subject Classification: 20C15

Keywords: Q-group, graph

1 Introduction

A finite group G is called a rational or a \mathbb{Q} -group if every irreducible complex character of G is rational valued. In particular, the symmetric group S_n and the Weyl groups of the complex Lie algebras are \mathbb{Q} -group, see [2]. Some recent works about classification of these groups can be found in [3, 4, 9].

Let G be a \mathbb{Q} -group and $\Omega(G) = \{k(s) | s \in G\}$ be the set of conjugacy classes of G with k(s) a conjugacy class with representative s. We define the relation \Re on $\Omega(G)$ by setting $k(s)\Re k(t)$ whenever for $k(s), k(t) \in \Omega(G)$ and $s \sim t^n$ for some integer n. The relation \Re is a well-defined partial ordering on $\Omega(G)$. We associate with $(\Omega(G), \Re)$ a labeled graph $\Gamma(G)$ as follows. The vertices of $\Gamma(G)$ are the elements in $\Omega(G), k(s)$ is joined to k(t), if $k(s)\Re k(t)$ and there is no k(u) such that $k(s)\Re k(u)$ and $k(u)\Re k(t)$. In this case, the edge k(s)k(u) is labeled n, where n is the least positive integer for which $s \sim t^n$.

"A: B" as semidirect product of two groups A and B, Q_8 is the quaternion group of order $8, C_n$ is the cyclic group of order n and $E(p^n)$ is the elementary abelian p-group of order p^n .

50 H. Sharifi

We mention some well-known facts about \mathbb{Q} -group (see [1] and [10]).

Theorem A. A group G is a \mathbb{Q} -group if and only if for each $x \in G$, $\frac{N_G(< x >)}{C_G(< x >)} \simeq Aut(< x >)$.

Theorem B. If P is Sylow 2-group of a \mathbb{Q} -group then Z(P), the center of P, is an elementary abelian 2-group.

2 Some Results

Lemma 2.1. The label on every edge of $\Gamma(G)$ is a prime number.

Proof. Let k(s) and k(t) be connected in $\Gamma(G)$ with label n. By definition, $k(s)\Re k(t)$, and there is no $k(u) \in \Omega(G)$ such that $k(s)\Re k(u)$ and $k(u)\Re k(t)$.

Suppose that n = ab, where 1 < a, b < n. Then $k(s)\Re k(t^a)$ and $k(t^a)\Re k(t)$ since $s \sim t^n = (t^a)^b$. If $k(t^a) = k(t)$, then $t^a \sim t$ and hence $s \sim t^n = t^{ab} \sim t^b$ where b < n. This contradiction violates the minimality of n. On the other hand, if $k(s) = k(t^a)$, then $s \sim t^a$ where a < n, and this again violates the minimality of n. Therefore $k(s)\Re k(t^a)$ and $k(t^a)\Re k(t)$, which is not the case. It follows that n does not have a proper factorization.

Let $k(s), k(t) \in \Omega(G)$ and $k(s)\Re k(t)$, then there is a least positive integer n such that $s \sim t^n$. Let $\alpha(s,t)$ stand for this integer. The integers $\alpha(s,t)$ may be used to define a function $\alpha: \Omega(G) \times \Omega(G) \longrightarrow \mathbb{Z}$ as follows: If k(s) and k(t) are not related by \Re , then put $\alpha(k(s), k(t)) = 0$, otherwise, put $\alpha(k(s), k(t)) = p$ where $s \sim t^p$. For simplicity in notation, we denote $\alpha(k(s), k(t))$ by $\alpha(s,t)$.

Corollary 2.2. (a)
$$\alpha(1, s) = o(s)$$
 for every $s \in G$.
(b) If $k(s)\Re k(u)$ and $k(u)\Re k(t)$, then $\alpha(s, u) \times \alpha(u, t) = \alpha(s, t)$.

Proof. (a) is obvious.

(b) Let $s \in G$ and let n be a positive integer. Then $s^n \sim s^{(n,o(s))}$. (n,o(s)) = an + bo(s) for some integers a,b and $(a,\frac{o(s)}{(n,o(s))}) = (a,o(s^n)) = 1$. Hence $s^{(n,o(s))} = s^{an} \sim s$. It follows that, if $\alpha(s,t) = m$, then $t^{(m,o(t))} \sim t^m \sim s$ and hence (m,o(t)) = m by the minimality of m. Hence m divides o(t). Therefore

$$\alpha(1,t) = \frac{o(t)}{m}m = o(t^m)m = o(s)m = \alpha(1,s) \times \alpha(s,t)$$

Now, suppose that $k(s)\Re k(u)\Re k(t)$. Then

$$\alpha(1,s) \times \alpha(s,u) \times \alpha(u,t) = \alpha(1,u) \times \alpha(u,t) = \alpha(1,t) = \alpha(1,s) \times \alpha(s,t).$$

It follows that
$$\alpha(s, u) \times \alpha(u, t) = \alpha(s, t)$$
.

Corollary 2.3. Suppose that $k(s)\Re k(t)$. Then every path from k(s) to k(t) has the same cardinality.

Proof. It suffices to show that every path from k(1) to k(t) has the same cardinality. Let C_1 and C_2 be two such paths and let $o(t) = q_1^{n_1}...q_m^{n_m}$ where the q_i are prime. It follows from Lemma 2.1 that every edge in both C_1 and C_2 must be labeled with one of the primes q_i . Let

 c_i = the number of edges in C_1 labeled q_i , d_i = the number of edges in C_2 labeled q_i .

Applying Result 2.2 to both paths, we have

$$o(t) = \alpha(1, t) = q_1^{c_1} ... q_m^{c_m} = q_1^{d_1} ... q_m^{d_m},$$

which implies that $c_i = d_i$ for each i = 1, 2, ..., m. Hence

length
$$C_1 = c_1 + ... + c_m = d_1 + ... + d_m = \text{length } C_2$$
.

It follows that all chains from k(s) to k(t) have the same cardinality. \square

Theorem 2.4. Suppose that G is a \mathbb{Q} -group and there is only one $k(s) \in \Omega(G)$ such that $\alpha(1,s) = p$, where p is prime. Then one of the following holds:

- (a) if p = 2, then a Sylow 2-subgroup of G is isomorphic to C_2 or Q_8 and G is isomorphic to one of the following groups:
 - (i) $G \simeq G' : C_2$ where G' is the commutator subgroup of G and a Sylow 3-subgroup of G as well
 - (ii) $G \simeq E(p^n) : Q_8 \text{ where } n \in \mathbb{N} \text{ and } p = 3, 5$
- (b) if $p \neq 2$ and G is solvable, then a Sylow p-subgroup of G is abelian and p = 3 or 5.

Proof. Suppose that p=2. If k(s) is the only vertex that is connected to k(1) by an edge with label 2, then there is a unique conjugacy class of involutions. Therefore a Sylow 2-subgroup P of G is the cyclic group of order 2^n or the generalized quaternion group of order 2^n . If $P \simeq C_{2^n}$, then n=1 since Z(P) is elementary abelian by Theorem B. Otherwise, $P=Q_{2^n}=\langle a,b\mid a^{2^{n-1}}=1,b^2=a^{2^{n-2}},\ bab^{-1}=a^{-1}\rangle$. Hence $|\frac{N_G(<a>)}{C_G(<a>)}|=\varphi(o(a))=2^{n-2}$ and therefore $|N_G(a)_2|=2^{n-2}\mid C_G(a)_2\mid \geq 2^{n-2}o(a)=2^{n-3}$. But Q_{2^n} is a Sylow 2-subgroup of G. Therefor $2n-3\leq n$. It follows that n=3 and $P=Q_8$. If $P\simeq C_2$ then by [7] case(i) holds and if $P\simeq Q_8$ then by ([10], p. 35) case(ii) holds.

Now, Suppose that $p \neq 2$. In the case $\alpha(1,s) = p$, all elements of odd prime order p are conjugate and if G is solvable, then its Sylow p-subgroup is abelian, due to a consequence of a result of Gaschütz and Yen [5] (see also Theorem 8.7, p. 512 of [8]). On the other hand, if G is a solvable \mathbb{Q} -group, then $\pi\{G\} \subseteq \{2,3,5\}$ (see [6]). The proof is done.

52 H. Sharifi

Remark 2.5. It is well known theorem in character theory (for an example see [1] page 227), that if character $\chi \in Ch(G)$ (characters ring) takes values in \mathbb{Q} and $s,t \in G$ such that p-parts s and t be conjugate, then $\chi(s) \equiv \chi(t)$ (mod p), where p is a prime number. Therefore, if G is a \mathbb{Q} -group and $\alpha(s,t) = p$ for $k(s), k(t) \in \Omega(G)$, then for every character $\chi \in Ch(G)$, $\chi(s) \equiv \chi(t)$ (mod p).

The converse of the theorem is not always true. For example, consider the Weyl group G of the exceptional Lie algebra F_4 . It is easy to see that there are two elements s and t in G such that, $\chi(s) \equiv \chi(t) \pmod{2}$ for every $\chi \in Ch(G)$, but $\alpha(s,t) \neq 2$. The following problem is reasonable to be asked:

Problem. Suppose that G is a \mathbb{Q} -group for which every $\chi \in Ch(G)$ satisfies $\chi(s) \equiv \chi(t) \pmod{p}$ if and only if $k(s), k(t) \in \Gamma(G)$. Then, what is the structure of G?

ACKNOWLEDGEMENTS. The author would like to thank the referee for useful comments.

References

- Ya. G. Berkovich and E. M. Zhmud, Characters of finite groups, Part 1. Transl. Math. Monographs 172, Amer. Math. Soc. Providence, Rhode Island, 1997.
- [2] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, *Atlas of finite groups*. Oxford, 1985.
- [3] M. R. Darafsheh and H. Sharifi, *Frobenius Q-group*, Arch. Math.(Basel) **83**, (2004), 102-105.
- [4] M. R. Darafsheh, A. Iranmanesh, and S. A. Moosavi, 2-Frobenius Q-groups, Indian J. Pure Appl. Math. 40, (2009), 29-34.
- [5] W. Gaschütz and T. Yen, Groups with an automorphism group which is transitive on the elements of prime power order, Math. Z. 86, (1967), 123-127.
- [6] R. Gow, Groups whose characters are rational-valued, J. Algebra 40, (1976), 280-299.
- [7] M. Hayashi, On representations of F. M. Markel's theorem, Hokkaido Math. J. 4, 1975.
- [8] B. Hupert and N. Blackburn, Finite Group II, Springer Verlag, 1982.

- [9] P. Hegedus, Structure of solvable rational groups, Proc. London Math. Soc. (3), **90**, (2005), 439-471.
- [10] D. Kletzing, Structure and representations of Q-group, Lecture Notes in Math. **1084**, Springer-Verlag, 1984.

Received: September, 2011