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Abstract—Various processes occur in recalling in brain and it is 
necessary to investigate memory brain function. Dual process 
theory separates recollection from familiarity in recognition 
memory. By comparing individuals with respect to normal state 
and with impairment, one can understand performance of 
memory. Comparison of two conditions infers that particular 
brain mechanism is being affected from impairment. In this study, 
we use the data in which recollection has been affected more than 
familiarity by midazolam drug. To investigate this difference, 
connectivity between Brain regions is estimated. Multivariate 
autoregressive models (MVAR) is used for determination of 
Granger causality to estimate effective connectivity in time-
frequency domain. In this regard, we use GPDC method.  Results 
show specific connectivity between parietal and frontal that is 
evidence of recollection to continue process and familiarity 
compensation in failing of recollection. 

Keywords-brain connectivity; recognition memory; GPDC; 

MVAR; Granger causality 

I.  INTRODUCTION 
Recognition memory is about stimulus event that has been 

previously experienced and truly judged. In two decades, 
cognitive neuroscientists have become more interested in it. 
Dual-process models, hypothesizing that recognition memory is 
based on distinct retrieval processes. event-related brain 
potentials (ERPs), are used to separate familiarity and 
recollection [1]. Previous studies assign ‘parietal’ to the 
recollection and ‘mid-frontal’ to the familiarity by the use of 
neuroimaging [2]. 

Midazolam includes benzodiazepine that causes to amnesia, 
and may be used to separate recollection from familiarity [3]. 
Hirshman et al. solicited subjects to report their recognition 
judgments basis in terms of “remembering” (i.e., recollection) or 
“knowing” (i.e., familiarity lacking recollection), the results 
exhibited that midazolam affected recollection greater than 
familiarity.  

Several studies using functional magnetic response 
suggested that parietal and prefrontal cortices related to 
recollection [4], [5]. whereas medial temporal related to 
familiarity [6]. other researcher reported ERPs peaks at 400 ms 
in prefrontal and at ~600 ms in parietal, suggested that ~400 ms 

peak associated with familiarity, despite ~600 ms one related to 
recollection [7]–[9]. 

Over the past two decades, neuroimaging was dominant in 
systems neuroscience. Scientists expect that over the next two 
decades neuroimaging of dynamic and connectivity will play a 
major role in revealing the brain's function and operation [10]. 

Granger introduced the mathematical definition of causality 
that time series xi(t) is granger-cause xj(t) if past knowledge of 
xj(t) improve prediction of xi(n) significantly [11]. Granger 
causality principle can be considered by multivariate 
autoregressive model (MVAR). Several measures are defined in 
the context of Multivariate Autoregressive Model and based on 
Granger causality principle (e.g.: Granger Causality Index 
(GCI), Directed Transfer Function (DTF), Partial Directed 
Coherence (PDC) and their modifications [12]. 

Partial directed coherence (PDC) represents directed linear 
connection between two time series as occurring simultaneously 
with a set of other time series in a frequency domain. PDC’s can 
disclose crucial aspects of functional connectivity in 
neuroscience due to the central role played by neural rhythms (α, 
β, γ, etc.) that are of paramount physiologic relevance [13].  

Functional connectivity estimates the interaction between 
neural structures directly from the neuroelectric data [14].  PDC 
is based on the multiple time-series ’directed coherence’ (DC) 
[15] and determines Granger Causality [11] in multichannel data 
when more pairs than the ones of time series are simultaneously 
analyzed. Other generalization of DC was introduced for 
multiple time series [16] (see [17], [18] for a comparison). 
However, PDC can distingue cascade connection from direct 
connection because it is based on the notion of partial coherence. 
For example, where node 1 connects to 2 and node 2 connects to 
node 3, but nodes 1 and 3 not directly connect which PDC didn’t 
show the connection between nodes 1 and 3, but some other 
methods suffer from this [19]. 

Several studies show that memory process is in low-
frequency band [20], [21]. According to the ability of PDC one 
can estimate memory-related connectivity in measurement 
signals. 
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 Already, directed coupling of macaque V4 during visual 
short-term memory estimated by Generalized Partial Directed 
Coherence (GPDC) by using multivariate autoregressive 
(MVAR) models [21, p. 4]. In this study, we investigate 
effective connectivity in recognition memory task by the use of 
GPDC method. 

I. METHODS 

A. Data input  

In this study, we use the data associated with the twelve 
subjects from University of Colorado students who participated 
in the Combined Pharmacological and Electrophysiological 
study [1]. All subjects were right-handed, native English 
speakers and weighed in 83 kg who do tasks in two conditions 
(injecting saline or midazolam with double-blind). Stimuli 
words were 480 low-frequency English that were classified 
randomly into four 120-word sets which emerged equally in 
each condition (old/new and midazolam/saline). Each word was 
displayed in the center of a computer monitor for 4 s, with an 
inter-word interval of 1 s. During the recognition memory task, 
scalp voltages were collected with a 128-channel high-input 
impedance amplifier. Amplified analog voltages (0.1–100 Hz 
band-pass) were digitized at 250 Hz.  

B. Data processing  

The data processed by EEGLAB toolbox [22]. in first step 
data epochs are extracted from 100 ms before to 1,000 ms after 
stimulation. Baseline removed, then abnormal trials are rejected 
by rejecting extreme values. During a trial, if the data (at the 
selected electrodes) exceed 110 µv, the trial is marked as 
abnormal values and is rejected; also the values under -110 µv 
are rejected. Linear drift may exist in some electrodes. To detect 
such drifts, we fit data to the function in order to estimate slope 
in trial and then by R-squared limit set to 0.3, if the slope exceeds 
a 70 microvolt over the whole epoch we reject the trial. we 
compute the probability of each trial. Trials having out of 5 
times standard deviations of the mean probability distribution 
are marked as artifact and rejected. The probability measure is 
applied both to single electrodes and to the collection of all 
electrodes. One can use kurtosis statistical measure to reject 
artifacts when discontinuity occurs in trial or other artifact that 
data epochs have very 'peaky' activity. Where kurtosis value was 
high positive, it is an abnormally 'peaky' distribution, while a 
high negative kurtosis value shows abnormally flat activity 
distribution. If single and all channel thresholds were exceeded 
5 times standard deviations from mean kurtosis value, we could 
reject those. 

Independent Component Analysis (ICA) is a useful tool for 
source separating and then classifying brain and non-brain 
activity to reject artifacts from measured data, but it largely 
depends on users. For compassing this issue, we use a 
completely automatic algorithm (ADJUST). It separates brain’s 
independent components from artifact by using spatial and 
temporal features. Features are selected to capture blinks, eye 
movements, and generic discontinuities. Validation of 
ADJUST's classification on a totally different EEG dataset 
indicates that the result largely matches a manual one by experts 
(95.2%) [23]. 

The PDC and GPDC work with phase difference between 
signals; only when there is a phase difference between signals 
they have non-zero value. Volume conduction affects the 
magnitude of electrode and has a zero phase propagation, 
therefore volume conduction doesn’t generate phase difference 
between channels. So in theory, PDC results should not be 
affected from volume conduction. In practice, it has some 
influence e.g., increasing the noise level, however, this influence 
is not critical [24]. We select four channels (24, 124, 52, 92 as 
shown in figure 1) from data as suggested in [1], [4], [5], fit 
AMVAR model and compute connectivity as will be explained 
at below. 

 
Figure 1.  Coregistration between Geodesic Sensor Net  and 10-20 system 

C. Generalized Partial Directed Coherence 

Partial Directed Coherence is a linear quantifier connected 
with the multivariate relationship between simultaneously 
observed time series in frequency domain for applying in 
functional connectivity inference in neuroscience. GPDC stands 
for the re-definition of PDC that would improve PDC’s 
estimations under scenarios involving severely unbalanced and 
predictive modelling errors (additive Gaussian noise). The 
GPDC is more robust against the scale of time series [25]. If one 
assumes that ݔ(݊)  is a matrix of simultaneously observed time 
series as follows: ࢞(݊)  = . (݊)1ݔ]  . .  ( 1 )    ்[ (݊)ܰݔ

It can be modeled by a Multivariate Autoregressive Model 
defined as: ݔ(݊)  = ∑ − ݊)ݔ௞ܣ  ݇) + ௣௞ୀଵ(݊)ݓ      ( 2 ) 

Where p is model order, ܣ௞ is the matrix of coefficients aij 
(k) implying how much sample of  jth time series affects ith time 
series at lag k, ࢝(݊) is also given as below:  ࢝(݊)  = . (݊)1ݓ]  . .  is the vector of model’s additive Gaussian noise with (݊)࢝    ்[(݊)ܰݓ
zero mean and with covariance matrix Σw. The PDC is defined 
as:  
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(݂) ݆݅ߨ  = ஺̅௜௝ (௙)ට∑ ஺݆̅݇(௙)ೖಿసభ    ஺̅∗݆݇(௙)   (3) 
Where f is the normalized frequency in the interval [−.5, .5]  

where: ܣ¯݆݅(݂)  = − ݆݅ߜ  ∑ ௣௞ୀଵ݂݇ߨ2݆−݁(݇)݆݅ܽ , for δij = 1 whenever i=j 
and δij = 0, otherwise j =√−1  [21]. 

In [25], Baccala et al. demonstrated a numerical issue in PDC 
with some examples. As one of the time series is scaled, PDC 
fails to estimate, too. This essentially leads to the use of 
weighing functions and generalized definition of PDC. To solve 
the numerical problem, they defined a new partial directed 
coherence estimator as: ݆݅ߨ (݂)  = భഃ೔஺̅௜௝ (௙)ට∑ భഃೖమ஺̅௞௝(௙)ೖಿసభ    ஺̅∗௞௝(௙)   (4) 

Whence it follows as: ቚߨ௜௝(௪)(݂)ቚଶ ൑  1.   (5) 
And ∑ ቚߨ௜௝(௪)(݂)ቚଶே௜ୀଵ = 1   (6) 
Note that the new definition (4) preserves the normalizations 

(5, 6) that is also held for the PDC original definition (3) (see 
[19]). 

L. Astolfi et al. applied this method to Predefined patterns of 
cortical connectivity and simulated it, where high-resolution 
EEG Data were recorded during the well-known strop paradigm 
and results therefore indicated that this method correctly 
estimates the simulated connectivity patterns under reasonable 
conditions [17]. 

A segmentation-based AMVAR [26] uses windowing 
techniques. First, it extracts parts of multichannel dataset by 
sliding window of length W, and fits VAR[p] model to this data 
(as seen in figure 2). 

 
Figure 2. Schematic of sliding-window AMVAR modeling. W is the window 
length, T is the length of each trial in samples, N is the number of trials. 

 
Estimation of windows’ optimal length is a key choice in 

this method in order to have well temporal smoothing, local 
stationarity, sufficient amount of data in each window, process 
dynamics and neurophysiology. Short windows can improve 
the local stationarity of the data [26]. We use AIC, FPE, SBC 
and HQ criteria to select optimal order for MVAR model. 

To validate our fitted model, we have to check the whiteness 
of the residuals, percent consistency, and model stability for 
each (or a random subset) of our windows. Residual whiteness 
tests include portmanteau and autocorrelation tests to be 
correlated in the residuals of the model. Here, we benefit Ljung-
Box, Box-Pierce, and Li-McLeod multivariate portmanteau 
tests and a simple autocorrelation function test.  

A. Statistical Analysis 

We compared channels’ connectivity between saline state 
and midazolam one of the 12 subjects by the use of a paired-
sample t-test. Significant connection was determined by using 
P value of 0.05. 

II. EXPERIMENTAL RESULTS  
After preprocessing, data were fitted to time varying adaptive 
multivariate autoregressive (TV-AMVAR) model and then 
models were validated; then we estimated the connectivity of 
GPDC time frequency. For visualization of the difference 
between saline and midazolam conditions, we subtracted PDC 
measure in midazolam and saline (PDCmhit – PDCshit in case 
number 8) pixel by pixel in time frequency domain as shown in 
figure 3, where the x axis is time and y axis is frequency. The 
difference in connectivity was coded by color in the interval [-
0.25 0.25], blue code -0.25 and red code 0.25. Direction of 
connectivity is from columns to rows.  
   Figure 3 shows the case study. For group analysis, we took 
GPDC measure in rectangle of time frequency (frequency: 8-13 
Hz and time: 500-700 ms for figure 4) and then averaged 
measures in this box, subsequently we accomplished t-test on 
this point across 12 subjects and significant difference between 
midazolam and saline condition was reported. 
 

 
Figure 3. visualization of differenced time-frequency GPDC connectivity 
between saline and midazolam condition. The x axis show time and y axis is 
frequency and difference connectivity [-0.25 0.25] coded by color [Blue Red]. 
Connectivity is from Columns to Row. 
 

Figure 4 shows solely the significant connection difference 
between saline and midazolam for channel 24 (left, anterior, 
superior (LAS)) and channel 124 (right, anterior, superior 
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(RAS)) regions; additionally, it illustrates for parietal channel 
52 (left, posterior, superior (LPS)) and right, channel 92 
(posterior, superior (RPS)) regions for the time between 500-
700 ms in alpha frequency band. Color of arrows shows the 
significant connection in which midazolam>saline or 
midazolam<saline. 

T-test with alpha 0.05 indicates that in 500-700 ms, 4 
connections are significant (connection RPS to LPS, RPS to 
RAS, RAS to LPS and  self RPS connection). Connections from 
RPS to LPS and to RAS and from RAS to LPS in midazolam 
are stronger than saline and self RPS connectivity in saline is 
stronger, as well. 

 

 
Figure 4 show significant connection between midazolam and saline for 
channel 24 (left, anterior, superior (LAS)), 52 (left, posterior, superior (LPS)), 
92 (posterior, superior (RPS) and 124 (right, anterior, superior (RAS)) for time 
between 500-700 ms. Red arrows show connection that in midazolam is 
stronger than saline and Green arrow show connection that in saline are stronger 
than midazolam. 

I. DISCUSSION AND CONCLUSION  
Evidence present that EEG oscillations in ~400 and ~600 ms 

[1] and alpha/theta bands relate to memory process [20], [21, p. 
4] We investigate memory process between brain region 
connection in this rectangle of time frequency segment across 
twelve  cases and significant results were reported.  

Several studies by the use of functional magnetic response 
suggest that parietal and prefrontal cortex related to recollection 
[4], [5] whereas, medial temporal related to familiarity [6]. Other 
researchers from ERP data suggested that ~400 ms related to 
familiarity while ~600 ms related to recollection and they 
viewed more difference between ERP’s peak in LPS at 600 ms 
[1]. In figure 4, self-connection of RPS in saline is stronger than 
midazolam that confirms the involvement of parietal regions in 
recollection. 

Midazolam affects recollection, but not familiarity. Under 
control conditions (saline), accuracy of subjects was correlated 

with the recollection-related, but not the familiarity-related ERP 
component which suggests that recollection dominance in 
driving memory. The opposite pattern observed under 
midazolam administration suggests that when recollection fails, 
subjects may leverage familiarity to compensate [1]. Figure 4 
shows stronger connectivity in midazolam condition and also 
suggests that these information flows relate to familiarity in 
order to compensate recollection. 

Grand-averaged ERPs are more different in LPS at 600 ms 
than other regions and times [1]. Connectivity in figure 4 shows 
information flow to LPS. 

Recollection is a continuous rather than a discrete memory 
process [2]. Strong connectivity in midazolam may be an 
evidence for continuity. 

In this study, we investigated familiarity- and recollection-
related connection by comparing midazolam/saline condition. In 
the future research we will investigate the underlying 
neurophysiological cause of these connections and the source of 
these activations.  
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