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This reported work concerns the design and evaluation of low-density

parity-check codes over a binary symmetric channel in the presence of

a fixed-point min-sum decoder. In this case, using a discretised density

evolution method together with an elegant linear programming

approach, the constraint on the number of quantisation levels is incor-

porated in the optimisation process to derive a proper LDPC code.

Simulation results demonstrate that the proposed method outperforms

existing codes addressed in the literature.

Introduction: Low density parity check (LDPC) codes have received

considerable attention owing to their ability to approach the capacity

of communication channels [1]. There are basically various decoding

methods for LDPC codes, each maintaining a balance among the com-

plexity, speed and error probability. The most powerful decoding

method is the sum-product algorithm (SPA), but it is too complex to

deal with in practice. The min-sum algorithm is a low complexity decod-

ing method with an acceptable performance. The aforementioned

methods operate through passing messages between two kinds of

nodes, namely the variable nodes and the check nodes. Basically, mess-

ages are in the form of log-likelihood ratio (LLR), which actually quan-

tifies the reliability of exchange messages. Most of the previous work

has focused on designing LDPC codes using the so-called density evol-

ution (DE) algorithm on an AWGN channel (e.g. [1–3]).

The main goal of the current work is to design a practical code for

binary systematic channel (BSC) to be simple enough for hardware

implementation, while still having an acceptable performance. More

specifically, we concentrate on a 3 bit min-sum decoder. To this end,

using the discretised DE algorithm for the min-sum decoder together

with an elegant linear programming (LP) approach, a proper degree distri-

bution for the 3 bit min-sum decoder under various code rates are devised.

The results are then compared with the best existing works addressed in

the literature, showing the proposed method outperforms existing works.

Background information: An LDPC code with rate R = K/N is a linear

block code which is fully characterised with a parity-check matrix H of

dimensions M × N, where M ¼ N2 K. The parity check matrix can be

represented as a bipartite Tanner graph, including two kinds of nodes,

termed check nodes (CNs) and variable nodes (VNs). Generally, an

LDPC code is specified by a degree distribution pair as

l(x) =
∑

ilix
i−1 and r(x) =

∑

irix
i−1, where li and ri are the fraction

of edges connected to a VN and CN of degree i, respectively. Thus,

l(x) and r(x) form a PMF and we have l(l) ¼ r(l) ¼ 1. Also, the

code rate is obtained from R = 1−
�1

0
r(x)dx/

�1

0
l(x)dx. DE [1] is a

technique to investigate the performance of LDPC codes under belief

propagation decoding. Chung et al. in [4] suggest a powerful algorithm

called discretised DE (DDE) which discretises the exchange messages

and tracks the evolution of the exchange messages through finding

their PMF. However, the Gaussian assumption cannot be incorporated

in other channels, including the BSC studied here. An EXIT chart

based on message error rate is another technique which can be used to

capture the evolution of exchange messages at each iteration [5]. This

motivated us to make use of descretised min-sum decoding and the

aforementioned EXIT chart to draw a path towards finding a proper

degree distribution pair of l(x) and r(x) for BSC. To this end, we make

use of some elementary EXIT charts to individually capture the exchange

messages to/from variable nodes of the same degree, thereby making it

possible to relate the message error of the exchanged messages of an

irregular code with various node degrees to a linear combination of

error messages associated with variable nodes of the same degree.

Proposed method: According to the min-sum decoding algorithm, vari-

able node-to-check node messages and check node-to-variable node

messages at the ith iteration, i.e. mvc
(i) and mcv

(i), are updated from

m(i)
vc = m0 +

∑

p(v)\c

m(i−1)
cv

m(i)
cv = min

p(c)\v
|m(i−1)

vc | ×
∑

p(c)\v

sign(m(i−1)
vc )

(1)

where m0 is the initial message (LLR) corresponding to the variable

node v, p(v)\c is the set of check nodes connected to the variable

node v excluding node c, and similarly p(c)\v is the set of variable

nodes connected to node c excluding node v.

Note that for 3 bit min-sum decoding, the LLR messages are in the

range of (24, 3), meaning all messages with values more than 3 and

less than 24 are quantised to 3 and 24, respectively. Considering

coded bits with alphabet {0, 1} are mapped to ck [ {1, 21}, the

initial LLR messages received from a binary symmetric channel with

crossover probability p become LLR(ck ) = ln( pr(ck = 1|rk )/( pr(ck =

−1|rk )) = rk ln(1− p/p). In this work, due to the use of min-sum

decoding, we can simply scale the LLR values to 21 and +1 as the

exchange messages in the min-sum decoding are a multiple of initial

messages, thus this scaling does not hinder performance. In other

words, this conversion has no effect on VNs and CNs update equation

and merely decreases the intensity associated with the reliability of

received bits. Now, we express the DDE for the above decoding

algorithm. Without loss of generality, it is assumed an all zero codeword

is transmitted. As is described in [1], the PMF of initial messages (P0) in

BSC with crossover probability p is P0 = pd(x+ ln 1− p/p)+

(1− r)d(x− ln 1− p/p), where d denotes the Dirac delta function.

(The Dirac delta function is zero everywhere except at the origin,

where it is infinite. Moreover, this function should satisfy the constraint
�+1

−1
d(x)dx = 1.) As is argued earlier, due to the scaling of initial mess-

ages, P0 simplifies to P0 = pd(x+ 1) + (1− p)d(x− 1). This PMF is

considered as initial messages sent from VNs to their neighboring

CNs according to (1). To get the PMF of messages coming out of

CNs, we concentrate on pairwise computation of this PMF. To this

end, referring to (1) for the update equation at the CNs and noting

y = mini=1,...,N |Xi| ·
∏

i=1,...,N

sign(Xi) = min(min(min(|X1|, |X2|), |X3|),

. . . , |Xn|) ·
∏

i=1,2

sign(Xi), one can simply divide the computation of PMF

at the output of CNs into n2 1 steps of pairwise computations. On the

other hand, one can readily verify that when Y = min(|Xi|,

|Xj|).
∏

i=1,2

sign(Xi) the PMF of Y, i.e. pY(i) ¼ pr(Y ¼ i), is related to

the probability mass function (PMF) and cumulative density function

(CDF) of Xi and Xj as

PY (i) = pX1
(i)(1− PX2

(i)) + pX2
(i)(1− PX1

(i))

+ pX1
( j)Px2( j) + pX2

( j)PX1
( j) + pX1(i)pX2

(i)

− px1( j)pX2
( j) i . 0

PY (i) = pX1
(i)(1− PX2

( j)) + pX2
(i)(1− PX1

( j))

+ pX1
( j)PX2

(i) + pX2
( j)PX1

(i) i , 0

(2)

where PXj
(i) ¼ pr(Xj ≤ i) for j ¼ 1, 2. Finding the PMF of outgoing

messages from variable nodes is simply computed from the convolution

of the PMF of incoming messages and that of the initial message,

according to the first equation of (1). Finally, the error probability at

the VNs is the sum of the negative tail of output messages from VNs.

Now, we are going to present our proposed algorithm in an attempt to

get proper degree distribution pair l(x) and r(x) at a desired rate. To this

end, for a given r(x) and input crossover probability pin, we get the

output error probability pout at the VNs after one iteration, for a range

of variable node degrees up to dv. Assuming Pout ¼ fi( pin) is the result-

ing output error probability at a variable node with degree i when the

input crossover probability is set to pin, one can form the following

LP problem:

Maximise
∑

i≥2

li/i

subject to li ≥ 0,
∑

i≥2

li = 1, and

∀pin [ [0, p0] :
∑

i≥2

lifi( pin) , pin

(3)

where the objective in (3) aims at maximising the code rate, since we

have R = 1−
�1

0
r(x)/

�1

0
l(x) = 1−

∑

i≥2ri/i
/
∑

i≥2li/i and it is

assumed r(x) is fixed. (Throughout the simulations, it is assumed

check nodes have the same degree, i.e. r(x) ¼ x i. Accordingly, the

best value of i is numerically derived.) The constraint
∑

i≥2li = 1

ensures l(x) forms a PMF. Finally, the constraint
∑

i≥2
li fi( pin) , pin

for pine[0, p0] is to make sure the message error rate decreases at each

iteration.
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Numerical results: We assume l(x) is of degree dv ¼ 10. Accordingly,

for r(x) ¼ x 4, the message error probability of different variable node

degrees for a range of pin starting from 0 to pin
max

¼ 0.075 are depicted

in Fig. 1. Note that the objective is to linearly combine the message

error curves with scaling values 0 ≤ li ≤ 1 (
∑

i=10

i=1

li = 1) such that the

resulting curve resides below the curve pout ¼ pin for pin [ [0, pin
max].

This is achieved through solving (3). Note that increasing pin
max results

in a smaller code rate. Thus, there is a balance between pin
max and the

code rate R. For instance for pin
max

¼ 0.075 the code rate becomes R ¼

0.33 and the resulting l(x) becomes l(x) ¼ 0.85x 2
+ 0.15x 8. Table 1

is provided to give the best pair of l(x) and r(x). Note that the impact

of quantisation levels is reflected in message error curves fi( pin).

Finally, Fig. 2 compares the probability of error against crossover prob-

ability of the proposed codes with some existing LDPC codes addressed

in the literature [6], considering the code length is 2304.
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Fig. 1 Elementary EXIT charts for different variable degrees on BSC when
dc ¼ 5

Table 1: Threshold of the best code ensemble with different rates on
BSC

Codel Code2 Code3 Code4 Code5 Code6

Rate 0.1666 0.25 0.3333 0.4 0.5 0.75

Threshold 0.1273 0.1069 0.07386 0.0611 0.0394 0.00824

(l, r) l(x) = 0.85x2 + 0.15x8

r(x) = x3

l(x) = x2

r(x) = x3

l(x) = 0.85x2 + 0.15x8

r(x) = x4

l(x) = x2

r(x) = x4

l(x) = x2

r(x) = x5

l(x) = 0.81x2 + 0.19x4

r(x) = x12
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Fig. 2 Comparison results

Conclusion: This Letter aimed at finding proper LDPC codes under a

min-sum decoding algorithm with quantised messages. Accordingly,

the impact of quantisation levels is reflected in message error rates

associated with each variable node degree, then it is incorporated in a

LP problem to find a proper degree distribution pair of l(x) and r(x).
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