
IEICE Electronics Express, Vol.8, No.6, 318–324

Non- Sensitive Matrix Pencil
method against mutual
coupling

Ali Azarbar1a), Gholam R Dadashzadeh2, and Hamid R Bakhshi2

1 Islamic Azad University, Parand Branch, Tehran, Iran

2 Faculty of Engineering, Shahed University, Tehran, Iran

a) aliazarbar@ piau.ac.ir

Abstract: A new Matrix Pencil (MP) method including mutual

coupling effects based on a Uniform Linear Array (ULA) is presented.

By setting a group of elements as auxiliary on each side of the ULA, it

can accurately estimate the Direction of Arrival (DOA) using a single

snapshot of data and the effect of mutual coupling can be eliminated by

the inherent mechanism of the proposed method. Theoretical analysis

and simulation results demonstrate the effectiveness of the proposed

algorithm.
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1 Introduction

The study of adaptive antennas in radar and wireless communications has

been an active research topic for several decades. Furthermore, DOA estima-

tion is an important feature of adaptive antenna arrays. MUSIC, ESPRIT [1]

and MP [2, 3, 4] are some popular conventional methods of DOA estimation.

The problem is that these adaptive DOA estimation algorithms are sensi-

tive to array Mutual Coupling (MC) and such an effect needs to be removed in

order to achieve a high performance in an actual system [5]. Many efforts have

been made to reduce or compensate for this effect on Array [5, 6, 7, 8, 9, 10].

Some literatures have referred that using auxiliary elements can reduce

the effect of MC [11, 12]. In this paper a simple solution based on MP

algorithm is presented in order to combat the effect of MC. Because the

matrix pencil method is based on the spatial samples of the data and the

analysis is done on a snapshot-by-snapshot basis, therefore non-stationary

environments can be handled easily [2]. It is proposed that the array elements

on the boundary of ULA should be of auxiliary elements, and only use the

output of the rest array to estimate the DOAs. Through this process, the

MP algorithm can be directly applied for DOA estimation.
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2 Matrix pencil method

Consider a linear adaptive array consisting of N equally spaced elements with

the spacing of d. The array receives M narrow band signals from directions

θ1, θ2, . . . , θM , as shown in Fig. 1. All incident fields propagate perpendicu-

larly to the z-direction.

Fig. 1. ULA with N elements

x = [x(0), x(1), . . . , x(N −1)] is the vector of noise free voltages measured

at the feed point of the antenna elements of the ULA which can be modeled

by a sum of complex exponentials, i.e.,

y(p) = x(p) + n(p) =
M
∑

m=1

Rmzp
m + n(p) , p = 0, 1, . . . , N − 1 (1)

where Rm is the complex amplitude of m th signal, n(p) is the additive noise

and zm = exp(j 2π
λ

d sin θm), m = 1, 2, . . . , M . The objective is to find the best

estimates for θm. Let us consider the matrix Y, which is obtained directly

from x(p).

Y =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

x(0) x(1) . . . x(L − 1)

x(1) x(2) . . . x(L)
...

...
. . .

...

x(N − L) x(N − L + 1) . . . x(N − 1)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(N−L+1)×(L)

(2)

where L is referred to as the pencil parameter. The pencil parameter is very

useful in eliminating some effects of noise in the data. Two matrices of Y1

and Y2 are defined. Y1 is obtained from Y by deleting the last row and Y2

is obtained from Y by deleting the first row. One can also write

Y1 = Z1RZ2 , Y2 = Z1RZ0Z2 (3)

Where

Z1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 1 . . . 1

z1 z2 . . . zM

...
...

...

zN−L−1
1 zN−L−1

2 . . . zN−L−1
M

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(N−L)×M

(4)
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Z2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 z1 . . . zL−1
1

1 z2 . . . zL−1
2

...
...

...

1 zM . . . zL−1
M

⎤

⎥

⎥

⎥

⎥

⎥

⎦

M×L

(5)

Z0 = diag[z1, z2, . . . , zM ] (6)

R = diag[r1, r2, . . . , rM ] (7)

where diag[·] represents a M × M diagonal matrix. Consider the matrix

pencil:

Y2 − λY1 = Z1R{Z0 − λI}Z2 (8)

where I is the M ×M identity matrix. It has been shown in [3], that zm will

be the eigenvalues of:

Y+
1
Y2 − λI (9)

where Y+
1

is the Moore-Penrose pseudo-inverse of Y1. The DOA is obtained

by:

θm = sin−1(Im(log zm)/πd) (10)

In the presence of noise, some pre-filtering needs to be done. For efficient

noise filtering, the parameter L, is chosen between N/3 and N/2 [13]. For

these values of L, the variance in the parameters zm, due to noise, has been

found to be minimum. Noise reduction can be performed via the Singular

Value Decomposition (SVD) [13]. First, Y is decomposed using the SVD,

yielding:

Y = U Σ VH (11)

Here, U and V are unitary matrices, composed of the eigenvectors of

YYH and, YHY, respectively. Σ is the singular values of Y. For simplicity,

it is assumed that the number of signals is known in this paper. After SVD of

data matrix Y is computed, the matrix space is divided into two subspaces,

signal subspace and noise subspace. Here, the matrices Y1 and Y2 are

constructed from the signal subspace matrix. So, the “filtered” matrix Ũ is

constructed. It consists of the first M columns of U and the right-singular

vectors from M + 1 to L, corresponding to the small singular values, are

discarded. Therefore

Y1 = Ũ1 Σ̃ VH , Y2 = Ũ2 Σ̃ VH (12)

where Ũ1 and Ũ2 are obtained by deleting the last and the first row of Ũ,

respectively and Σ̃ is obtained from the M columns of Σ corresponding to

the M dominant singular values. It can be shown [3] that, for the noisy case,

the eigenvalues of the following matrix is the solution for determining of zm:

Ũ+
1
Ũ2 − λI (13)
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3 The proposed algorithm

Most DOA estimation algorithms, including MP assume an ideal, linear ar-

ray of isotropic sensors. Unfortunately, such an ideal sensor is obviously not

realizable. A practical antenna array is composed of the elements of some

physical size. The elements sample and reradiate incident fields, causes MC.

MC severely degrades the accuracy of the DOA estimator [5]. Any imple-

mentation of DOA estimation requires a compensation for the MC. In this

paper, a non-sensitive MP algorithm is presented against MC. In order to

nullify the effect of MC, the array sensors on the boundary of ULA are set to

be auxiliary sensors and only the output of the rest array are used to estimate

the DOAs. Utilizing this process, the MP algorithm can be directly applied

for DOA estimation.

Assuming that C denotes the MC matrix of the ULA, the array’s output

can be expressed as xc = Cx. Where xc = [xc(0), xc(1), . . . , xc(N − 1)]

denotes the received signal vector in the presence of MC. It has been shown

in [14] that the coupling between neighboring elements of a ULA is almost

the same and the magnitude of the coupling parameters decreases very fast

by increasing the sensor spacing. Essentially, the MC coefficient between two

far apart elements can be approximated to zero. Thus, it is often sufficient

to consider the ULA coupling model with only finite non-zero coefficients,

and a banded symmetric Toeplitz matrix can be used as a model for the MC.

So, the MC is considered among P + 1 closest sensors only [12, 15]. The

corresponding N × N matrix C is given by:

C = toeplitz{[c0, c1, . . . , cP , 0, . . . , 0]} 0 < |cP | < . . . < |c1| < c0 = 1 (14)

where the symbol Toeplitz{v} denotes the symmetric Toeplitz matrix con-

structed by the vector v. In order to eliminate the effect of the MC, the

sensors on the boundary of the ULA are set to be auxiliary sensors. Let us

consider the matrix Yc, which is obtained from the output of the middle

N − 2P in ULA:

Yc=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

xc(P−1) xc(P ) . . . xc(L+P−2)

xc(P ) xc(P+1) . . . xc(L+P )
...

...
. . .

...

xc(N−L−P+1) xc(N−L−P+2) . . . xc(N−P )

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(N−L−2P+3)×(L)

(15)

Let us define:

C1=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

cP−1 . . . c1 1 c1 . . . cP−1 0 0 . . . 0

0 cP−1 . . . c1 1 c1 . . . cP−1 0 . . . 0
...

. . .
. . . · · ·

. . .
. . . · · ·

...

0 . . . 0 0 cP−1 . . . c1 1 c1 . . . cP−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(N−L−2P+2)×(N−L)

(16)

Similarly, two matrices of Yc1 and Yc2 are defined. Yc1 and Yc2 are

obtained from Yc by deleting the last row and the first row. One can also
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write

Yc1 = C1Y1 , Yc2 = C1Y2 (17)

Using of (3), the following can be obtained:

Yc1 = C1Z1RZ2 , Yc2 = C1Z1RZ0Z2 (18)

Similarly, the parameters zm may be found as the generalized eigenvalues

of the matrix pair {Yc1;Yc2}.

Y+
c1

Yc2 − λI (19)

Hence, for the noisy case, similar to (13) the eigenvalues of the following

matrix is the solution for determining of zm:

Ũ+
c1

Ũc2 − λI (20)

where Ũc1 and Ũc2 are obtained by deleting the last and the first row of Ũc,

respectively.

4 Numerical simulations

In this section, eleven z-direction parallel identical dipoles are used, which

are equally spaced with the spacing of 0.5λ, where λ is the wavelength. Each

dipole is 0.5λ long and λ/200 in radius. All the elements are loaded with

a terminal load of ZL = 50 Ω. The Method of Moments (MOM) is used

to accurately model the interactions between antenna elements and the MC

between three closest sensors is considered (P = 2). The array receives two

signals from 20◦ and 45◦. The MP algorithm and the proposed algorithm use

only a single snapshot. Table I shows the accuracy of DOA estimation using

the new propose algorithm in the presence of MC.

Table I. Comparing Accuracy of MP and the Proposed Al-

gorithm

a) MP algorithm in the presence of MC b) the proposed algorithm in the presence of MC

Fig. 2.
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In the next example, the noisy data are used. The signal-to-noise ratio

(SNR) was set at 20 dB. The optimum value for the pencil length, L, is chosen

to be 4 for efficient noise filtering. 5000 independent trials are used. Fig. 2

shows histograms of MP and non-sensitive MP estimation in the presence of

MC. As can be seen, using the proposed algorithm, the bias and variance

are less than the conventional MP method and very close to ideal.

5 Conclusion

The problem of DOA estimation is studied for the ULA in the presence

of MC. By setting the sensors on the boundary of the ULA as auxiliary

sensors, the robustness of the proposed algorithm is proved to be against

sensor coupling. Without using MC coefficient calculation, this method can

accurately estimate the DOAs.
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