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Abstract: Distributed power control by beamforming approach in

cognitive radio networks requires a precise analysis of the impacts of

the transmission parameters, tolerable interference and guarantees the

quality of service of both the primary users and secondary users. In

this paper, we propose an improved performance to solve the con-

strained nonlinear multi-object optimization and coherent power as-

signment by beamforming problem based on particle swarm optimiza-

tion. This method is invoked to solve the constrained nonlinear opti-

mization problem in order to reach to maximum capacity. A numerical

study is performed to show the convergence behavior of the proposed

algorithm and the efficiency of the proposed technique with a dynamic

cost function.
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1 Introduction

Due to the accelerated deployment of broad band communication systems and

current fixed frequency allocation schemes spectrum is becoming a major bot-

tleneck. Energy is usually a scarce commodity in wireless ad hoc networks,

as users typically operate on batteries, which in many cases are difficult to

replace or recharge. Thus, many studies featuring recent advances in theory,

design and analysis of long-distance transmission in cognitive wireless radio

networks have been figured out. In general, cognitive wireless radio network

is capable to adapt to the outside existing time varying environment. Ac-

cording to the descriptions in [1], the power control has an effective impact on

the probability of bit error rate. In [2] joint beamforming and power control

using weighted least square algorithm have been performed. A collaborative

beamforming technique was proposed in [3], in which randomly distributed

nodes in a network cluster form an antenna array and beamform data to a far-

away destination without each node exceeding its power constraint. Because

of dynamic feature of the environment the transmit power control requires

a precise study by employing an intelligent algorithm. While, the popula-

tion adaptation for genetic algorithm based cognitive radio and bio-inspired

algorithm for dynamic resource allocation and parameter adaptation have

been studied, in [4, 5] and [6] respectively. The performance of the power

control algorithm and beamforming has been studied in [7, 8, 9]. However,

evolutionary power control by beamforming for cognitive users has not been

previously investigated in non-stationary environments considering pre and

post beamforming and constrained multi-objective problem. In this paper,

we proposed an intelligent method to encounter the challenges of the cogni-

tive radio network. Toward this goal, we formulate an optimization problem,

considering the strict requirement of the protection of licensed users from the

interference caused by the unlicensed or secondary users. Multiple antennas

have been deployed at the cognitive users. Many wireless network standards

provision the use of transmit antenna arrays. Beamforming with antenna

arrays is a well studied technology; it provides space division multiple ac-
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cess which enables significant increases in communication rate. A challenge

with implementing beamforming in ad hoc networks is that the geometry of

the network may change dynamically. Due to the variation of radio chan-

nel characteristics and non-stationary environment, as well as the frequency

spectrum band availability, cognitive radio networks need to support time

varying quality of service requirements. Even though the basic goals of our

work are focused on dynamic constrained power allocation, maximizing the

transmission capacity by pre and post beamforming technique. To achieve

these goals our cognitive radio network employs the swarm intelligence algo-

rithm based on particle swarm optimization algorithm.

2 System model

We consider a system model where the primary network consists of N primary

users (PUs) each having a transceiver system. The primary network trans-

mits and communicates with the constant and specific transmission power.

The secondary network has an ad hoc scenario and work in the same fre-

quency band as the primary system. With deployment of k antennas at each

cognitive transmitter, an efficient transmit beamforming technique is pro-

posed to maximize the sum throughput. The transmit powers of cognitive

users are limited to a maximum value prescribed by primary users. The sys-

tem model of our scenario is illustrated in figure 1. The secondary network

included M secondary users so it has an ad hoc scenario. The secondary

user network structure is based on beamforming at both the transmitter (k

antennas) and the receiver (k antennas) for each secondary user link.

Fig. 1. Conceptual diagram of the system model.

The transmission scheme is characterized by the power allocation, eigen-

values of the transmit covariance matrix and the orientation, eigenvectors of

the transmit covariance matrix.
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3 Problem formulation and solution

All secondary users are working intelligently in an ad hoc mode, A secondary

user or cognitive radio is talking to a receiver using a frequency band li-

censed to the primary radio, the objective here is considered as to maximize

the transmission capacity of the secondary users subject to minimum inter-

ference and maximum quality of service of the primary users with minimum

transmission power for secondary users by beamforming approach. The nth

primary user’s received signal is obtained as follow:

yn = hpun
.xpu +

M
∑

j=1

hpuj
.bj .xj + nn (1)

Where xpu and xj are the transmitted signals of the primary base sta-

tion and secondary users, respectively. The power of associated signals for

j=1,2,3. . . . . . m are as:

E{|nm|2} = E{nmnH
m} = N2

0 , E{|xj |
2} = psu and E{|xpu|

2} = ppu

hpu and Hsu are vectors in size of k × 1 and k × k, the fading path gains

from primary base station to the nth primary users and n denotes zero mean

additive with Gaussian noise with variance N2
0 . Define ppu and psu as the

transmitted power of primary base station and secondary users, respectively.

Also power psu is constrained by a maximum transmit power limit pmax.

Here we present the pre and post beamforming vectors, also we design the

transmit and receive beamvectors. Infact, beamvector associated with each

secondary user is determined by optimizing a certain criterion to reach a

specific purpose such as maximizing the throughput or minimizing the inter-

ference. To compute the beamvectors, we consider just the secondary user

MIMO system. The reason for this is that the interference among primary

user is nulled in SINR equation given in (4). In fact, we propose an algorithm

that can minimize the interference between cognitive users and maximize the

capacity. Specifically, beamvectors are selected such that they satisfy the

interference free condition aH
mhpum

= 0.

Assuming that the secondary users signal are uncorrelated with zero

mean, in downlink mode, we can express the mth secondary user received

signal as:

ym = Hsumm
.sm +

M
∑

j=1, j �=m

Hsujm.sj + hpum
.xpu + nm (2)

The transmit vector of size K × 1 is as follow:

sm = bm.xm, Where bm is the pre-beamforming vector and xm is the trans-

mit sample for m between 1 and M. So we can express the mth secondary

user received signal as:

ym = aH
m.Hsumm

.bm.xm + aH
m.

M
∑

j=1,j �=m

Hsumj
.bj .xj + aH

m.hpum
.xpu + aH

m.nm

(3)
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Where am is the post-beamforming vector at the receive secondary users.

The signal to interference noise ratio at the mth secondary user is as follow:

SINRsu =
E{|aH

m.Hsumm
.bm.xm|2}

E

⎧

⎨

⎩

|aH
m.

M
∑

j=1, j �=m

Hsumj
.bj .xj + aH

m.hpum
.xpu + aH

m.nm|2

⎫

⎬

⎭

(4)

The per-user sum capacity is:

Csu =
M
∑

m=1

log2(1 + SINRsu) =

M
∑

m=1

log2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 +
|aH

m.Hsumm
.bm|2.psu

M
∑

j=1,j �=m

|aH
m.Hsumj

.bj |
2.pj + |aH

m.hpum
|2.ppu + |aH

m|2.N2
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(5)

We define the total interference plus noise covariance matrix at the mth

secondary as:
M
∑

j=1,j �=m

|Hsumj
.bj |

2 + |hpum
|2 + N2

0 (6)

The covariance matrix is defined as below:

Φsu =
M
∑

j=1,j �=m

(Hsumj
.bj .b

H
j .HH

sumj
) + (hpum

.hH
pum

) + (nmnH
m) (7)

Therefore, the SINR at the mth secondary user can be formulated as follows:

The post-beamforming vector can be expressed as follows:

am = Φ−1
su .Hsumm

.bm (8)

This gives us the following maximization of SINR at the mth secondary user:

bH
m.HH

summ
.Φ−1

su .Hsumm
.bm ≤ λmax(j).b

H
m.bm (9)

λmax(j).b
H
m.bm = λmax(j).||bm||2 (10)

The maximum eigenvalue of HH
summ

.Φ−1
su .Hsumm

is defined as λmax(m) and

must be chosen to maximize the capacity of secondary users so:

Csu =
M
∑

m=1

log2(1 + λmax(m).bH
m.bm) (11)

Subject to:
M
∑

j=1

bj .b
H
j =

M
∑

j=1

||bj ||
2 ≤ M.pmax,

||bm||2 ≤ pmax for m = 1, 2, . . . .M

E{|hpuj
.bj |

2} = (hpuj
.bj .b

H
j .hH

puj
) = ||hpuj

.bj ||
2 ≤ Qint

For beamforming, the transmitted power through all the secondary users for

the mth secondary user is proportional to ||bm||2. With considering a penalty
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function, we can convert the constrained optimization process into an uncon-

strained one to meet problem constraints simultaneously. The cost function’s

behavior is dynamic due to non-stationary environment specifications. The

Lagrangian cost function becomes as below we should minimize it as fitness

function:

Min L=−
M
∑

m=1

log2(1+λmax(m).bH
m.bm)+α1.

⎛

⎝

M
∑

j=1

||bj ||
2−M.pmax

⎞

⎠ +

α2.(||bj ||
2−pmax)+α3.(||hpuj

.bj ||
2−Qint)

(12)

Where Qint is the maximum tolerable received power at the primary receiver

and αi = {α1, α2, α3} is the Lagrangian multiplier. To achieve the optimal

performance, Lagrangian multipliers, pre and post beamforming vectors are

adjusted to let the transmit power satisfy all constraints by PSO. A power

control strategy based on dynamic programming is developed subject to the

mentioned secondary and primary networks constraints in the dynamic en-

vironment condition.

4 Numerical results

In simulation model, the problem of resource allocation in the context of cog-

nitive radio networks has been simulated. With the deployment of k antennas

at the cognitive transceivers, an efficient transmit beamforming technique is

proposed. The channels between the transmitters and receivers are assumed

to be Rayleigh faded; the channel gains are independent across sub chan-

nels. Hence, in our PSO algorithm the three Lagrange multipliers will be

set during each iteration to their best values. Path noises are independent

zero-mean complex Gaussian random variable with variance1. The maximum

transmit power for secondary users are assumed to be 3 × 10−3. Interference

from primary users to base station is ignored. Interference constraint of all

primary users is 10−4. It was found that the more repetition of the algorithm

in each iteration has the much accuracy. In figure 2 the behavior of the cost

function is shown.

Fig. 2. Behavior of the cost function.
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By making average global information of the best particles, the accuracy

of the best particles has been raised as shown in figure 2. We can see the

behavior of the cost function and its convergence attributes of PSO, it is

clear that the all constraints are fulfilled. From figure 3, it can be seen that

the transmission capacity arises with increasing the amount of transmission

power; however the power will be limited by our simulations constraints and

primary user interference.

Fig. 3. (a) Transmission capacity of the secondary users

and (b) Convergence of transmission power for

secondary users.

Furthermore, the fitness functions steer the evolution of the PSO in the

correct direction to optimize the given multi-objective functions for the sec-

ondary users with the defined constraints in a non stationary environment.

5 Conclusion

We have proposed a PSO assisted scheme to design of distributed power con-

trol by beamforming in cognitive radio networks. The scenario is formulated

in the ad hoc mode of the secondary network to maximize capacity of sec-

ondary users. However, the minimum transmission power of each cognitive

or secondary user is considered. We have approached to optimal behavior
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which PSO adjust the parameters. The proposed PSO aided algorithm pro-

vides improved performance by using appropriate pre and post beamforming.

Proposed scheme shows the performance of a heuristic improvement in cog-

nitive radio performance in a dynamic environment.
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