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The performance of adaptive algorithms, including direct data domain least square, can be significantly degraded in the presence
of mutual coupling among array elements. In this paper, a new adaptive algorithm was proposed for the fast recovery of the signal
with one snapshot of receiving signals in the presence of mutual coupling, based on the two-dimensional direct data domain least
squares (2-D D3LS) for uniform rectangular array (URA). In this method, inverse mutual coupling matrix was not computed.
Thus, the computation was reduced and the signal recovery was very fast. Taking mutual coupling into account, a method was
derived for estimation of the coupling coefficient which can accurately estimate the coupling coefficient without any auxiliary
sensors. Numerical simulations show that recovery of the desired signal is accurate in the presence of mutual coupling.

1. Introduction

Adaptive antenna arrays are strongly affected by the existence
of mutual coupling (MC) effect between antenna elements;
thus, if the effects of MC are ignored, the system performance
will not be accurate [1, 2]. Research into compensation for
the MC has been mainly based on the idea of using open
circuit voltages, firstly proposed by Gupta and Ksienski [2].
While this method has calculated the mutual impedance,
the presence of other antenna elements has been ignored
and a very simplified current distribution has been assumed
for each antenna elements. Many efforts have been made
to compensate for the MC effect for uniform linear array
(ULA) and uniform circular array (UCA) [2–9]. In [3], an
adaptive algorithm was used to compensate for the MC effect
in a ULA. In [7], the authors introduced a minimum norm
technique MC compensation method, which is based on the
technique in [2] for general arrays with arbitrary elements
and more accurate. In [9], a new method was proposed to
compensate for the MC effect which relied on the calculation
of a new definition of mutual impedance. however, the
authors did not deal with 2-D DOA estimation problem.

On the other hand, many algorithms of the 1-D DOA
estimation have been extended to solve the 2-D cases
[10, 11]; however, a few have considered the effect of
mutual coupling or any other array errors [12]. Besides,
most of these proposed adaptive algorithms are based on
the covariance matrix of the interference. However, these
statistical algorithms suffer from two major drawbacks. First,
they require independent identically-distributed secondary
data in order to estimate the covariance matrix of the
interference. Unfortunately, the statistics of the interference
may fluctuate rapidly over a short distance, limiting the
availability of homogeneous secondary data. The resulting
errors in the covariance matrix reduce the ability to sup-
press the interference. The second drawback is that the
estimation of the covariance matrix requires the storage and
processing of the secondary data. This is computationally
intensive, requiring many calculations in real-time. Recently,
direct data domain algorithms have been proposed to
overcome these drawbacks of statistical techniques [13–16].
The approach is to adaptively minimize the interference
power while maintaining the array gain in the direction of
the signal. The sample support problem is eliminated by
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Figure 1: URA with N × P elements.

avoiding the estimation of a covariance matrix which leads
to enormous savings in the required real-time computations.
The performance of this algorithm is affected by the MC
effect, too [17] and must be compensated.

Unfortunately, the MC matrix tends to change with
time due to environmental factors, so full elimination of
its effect and prediction of its variability are impossible.
Therefore, calibration procedures based upon signal pro-
cessing algorithms are needed to estimate and compensate
for the effect of the MC. The most likely way is to
carry out some measurements for calibration. However, this
procedure has the drawbacks of being time-consuming and
very expensive [18]. Some other researches suggested self-
calibration adaptive algorithms for damping the MC effect
[19–21].

In this paper, a new adaptive algorithm was proposed for
the fast recovery of the signal with one snapshot of receiving
signals in the presence of mutual coupling, based on 2-
D D3LS algorithm for URA. Then, utilizing the 2-D D3LS
algorithm properties, a novel technique for the coupling
coefficients estimation, without using any auxiliary sensors
is presented.

This paper is organized as follows. Section 2, conven-
tional 2-D D3LS algorithm is reviewed. In Section 3, a
fast adaptive algorithm of direct data domain including
mutual coupling effect is presented. In Section 4, a new
technique is presented for compensation of the MC effect.
In Section 5, numerical simulations illustrate these proposed
techniques which can accurately recover the desired signal in
the presence of MC.

2. 2-D Direct Data Domain Algorithm

Consider a URA consisting of N ×P equally spaced elements
with the spacing of dx in rows (in the x direction) and dy in
columns (in the y direction). The array receives a signal from
a known direction (θ0,ϕ0) and M interferers from unknown
directions (θm,ϕm), m = 1, 2, . . . ,M as shown in Figure 1.

The output of the array voltage can be expressed as

x = As + n, (1)

where x, A, s, and n denote the received signal vector,
steering matrix, signal plus jammers vector and additive
white Gaussian noise vector, respectively, defined as:

x = [x11(t), x12(t), . . . , x1N(t), x21(t), . . . ,

x2N (t), . . . , xP1(t), . . . , xPN (t)]T ,

s = [s(t), J1(t), J2(t), . . . , JM(t)]T ,

n = [n11(t),n12(t), . . . ,n1N (t),n21(t), . . . ,

n2N (t), . . . ,nP1(t), . . . ,nPN (t)]T ,

A =
[

a
(
θ0,ϕ0

)
, a
(
θ1,ϕ1

)
, . . . , a

(
θM ,ϕM

)]
,

(2)

where

a
(
θm,ϕm

)
= ay

(
θm,ϕm

)
⊗ ax

(
θm,ϕm

)
, m = 0, 1, 2, . . . ,M,

ax
(
θm,ϕm

)
=

[
1,β
(
θm,ϕm

)
, . . . ,βN−1

(
θm,ϕm

)]T
,

ay

(
θm,ϕm

)
=

[
1,α
(
θm,ϕm

)
, . . . ,αP−1

(
θm,ϕm

)]T
.

(3)

We define β(θm,ϕm) = exp( j2π(dx/λ) sin θm cosϕm) and
α(θm,ϕm) = exp( j2π(dy/λ) sin θm sinϕm) which represent
the phase progression of the signal between one element and
the next in the row and column, respectively. The a(θm,ϕm) is

mth signal’s direction manifold vector, superscript (·)T is the
transpose operation and the symbol⊗ denotes the Kronecker
tensor. Therefore, by suppression of time dependence in the
phasor notation, complex vector of phasor voltage is:

x = s0a
(
θ0,ϕ0

)
+

⎛
⎝

M∑
m=1

Jma
(
θm,ϕm

)
⎞
⎠ + n, (4)

where s0 and Jm are the complex amplitude of the desired
signal and mth interferers, respectively. Next, the first row
from each column is multiplied by β and subtracted from the
second row; then the result of each column is multiplied by α
and subtracted from the next column. This cancels out all the
signals and only noise and interferers are left. The first row of
the matrix in (5) is the constraint to the desired signal which
produces a gain factor of Q. For a conventional adaptive
array system, the K weights wk are used and the relationship
between K with P and N can be chosen as K = K1 · K2,
K1 = (N + 1)/2,K2 = (P + 1)/2 [16]. Matrix equation can be
constructed as:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 b2 · · · bK2−1 bK2

D1 D2 · · · D(K2−1) DK2

D2 D3 · · · DK2 D(K2+1)

...

D(K2−1) DK2 · · · D(P−2) D(P−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

w1

w2

...

wK

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(5)

where

b1 =

[
1 β · · · βK1−1

]
, bi = αi−1

b1, (6)
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Di =

⎡
⎢⎢⎢⎢⎣

(
xi1 − β−1xi2

)
− α−1

(
x(i+1)1 − β−1x(i+1)2

)
· · ·

(
xiK1 − β−1xi(K1+1)

)
− α−1

(
x(i+1)K1 − β−1x(i+1)(K1+1)

)

...
...

(
xi(K1−1) − β−1xiK1

)
− α−1

(
x(i+1)(K1−1) − β−1x(i+1)K1

)
· · ·

(
xi(N−1) − β−1xiN

)
− α−1

(
x(i+1)(N−1) − β−1x(i+1)N

)

⎤
⎥⎥⎥⎥⎦
. (7)

For simplicity β(θ0,ϕ0) = β and α(θ0,ϕ0) = α. Because the
matrix in (5) is not square, the conjugate gradient method
(CGM) is used to solve the matrix equation and to obtain the
weighting solution. It has a good convergence characteristic
and converges to the minimum norm solution, even for the
singular problem [13]. Now, the amplitude of the recovered
signal is as [16]:

s0 =
1

Q

K1K2∑

i=1

wixi+[(i−1)/K1](K1−1), (8)

where w = [w1,w2, . . . ,wK]T is the weights vector in the
absence of coupling and subscript, [·], denotes rounding
down to the integer:

Q =
K1K2∑

i=1

α[(i−1)/K1]βi−1−[(i−1)/K1]K1wi. (9)

3. 2-D Fast Signal Recovery Algorithm
in the Presence of Mutual Coupling

If one assumes that C denotes the mutual coupling matrix
(MCM) of the array, the output will be as:

x = CAs + n, (10)

x = s0Ca
(
θ0,ϕ0

)
+

⎛
⎝

M∑
m=1

JmCa
(
θm,ϕm

)
⎞
⎠ + n. (11)

Svantesson [6] showed that the coupling between the
neighboring elements with the same interspace is almost the
same and the magnitude of the mutual coupling coefficient
between two far apart elements is so small that can be
approximated to zero. Thus, a banded symmetric Toeplitz
matrix can be used as a model for the mutual coupling of
ULA and URA. In this paper, each sensor is assumed to be
affected by the coupling of the 8 sensors around it, which is
shown in Figure 2.

We define MCM as [12]:

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1 C2 0 · · · 0 0 0

C2 C1 C2 · · · 0 0 0

...
. . .

. . .
...

0 0 0 · · · C2 C1 C2

0 0 0 · · · 0 C2 C1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
PN×PN

, (12)

cxy cy cxy

cx cx

cxy cy cxy

Figure 2: Map of mutual coupling.

where C1 and C2 are N×N submatrices of C and can be given
by

C1 = Toeplitz([1, cx, 0, . . . , 0]),

C2 = Toeplitz
([
cy , cxy , 0, . . . , 0

])
.

(13)

Then, the following equation is derived to recover the desired
signal in the presence of mutual coupling (Proof in the
appendix), notwithstanding to compute the inverse matrix of
MC. Hence, this equation could be reduced the computation
of the algorithm

s0 =
1

Qc

K1K2∑

i=1

wci · xi+[(i−1)/K1](K1−1), (14)

where wc = [wc1,wc2, . . . ,wcK ]T is the weights vector when
coupling is known and

Qc =

(
1 + βcx + αcy + αβcxy

)K1K2∑

i=1

α[(i−1)/K1]βi−1−[(i−1)/K1]K1wci

+
(
cx + αcxy

)(K1−1)K2∑
i=1

α[(i−1)/(K1−1)]βi−1−[(i−1)/(K1−1)](K1−1)

× wci+1+[(i−1)/(K1−1)]
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+
(
cy + βcxy

)K1(K2−1)∑

i=1

α[(i−1)/K1]βi−1−[(i−1)/K1]K1wci+K1

+ cxy

(K1−1)(K2−1)∑

i=1

α[(i−1)/(K1−1)]βi−1−[(i−1)/(K1−1)](K1−1)

× wci+K1+1+[(i−1)/(K1−1)].

(15)

The conventional recovering of the signal is as the following:

s0 =
1

Q

(
w

T
[

C
−1

x
]
K

)
, (16)

where [·]K denotes, K rows from the vector. C−1 is
computationally intensive and requires many calculations
in the real-time because evaluation of the inverse requires
an Θ([PN]3)process (here Θ(·) denotes “on the order of”).
Therefore, (14) can be replaced with (16) and the number of
processes would be an Θ(K1K2).

4. Mutual Coupling Compensation

In this section, a new method is presented to estimate the
coupling coefficients from the properties of the 2-D D3LS
algorithm. If the mutual coupling effect is ignored, the
term (xi j − β−1xi( j+1)) − α−1(x(i+1) j − β−1x(i+1)( j+1)), for i =
1, 2, . . . ,P − 1 and j = 1, 2, . . . ,N − 1 will have no signal
components. However, in the presence of MC, for the edge
elements in the URA, the above term can be written as the
following:

(
x11 − β−1x12

)
− α−1

(
x21 − β−1x22

)

= s0α−1β−1cxy + Interferers,

(
x11 − β−1x12

)
= −

(
β−1cx + αβ−1cxy

)
s0 + Interferers,

(
x11 − α−1x21

)
= −

(
α−1cy + α−1βcxy

)
s0 + Interferers,

(17)

As is seen in (17), when there are no interferers, the equations
can be solved. In this paper, it is assumed that dx = dy = d;
so cx = cy . The above equations can be solved in order
to estimate ĉx, ĉy , and ĉxy . Once the system estimates the
coupling coefficient, it needs only one snapshot of the data in
order to obtain an acceptable solution. So, when the coupling
is unknown, first we can estimate mutual coupling from (17)
and then, the fast recovering of the signal is as the following:

ŝ0 =
1

Q̂c

K1K2∑

i=1

wci · xi+[(i−1)/K1](K1−1), (18)

where ŝ0 is the estimation of s0 and Q̂c is Qc with replacement
of cx, cy , cxy with ĉx, ĉy , ĉxy .

5. Numerical Examples

In this section, the capability of MC compensation for
the proposed algorithm will be tested with two examples.

Table 1: Parameters for the desired signal and interferer.

Magnitude Phase θs ϕs

Signal 1–10 V/m 0 75◦ 45◦

Jammer1 1000 V/m 0 43◦ −77◦
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Figure 3: Recovered strength of the desired signal in the absence
and presence of mutual coupling.

Consider a URA with 7 × 7 elements in which the spacing
between each two elements in rows and columns is λ/2. The
array receives the desired signal with one jammer. The signal
to noise ratio is 20 dB and other parameters are listed in
Table 1.

The number of adaptive weights chosen for our simu-
lation will be 16 [16]. Jammer is 60 dB stronger than the
intensity of the desired signal. The magnitude of incident
signal varies from 1 V/m to 10 V/m; but jammer intensities
are constant as given in Table 1. Figure 3 shows the accuracy
of the recovered signal in the presence of MC using new
formulation (18) with comparison to the ideal recovering.
Figure 4 shows the result of the recovered signal in the
presence of MC, using a new proposed algorithm with
comparison to the ideal recovering. The expected linear
relationship is clearly seen and the jammer has been nulled
and signal recovered correctly.

Later on, the performance of the proposed method is
illustrated by the various simulations. The amplitude of
the desired signal accuracy is measured by the root mean-
squared error (RMSE), and L = 100 is the number of Monte
Carlo runs.

Figure 5 shows the RMSE of the estimated coupling
coefficients versus signal-to-noise ratio (SNR). Figure 6
shows the RMSE of the estimated amplitude of the desired
signal, versus SNR. For high SNR, error is very low and in
case there is no noise, new formulation is equal to the ideal.
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Figure 4: Recovered strength of the desired signal with the
proposed algorithm in the presence of mutual coupling.

6. Conclusion

In this paper, the problems of 2-D D3LS algorithms were
studied for recovering of the signal in the presence of mutual
coupling and driving a new formulation to recover the signal
in the presence of MC. Without using the moment of method
and impedance matrix calculation, coupling coefficients
can be automatically estimated and without computing the
inverse matrix, the desired signal can be recovered. Because
we did not use the inverse MC matrix, the amount of
computation would be reduced. Moreover, simulation results
were confirmed when SNR was high and the RMSE of the
method was very close to the ideal D3LS in the absence of
MC.

Appendix

In this appendix, (8) and (14) are proved. Consider a URA
consisting of 5×5 elements. The array receives one signal (s)
from a known direction (θ0,ϕ0) and one interferer ( j) (this
proof can be extended similarly). From (1), let the received
signal at the array in the presence of mutual coupling for each
element be

xnp = snp + jnp , for
(
n = 1, . . . , 5, p = 1, . . . , 5

)
, (A.1)

where snp, jnp are the received signal and jammer at the npth
element, expressed as

s11 = s = gse
jwt , sn(p+1) = βsnp , s(n+1)p = αsnp.

(A.2)
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Figure 5: RMSE of the coupling coefficients versus the SNR.
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Figure 6: RMSE of the recovered amplitude versus the SNR.

By taking mutual coupling into account, from (11) for each
column

first column:

s11 =

(
1 + βcx + αcy + αβcxy

)
s,

s12 = βs11 +
(
cx + αcxy

)
s,

s1p = βs1(p−1), for p = 3, 4, 5,

2nd column:

s21 = αs11 +
(
cy + βcxy

)
s,
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s22 = βs21 +
(
cxy + αcx + α2cxy

)
s,

s2p = βs2(p−1), for p = 3, 4, 5,

3 rd column:

s31 = αs21,

s32 = βs31 + α
(
cxy + αcx + α2cxy

)
s,

s3p = βs3(p−1), for p = 3, 4, 5,

4th column:

s41 = αs31,

s42 = βs41 + α2
(
cxy + αcx + α2cxy

)
s,

s4p = βs4(p−1), for p = 3, 4, 5.

(A.3)

(a) Absence of the Mutual Coupling. If the one row from each
column is multiplied by β and subtracted from the next row
and then the result of each column is multiplied by α and

subtracted from the next column, in the absence of mutual
coupling, this will cancel out all the signals and only noise
and interferer will be left

(
xnp − β−1xn(p+1)

)
− α−1

(
x(n+1)p − β−1x(n+1)(p+1)

)
,

for n = 1, 2, . . . , 4, p = 1, 2, . . . , 4.

(A.4)

The weight vectors should be in a way that produces zero
output; therefore, a reduced rank matrix is formed in which
the weighted sum of all its elements would be zero. In order
to make the matrix not singular, the additional equation
is introduced through the constraint that the same weights
when operating on the signal produced a gain factor Q,
which is the first equation. Therefore, (5) will be

⎡
⎢⎢⎢⎣

b1 b2 b3

D1 D2 D3

D2 D3 D4

⎤
⎥⎥⎥⎦×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

w1

w2

...

w9

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (A.5)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · β2

[(
x11 − β−1x12

)
− α−1

(
x21 − β−1x22

)]
· · ·

[(
x13 − β−1x14

)
− α−1

(
x23 − β−1x24

)]
[(
x12 − β−1x13

)
− α−1

(
x22 − β−1x23

)]
· · ·

[(
x14 − β−1x15

)
− α−1

(
x24 − β−1x25

)]
[(
x21 − β−1x22

)
− α−1

(
x31 − β−1x32

)]
· · ·

[(
x23 − β−1x24

)
− α−1

(
x33 − β−1x34

)]
[(
x22 − β−1x23

)
− α−1

(
x32 − β−1x33

)]
· · ·

[(
x24 − β−1x25

)
− α−1

(
x34 − β−1x35

)]

α · · · αβ2

[(
x21 − β−1x22

)
− α−1

(
x31 − β−1x32

)]
· · ·

[(
x23 − β−1x24

)
− α−1

(
x33 − β−1x34

)]
[(
x22 − β−1x23

)
− α−1

(
x32 − β−1x33

)]
· · ·

[(
x24 − β−1x25

)
− α−1

(
x34 − β−1x35

)]
[(
x31 − β−1x32

)
− α−1

(
x41 − β−1x42

)]
· · ·

[(
x33 − β−1x34

)
− α−1

(
x43 − β−1x44

)]
[(
x32 − β−1x33

)
− α−1

(
x42 − β−1x43

)]
· · ·

[(
x34 − β−1x35

)
− α−1

(
x44 − β−1x45

)]

α2
· · · α2β2

[(
x31 − β−1x32

)
− α−1

(
x41 − β−1x42

)]
· · ·

[(
x33 − β−1x34

)
− α−1

(
x43 − β−1x44

)]
[(
x32 − β−1x33

)
− α−1

(
x42 − β−1x43

)]
· · ·

[(
x34 − β−1x35

)
− α−1

(
x44 − β−1x45

)]
[(
x41 − β−1x42

)
− α−1

(
x51 − β−1x52

)]
· · ·

[(
x43 − β−1x44

)
− α−1

(
x53 − β−1x54

)]
[(
x42 − β−1x43

)
− α−1

(
x52 − β−1x53

)]
· · ·

[(
x44 − β−1x45

)
− α−1

(
x54 − β−1x55

)]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1

w2

...

w9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(A.6)
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Then, performing the matrix multiplication in (A.6) for the
first row of the matrix will give

w1 + βw2 + β2w3 + αw4 + αβw5 + αβ2w6

+ α2w7 + α2βw8 + α2β2w9 = Q.
(A.7)

With performing the matrix multiplication in (A.6) for the
second row of the matrix the following is obtained:

[(
x11 − β−1x12

)
− α−1

(
x21 − β−1x22

)]
w1

+
[(
x12 − β−1x13

)
− α−1

(
x22 − β−1x23

)]
w2

+
[(
x13 − β−1x14

)
− α−1

(
x23 − β−1x24

)]
w3

+
[(
x21 − β−1x22

)
− α−1

(
x31 − β−1x32

)]
w4

+
[(
x22 − β−1x23

)
− α−1

(
x32 − β−1x33

)]
w5

+
[(
x23 − β−1x24

)
− α−1

(
x33 − β−1x34

)]
w6

+
[(
x31 − β−1x32

)
− α−1

(
x41 − β−1x42

)]
w7

+
[(
x32 − β−1x33

)
− α−1

(
x42 − β−1x43

)]
w8

+
[(
x33 − β−1x34

)
− α−1

(
x43 − β−1x44

)]
w9 = 0.

(A.8)

So

(
j11w1 + j12w2 + j13w3 + j21w4 + j22w5

+ j23w6 + j31w7 + j32w8 + j33w9

)

− β−1
(
j12w1 + j13w2 + j14w3 + j22w4 + j23w5

+ j24w6 + j32w7 + j33w8 + j34w9

)

− α−1
(
j21w1 + j22w2 + j23w3 + j31w4 + j32w5

+ j33w6 + j41w7 + j42w8 + j43w9

)

+ α−1β−1
(
j22w1 + j23w2 + j24w3 + j32w4 + j33w5

+ j34w6 + j42w7 + j43w8 + j44w9

)
= 0.

(A.9)

Az α−1 /=0, β−1 /= 0, and wi /=0, (A.9) will be true for all w

if and only if each summation in the parenthesis is equal to
zero. Therefore, the first summation will be used

j11w1 + j12w2 + j13w3 + j21w4 + j22w5

+ j23w6 + j31w7 + j32w8 + j33w9 = 0.
(A.10)

Similarly, the same can be done for the third row of the
matrix (A.5), and so forth. In the absence of mutual coupling
(cx = cy = cxy = 0). From (A.3) and (A.10)

(x11 − s11) · w1 +
(
x12 − βs11

)
· w2 +

(
x13 − β2s11

)
· w3

+ (x21 − αs11) ·w4 +
(
x22 − αβs11

)
· w5

+
(
x23 − αβ2s11

)
· w6 +

(
x31 − α2s11

)
· w7

+
(
x32 − α2βs11

)
· w8 +

(
x33 − α2β2s11

)
· w9 = 0.

(A.11)

Then, (A.11) will be as simple as

(x11w1 + x12w2 + x13w3) + (x21w4 + x22w5 + x23w6)

+ (x31w7 + x32w8 + x33w9)

= s
{(
w1 + βw2 + β2w3

)
+
(
αw4 + αβw5 + αβ2w6

)

+
(
α2w7 + α2βw8 + α2β2w9

)}

=⇒

9∑
i=1

wixi+2[(i−1)/3] = sQ .

(A.12)

Therefore, the desired signal can be recovered by

s =
1

Q

K2K1∑

i=1

wixi+[(i−1)/K1](K1−1). (A.13)

(b) Presence of the Mutual Coupling. When there is mutual
coupling, the matrix (A.5) can be formed and the (A.3) and
(A.10) can be written in a similar way

(x11 − s11) · w1 +
(
x12 − βs11 −

(
cx + αcxy

)
s
)
· w2

+
(
x13 − β2s11 − β

(
cx + αcxy

)
s
)
· w3

+
(
x21 − αs11 −

(
cy + βcxy

)
s
)
· w4

+
(
x22 − αβs11 − β

(
cy + βcxy

)
s

−

(
cxy + αcx + α2cxy

)
s
)
· w5

+
(
x23 − αβ2s11 − β2

(
cy + βcxy

)
s

−β
(
cxy + αcx + α2cxy

)
s
)
· w6

+
(
x21 − α2s11 − α

(
cy + βcxy

)
s
)
· w7

+
(
x22 − α2βs11 − αβ

(
cy + βcxy

)
s

−α
(
cxy + αcx + α2cxy

)
s
)
·w8

+
(
x23 − α2β2s11 − αβ2

(
cy + βcxy

)
s

−αβ
(
cxy + αcx + α2cxy

)
s
)
· w9 = 0.

(A.14)
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Similar to (A.11), the following can be presented

(x11w1 + x12w2 + x13w3) + (x21w4 + x22w5 + x23w6)

+ (x31w7 + x32w8 + x33w9)

=

(
1 + βcx + αcy + αβcxy

)

× s
{(
w1 + βw2 + β2w3

)
+
(
αw4 + αβw5 + αβ2w6

)

+
(
α2w7 + α2βw8 + α2β2w9

)}
+
(
cx + αcxy

)

× s
(
w2 + βw3 + αw5 + αβw6 + α2w8 + α2βw9

)

+
(
cy + βcxy

)
s
(
w4 + βw5 + β2w6 + αw7 + αβw8 + αβ2w9

)

+
(
cxy
)
s
(
w5 + βw6 + αw8 + αβw9

)
.

(A.15)

The recovered signal will be as follows:

=⇒

9∑
i=1

wixi+2[(i−1)/3]

= s

⎡
⎣(1 + βcx + αcy + αβcxy

) 9∑

i=1

α[(i−1)/3]βi−1−3[(i−1)/3]wci

+
(
cx + αcxy

) 6∑
i=1

α[(i−1)/2]βi−1−2[(i−1)/2]wci+1+[(i−1)/2]

+
(
cy + βcxy

) 6∑

i=1

α[(i−1)/3]βi−1−[(i−1)/3]K1wci+3

+cxy

4∑
i=1

α[(i−1)/2]βi−1−2[(i−1)/2]wci+4+[(i−1)/2]

⎤
⎦.

(A.16)
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