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LINEAR SPHERICITY TESTING OF 3-CONNECTED

SINGLE SOURCE DIGRAPHS

A. DOLATI

Communicated by Hossein Hajiabolhassan

Abstract. It has been proved that sphericity testing for digraphs
is an NP-complete problem. Here, we investigate sphericity of 3-
connected single source digraphs. We provide a new combinatorial
characterization of sphericity and give a linear time algorithm for
sphericity testing. Our algorithm tests whether a 3-connected single
source digraph with n vertices is spherical in O(n) time.

1. Introduction

Graph embeddings and their generalization on surfaces have many
applications such as VLSI layout, and graphical representations of a
poset. Upward embedding is an important extention of graph embed-
ding whose definition is as follows an upward embedding of a digraph
(directed graph) D on an embedded surface S is an embedding of its
underlying graph on the surface such that all arcs are represented by
monotonic curves that point to a fixed direction; in some literature, it is
called upward drawing without crossing. Here, we focus on the upward
embedding on the round sphere S = {(x, y, z) : (x2 + y2 + z2) = 1}. On
the one hand, it is a closed, compact, orientable surface in R3, and thus,
has a simple structure. On the other hand, from the upward embedding
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point of view, it provides more freedom than the plane. More precisely,
an undirected graph has an embedding on the round sphere if and only
if it is a planar graph. However, there are digraphs that have upward
embedding on the round sphere but have no upward embedding on the
plane [4, 7]. In general, the study of upward embedding on surfaces
has been motivated by graph embedding, and topological graph theory,
whose literature is extensive (cf., for example, [6] or [11]). But, there
are major differences between graph embedding and upward embedding
of digraphs. For instance, all genus one orientable surfaces such as hor-
izontal and vertical tori are topologically homeomorphic and from the
point of view of graph embedding are equivalent. But Dolati et al. [5]
showed that for upward embedding, horizontal and vertical tori are not
equivalent. That is, a digraph, with an underlying graph with genus
one, may have an upward embedding on the vertical torus but may fail
to have an upward embedding on the horizontal torus. Therefore, the
embedding of surfaces in R3 is important for upward embedding.

Clearly, if a digraph has an upward embedding on a surface, then it
must be acyclic. Therefore, in upward embedding, the directed acyclic
graphs (dags) have been considered. A dag is called spherical if it has
an upward embedding on the round sphere. A spherical dag and its
upward embedding on the round sphere are depicted in Figure 1. Since
the underlying graph of a spherical dag has an embedding on the sphere,
therefore a necessary condition for a dag to be spherical is that its un-
derlying graph to be planar. The sphericity testing decision problem is
as follows.
Instance: Directed acyclic graph (dag) D.
Question: Is D a spherical digraph?
Sphericity testing problem for digraphs is an NP-complete problem [8].
There is an O(n + r2) time algorithm for sphericity testing of a 3-
connected single source digraph (3-connected sT dag), where n and r are
the number of the vertices and the number of the sinks of the digraph,
respectively [4]. Here we present a new characterization of sphericity
of 3-connected sT dags. Then, by this characterization, we develop an
O(n) time algorithm for sphericity testing of a 3-connected sT dag with
n vertices. The remainder of our work is organized as follows. After
some preliminaries in Section 2, some results about assignment graph of
an embedded single source digraph are presented in Section 3. In Sec-
tion 4, we present a new characterization of sphericity of 3-connected
sT dag. Then, we develop a linear time algorithm to determine whether
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Figure 1. A spherical dag and its upward embedding on the

round sphere

a 3-connected sT dag is spherical. In Section 5, we present conclusions
and some related open problems from our point of view, that is worth
to investigate.

2. Preliminaries

In this section, we recall some terminologies and basic results which
we use throughout the paper. Let D be an embedded digraph on the
plane. A source of D is a vertex without incoming edges. A sink of D

is a vertex without outgoing edges. An internal vertex of D has both
incoming and outgoing edges so that all incoming edges are consecutive.
A saddle vertex of D has both incoming and outgoing edges so that
all incoming edges are not consecutive. An embedded digraph is called
bimodal if it has no saddle vertex. An sT dag is an acyclic digraph with
exactly one source. Let f be a face of an embedded digraph D and
b(f) denote the subdigraph of D induced by the edges on its boundary.
We call a vertex on the boundary of f an f-local-sink, if it is a sink in
b(f). We call the vertex v a local sink of an embedded sT dag D, if v

is an f -local-sink for some face f of D. By nf , we mean the number of
f -local-sinks. An ordinary face f of an embedded sT dag has exactly
one f -local-sink. Let D be an embedded sT dag and F , T , and T ′ be
the set of faces, sinks, and local sinks of D, respectively. Obviously, T
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is not empty and T ⊆ T ′. The number of sinks in terms of local sinks is
as follows [4]:

(2.1) |T | =
∑

f∈F

(nf − 1) + 1.

A sink-assignment A is a mapping

A : T −→ F

so that

A−1(f) ⊆ V (b(f)).

We say that A assigns v to f , if v ∈ A−1(f). If, in addition, there

exists a face h of F so that A−1(f) =

{

nf , f = h

nf − 1, f 6= h,
we call A a

consistent sink-assignment. In this case, we call h to be the special face
of A.
A similar embedding of an embedded graph on a surface is an embedding
which preserves the face structure. For example, a similar upward em-
bedding of an embedded dag on the round sphere is depicted in Figure 1.
The following theorem characterizes an embedded sT dag that has sim-
ilar upward embedding on the round sphere.

Theorem 2.1. [4] Let D be a bimodal embedded sT dag. Digraph D

has a similar upward embedding on the round sphere if and only if there

exists a consistent sink-assignment for it.

A characterization of a general embedded digraph that has a similar
upward embedding on the round sphere is as follows.

Theorem 2.2. [7] An embedded digraph has a similar upward embedding

on the round sphere if and only if it has a triangulation with no saddle

vertex.

3. Assignment Graphs of Embedded sT Dags

In this section, we present some results about assignment graph of
an embedded sT dag. This graph was introduced by Bertolazzi et al.
[1]. Let D be a bimodal embedded sT dag. The assignment graph AD

of D is the incidence bipartite graph of the faces and local sinks of D.
More precisely, let F and T ′ be the set of faces and local sinks of D,
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Figure 2. Two embedded sT dags and their assignment graphs

respectively. There is a bijection between a part of vertices of AD and
F ; the vertices of this part are called face-nodes of AD. There is a
bijection between the other part of vertices of AD and T ′; the vertices
of this part are called sink-nodes of AD. A face-node f ′ corresponding
to face f is adjacent to a sink-node t′ if and only if t′ is corresponding
to an f -local-sink. Two embedded sT dags and their assignment graphs
are depicted in Figure 2. We observe that the assignment graphs of
the mentioned embedded sT dags are acyclic. In fact, this is a general
property of assignment graphs of the embedded sT dags. It is stated in
the following theorem.

Theorem 3.1. The assignment graph of an embedded sT dag is a forest.

Proof. Let D be an embedded sT dag. Suppose, for the sake of a
contradiction, that there is a cycle C in AD. Let S be the sink-nodes of
C. One can easily see that S is a separation set of D. Therefore, D \ S

has at least two components. Now, since D is an acyclic digraph, D \ S

is an acyclic digraph too and each component of D \ S has at least one
source. Note that the edges incident to each vertex of S point outward
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from the components of D \ S, and thus D has at least 1two sources.
This is a contradiction. �

Now, we can prove the following result.

Corollary 3.2. If f and g are two distinct faces of an embedded sT dag

D, then the cardinality of the intersection of the sets f-local-sinks and

g-local-sinks is at most 1.

Proof. Let f and g be an arbitrary pair faces of D. Suppose that t1
and t2 are two f -local-sinks and also two g-local-sinks. In this case, the
subgraph of AD induced by the face-nodes corresponding to f and g

and sink-nodes corresponding to t1 and t2 is a cycle of AD. This is a
contradiction. �

The number of sink-nodes of a tree of AD in terms of the number
of local sinks of faces corresponding to its face-nodes is stated in the
following lemma.

Lemma 3.3. Let D be an embedded sT dag and AD be its assignment

graph. The number of sink-nodes of a tree τ of AD is equal to
∑

f∈F (τ)

(nf − 1) + 1,

where F (τ) is the set of faces corresponding to the face-nodes of τ .

Proof. Suppose that |F (τ)| = r and s denote the number of sink-nodes
of τ . The number of the edges of τ is trivially equal to

∑

f∈F (τ) nf .

Therefore,

r + s − 1 =
∑

f∈F (τ)

nf .

That is,

s =
∑

f∈F (τ)

(nf − 1) + 1.

�

We observe that the assignment graph of the embedded sT dag de-
picted in Figure 3, is a tree, i.e., it is connected. After some definitions
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we have a theorem by which one can characterize the connected assign-
ment graphs. Let f be a face of D. It is called an extremal face, if all
f -local-sinks are sinks of D. Let τ be a tree of the assignment graph of
D. If all sink-nodes of τ are sinks of D, then we call τ an extremal tree.
If exactly one sink-node of τ is an internal vertex of D, then we call τ an
ordinary tree. If more than one sink-node of τ are not sinks of D,then
we call it a non-ordinary tree.

Theorem 3.4. Let D be an embedded sT dag. AD is an extremal tree

if and only if all faces of D are extremal.

Proof. If all faces of D are extremal, then all the trees of AD are
trivially extremal. Suppose, for the sake of a contradiction, that AD

has k (for some integer k ≥ 2) extremal trees τ1, . . . , τk. Let si, F (τi)
(i = 1, . . . , k), F (D), and T be the number of sink-nodes of τi, the set
of faces corresponding to the face-nodes of τi, the set faces of D, and
the set sinks of D, respectively. According to Lemma 3.3, the number
of sinks is equal to

|T | =

k
∑

i=1

si =

k
∑

i=1

(
∑

f∈F (τi)

(nf − 1) + 1),

or

|T | =
∑

f∈F (D)

(nf − 1) + k.

Since k ≥ 2, according to (2.1), this is a contradiction.
Conversely, since AD is an extremal tree, all the local sinks on the

boundary of the faces must be sinks of D. This means that all the faces
of D are extremal. �

4. Characterization and Testing

In this section, we shall introduce a new characterization by which
one can characterize whether an embedded sT dag has a similar upward
embedding on the round sphere. Then, we shall develop an optimal
algorithm for the problem.

In the following theorem, we show that the face-node corresponding
to the special face of any consistent assignment is a node of a extremal
tree of AD.



298 Dolati

Figure 3. An embedded sT dags whose assignment graph is an

extremal tree

Theorem 4.1. Let D be an embedded sT dag that has a similar upward

embedding on the round sphere. If A is a consistent sink-assignment of

D and h is the special face of A, then the face-node corresponding to the

face h is a node of an extremal tree.

Proof. Let τ and F (τ) be the tree containing the face-node correspond-
ing to h and the set of faces corresponding to its face-nodes, respectively.
It is sufficient to show that all members of F (τ) are extremal. Since
A is a consistent sink assignment of D and h is its special face, thus

|A−1(h)| = nh, ∀f ∈ F (τ) \ {h}, |A−1(f)| = nf − 1.

which means that at least
∑

f∈F (τ)\{h}

(nf − 1) + nh =
∑

f∈F (τ)

(nf − 1) + 1

sinks of D are on the boundary of the faces belonging to F (τ). In other
words, τ has at least

∑

f∈F (τ)(nf − 1) + 1 sink-nodes corresponding to

sinks of D. Thus, according to Lemma 3.3, every sink-nodes is a sink of
D and τ is an extremal tree of AD. �

Using the following theorem, we can characterize whether an embed-
ded sT dag has a similar upward embedding on the round sphere. This
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Figure 4. Two embedded sT dags and their consistent sink as-

signment according to their assignment graphs depicted in Figure

2 and Figure 3. The DFS algorithms in the proof of Theorem 4.2

start from the face-nodes corresponding to the shaded faces.

is a new characterization and it can be used to obtain a linear time al-
gorithm to test if an embedded sT dag has a similar upward embedding
on the round sphere.

Theorem 4.2. Let D be a bimodal embedded sT dag and AD be its

assignment graph. D has a similar upward embedding on the round

sphere if and only if AD has exactly one extremal tree and does not have

non-ordinary trees.

Proof. Proof of necessity: Suppose that D has a similar upward em-
bedding on the round sphere. According to Theorem 2.1 there is a con-
sistent sink-assignment for D. Let A be a consistent sink-assignment
for D. Since for every face f of D we have A−1(f) ≥ nf − 1, thus there
must be at least nf − 1 sinks on the boundary of f . On the other hand,
according to Lemma 3.3, every tree τ of AD has

∑

f∈F (τ)(nf−1)+1 sink-

nodes. Therefore, at most one of these sink-node is an internal vertex
of D and consequently τ is an extremal or ordinary tree. By Theorem
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4.1, AD has at least one extremal tree. Therefore, it is sufficient to show
that AD has no more than one extremal tree. Suppose for the sake of a
contradiction that, it has two extremal trees τ1 and τ2. In this case, the
number of sinks of D

|T | ≥
∑

τ∈{τ1,τ2}

(
∑

f∈F (τ)

(nf−1)+1)+
∑

τ is a tree of AD and τ /∈{τ1,τ2}

∑

f∈F (τ)

(nf−1).

Or equivalently

|T | ≥
∑

f∈F (D)

(nf − 1) + 2.

According to (2.1) it is a contradiction. That means AD has just one
extremal tree and all its other trees (if they exist) are ordinary trees.

Proof of sufficiency: Let AD consists of an extremal tree τ and k

ordinary trees τ1, . . . , τk( for some k ≥ 0). We want to show that D

has a similar upward embedding on the round sphere. To this end, by
using AD we obtain a consistent sink-assignment for D. Let f be the
corresponding face of an arbitrary face-node of τ . By assumption, the
local sinks on its boundary are sinks of D. We assign all of them to f .
Other face-nodes of τ are visited by doing a depth-first search (DFS),
starting from the face-node corresponding to f . Once a face-node is
visited in the DFS, we assign all unassigned sinks on the boundary of
the corresponding face to itself. Consequently, we assign nf sinks to
f and nh − 1 sinks to every h ∈ F (τ) \ {f}. Now, we consider trees
τ1, . . . , τk (if they exist). For i = 1, . . . , k, let ti, be the sink-node of τi

that is an internal vertex of D. Let fi be an arbitrary face for which ti
is an fi-local-sink. The other fi-local-sinks must trivially be sinks of D,
and we assign them to fi. Here, again we do a DFS by starting at the
face-node corresponding to fi. Once a face-node is visited in the DFS we
assign all unassigned sinks on the boundary of the corresponding face to
itself. One can easily see that we assign nh − 1 sinks to every h ∈ F (τi),
for i = 1, . . . , k. This means that by the above argument, we construct
a consistent sink-assignment for D. Therefore, D has a similar upward
embedding on the round sphere. �

In the following example, we use the proposed algorithm in the proof
of Theorem 4.2 for construction of consistent sink-assignments for em-
bedded digraphs in Figure 4.
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Example 4.3. The consistent sink assignment for digraph depicted in

Figure 4-a, whose assignment graph is depicted in Figure 3, is obtained

by doing a DFS traverse on its assignment graph starting at the face-node

corresponding to the shaded face f . The consistent sink assignment for

digraph, depicted in Figure 4-b, whose assignment graph is depicted in

Figure 2-b is obtained by doing DFS traverses on its assignment graph,

starting at the face-node corresponding to the shaded face f for the ex-

tremal tree, and the face-nodes corresponding to the shaded faces f1 and

f2, for the ordinary trees.

Example 4.4. The embedded sT dag, depicted in Figure 2-a, has no

similar upward embedding on the round sphere, because its assignment

graph contains a non-ordinary tree τ . Nevertheless, the digraph depicted

in Figure 2-b has an assignment graph consisting of one extremal tree

τ and two ordinary trees. Therefore, it has a similar upward embedding

on the round sphere. The assignment graph of the embedded sT dag,

depicted in Figure 3, consists of only one extremal tree. Therefore, it

also has a similar upward embedding on the round sphere.

Test and complexity. Now, by the characterization in Theorem 4.2,
we are ready to test the sphericity of embedded sT dags in an optimal
way.

Algorithm 1. Sphericity testing.

Input: An embedded sT dag D.

Output: Yes or No depending on whether D has a similar upward

embedding on the round sphere.

Step 1: Test if D is bimodal. If not return No.

Step 2: Construct assignment graph AD.

Step 3: Check conditions of Theorem 4.2. If these conditions are not

met, then return No else return Yes.

By Algorithm Sphericity testing, one can test whether an embedded
sT dag has a similar upward embedding on the round sphere. The
complexity of each step of the algorithm is obviously, O(n). Therefore,
the complexity of the algorithm is, O(n). Note that a 3-connected planar
graph has exactly one embedding on the plane [12]. On the other hand,
there are linear time algorithms for testing planarity of a graph and
constructing a planar embedding if one exists [2, 3, 9, 10, 13]. Therefore,
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the unique embedding, of a planar 3-connected graph can be constructed
in a linear time. By these facts and Algorithm 1, we have the following
theorem.

Theorem 4.5. Given a three connected sT dag D, we can decide whether

it is spherical in O(n) time, where n is the number of the vertices of D.

5. Conclusion and Some Open Problems

We focused on the sphericity of embedded sT dags. We presented
some results about the assignment graph of an embedded sT dag. Then,
presented a new characterization for embedded sT dag having a similar
upward embedding on the round sphere. Finally, by this characteriza-
tion, we developed a linear algorithm for testing whether an embedded
sT dag had a similar upward embedding on the round sphere. The
following are some open problems:

(1) Characterize all 3-connected digraphs which admit upward em-
bedding on round sphere.

(2) Characterize all sT dag which admit upward embedding on round
sphere.

(3) Is it possible to find a polynomial time algorithm for upward em-
bedding testing of a given 3-connected digraph on round sphere?

(4) Is it possible to find a polynomial time algorithm for upward
embedding testing of a given sT dag on round sphere?
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