
 

 

Abstract— In some statistical process control applications, 

quality of a process or product can be characterized by a 

relationship between a response and one or more independent 

variables, which is typically referred to a profile. In this paper, 

polynomial profiles are considered where there is a first order 

autoregressive relation between the error terms in each profile. A 

remedial measure is first proposed to eliminate the effect of 

autocorrelation in phase-ІІ monitoring of autocorrelated profiles. 

Then, a control chart based on the generalized linear test (GLT) 

is developed to monitor coefficients of polynomial profiles along 

with an R-chart to monitor the error variance, the combination 

of which is called GLT/R chart. Then, the results obtained from 

GLT/R charts are compared to the prevalent method like 

multivariate T2 control chart. Average run length criterion is 

employed to compare the performances. 
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I. INTRODUCTION 

Sometimes, a relationship between a response and one or 

more independent variables, referred to a profile, can 

characterize the quality of a process or a product adequately. 

Many researchers including Stover and Brill [1], Kang and 

Albin [2], Mahmoud and Woodall [3], Woodall et al. [4], 

Wang and Tsung [5], and Woodall [6] discussed practical 

applications of profiles. Many authors, including Kang and 

Albin [2], Kim et al. [7], Mahmoud et al. [8], Mahmoud and 

Woodall [3], Mestek et al. [9], and Stover and Brill [1] 

studied Phase-І monitoring of simple linear profiles. The 

purpose of the Phase-І analysis is to evaluate the stability of 

a process and to estimate process parameters. Some authors 

including Gupta et al. [10], Kang and Albin [2], Kim et al. 

[7], Noorossana et al. [11], Zou et al. [12], Niaki et al. [13],  

and Saghaei et al. [14] investigated Phase-ІІ monitoring of 

simple linear profiles. In phase-ІІ analysis, one is interested 

in detecting shifts in the process parameters as soon as 

possible. Sometimes more complicated models are needed to 

represent profiles. Kazemzadeh et al. [15] extended three 

Phase-І methods in polynomial profile monitoring.  Zou et 

al. [16] proposed a multivariate exponentially weighted 

moving average (MEWMA) control chart for monitoring 

general linear profiles in Phase ІІ. Kazemzadeh et al. [17] 

 
 

transformed polynomial regression to an orthogonal 

polynomial regression model and proposed a method based 

on using exponentially weighted moving average (EWMA) 

control charts to monitor the parameters of orthogonal 

polynomial model in Phase ІІ. 
In all previous research works, it is assumed that the error 

terms in the model are independently and identically 

distributed normal random variables. However, in some cases 

these assumptions are violated. Noorossana et al. [18] 

investigated the effect of non-normality of the error terms on 

the performances of the EWMA/R method proposed by Kang 

and Albin [2]. Jensen et al. [19] developed a linear mixed 

model (LMM) to account for the autocorrelation within a 

linear profile. Jensen and Brich [20] showed that use of mixed 

models have significant advantages when there is 

autocorrelation within nonlinear regression models. 

Noorossana et al. [21] considered linear profiles and modeled 

autocorrelation between profiles as a first order autoregressive 

AR(1) process. Kazemzadeh et al. [22] considered polynomial 

profiles in AR(1) process in the presence of between profile 

autocorrelation. Soleimani et al. [23] investigated the effect of 

within profile autocorrelation in simple linear profiles and 

proposed a transformation technique to eliminate the effect of 

autocorrelation.  

In this paper, the research work of Soleimani et al. [23] is first 

extended to include polynomial profiles. In other words, 

processes are considered in which the relationship between a 

response and a single explanatory variable is defined by a kth 

order polynomial regression, where it is assumed that the error 

terms within each profile are correlated based on a first order 

autoregressive model. Moreover, we assume that there is no 

correlation between polynomial profiles. An application of 

this problem is discussed by Amiri et al. [24] in which the 

quality of an automobile engine is characterized by a second 

order polynomial profile between the torque and speed in rpm 

with an AR(1) autocorrelation structure between error terms 

within each profile. 

On the other hand, Niaki et al. [13] employed the concept of 

the linear regression and the generalized linear test to design a 

control chart for profiles monitoring. Moreover, in order to 

detect shifts in the error variance an R chart was 

simultaneously applied. In this paper, the work of Niaki et al. 

[13] is extended for polynomial profiles. The performance of 

this method for monitoring polynomial regression profiles is 

compared with the prevalent multivariate 
2T method through 

simulation studies via average run length (ARL) criterion.  
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 The structure of the remainder of the paper is as follows: In 

Section II, the problem formulation as well as assumptions are 

given. The transformation technique and application of the 

general linear test to monitor polynomial profiles are 

presented in Section III. Traditional multivariate 
2T control 

chart adopted for monitoring polynomial profiles is presented 

in Section IV. In Section V, the effect of autocorrelation on 

the performance of GLT/R control chart is shown. Then the 

performances of the GLT/R and 
2T methods are compared in 

terms of ARL criterion. Concluding remarks are given in 

Section VI. 

II. MODELING AND ASSUMPTIONS 

Having a single explanatory variable x and assuming jth 

sample is being collected over time, the observations are 
2 1 2k

i i i ij( x , x ,..., x , y ) ; i , ,...n . In the other words, 

the subscript i shows the ith observation within each profile, 

and subscript j shows the jth profile collected over time. When 

the process is in-control, the autocorrelated polynomial profile 

is modeled as:  
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where ijy is the response variable of ith observation in jth 

profile and ij 's are the correlated error terms, ija 's are 

independent and identically distributed normal random 

variables with mean zero and variance
2 , kAAA ,...,, 10 are 

model parameters, and 1 1    is the autocorrelation 

coefficient. Moreover, it is assumed x -values are fixed and 

constant from profile to profile. In this paper, we consider a 

Phase-ІІ monitoring case, in which the in-control values of the 

parameters kAAA ,...,, 10 and 
2 are assumed known.  

In the next section, the transformation technique proposed by 

Soleimani et al. [23] is first employed to eliminate the 

autocorrelation effect. Then, the GLT/R method by Niaki et 

al. [13] is utilized to monitor polynomial profiles.  

III. PROPOSED METHOD 

A.  Extension of Transformation Technique 

In order to eliminate the existing within-profile 

autocorrelation of polynomial profiles the transformation 

technique proposed by Soleimani et al. [23] is used in the first 

step of the proposed methods. In this technique, all 

observations on the response variable are transformed via the 

following equation: 

1ij ij ( i ) jY Y Y .                                                   (2) 

 If observations ijY  and jiY )1(   in Eq. (2) are replaced by 

their equivalents on regression model (1), a polynomial 

regression model with independent error terms is obtained as  
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That results in 

2
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k

ij i i k i ijY A A X A X ... A X a                     (4) 

where 
1ij i j ( i ) jY Y Y    , 

2 2 2

1 1 1

k k k

i i i i i i i i iX X X , X X X ,..., X X X           
, and

0 0 1 1 2 21 k kA A ( ) , A A , A A , ... , A A        . 

 In Eq. (4), ija s are independent random variables with 

mean zero and variance 
2 . In this paper, we consider 

Phase-ІІ monitoring of polynomial profiles where   is 

assumed a known parameter.  

B. GLT/R 

After eliminating the effect of autocorrelation within 

polynomial profiles, GLT/R method proposed by Niaki et al. 

[13] in simple linear profile monitoring is utilized here for 

monitoring polynomial profiles. 

This method is the general linear test to monitor the 

coefficients of polynomial regression model when applied to 

profile monitoring. In Phase II of the proposed procedure, a 

sample size n is collected from process periodically at time j 

and the regression parameters ),...,,,( 210 kAAAA are 

estimated by the least square method. In order to monitor 

polynomial profile coefficients, F-statistic is employed by 

following equation: 
*
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The coefficients of polynomial profiles are in-control when 

 
jFjFjR dfdfdfj FF ;;1

*

  . In other words, when 

 
jFjFjR dfdfdfj FF ;;1

*

  , all of the polynomial coefficients 

simultaneously are in-control.  

Note that by the aforementioned approach only the mean of 

process is monitored. In order to detect a shift in the error 

variance, an R chart may be used simultaneously. The R 

control chart statistic denoted by jR  is calculated by 

j ij ijR m ax ( e ) m in ( e )  , where the residuals of the 

transformed model  
ije is obtained as 
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0 1 2 1 2k

ij ij i i k ie y ( A AX A X ... A X ) ; i , ,...,n                      (6)                                              

The lower and upper control limits for R control chart is 

   2 3 2 3andLCL d Ld UCL d Ld             (7)                                                             

respectively, where )0(L is a constant chosen to give a 

specified in-control ARL. The values of 2d  and 3d are 

constants that depend on the sample size n. 

 

IV. TRADITIONAL MULTIVARIATE T2
 METHOD 

In this Section, the proposed transformation technique is 

applied to the well-known multivariate T2 method. 

This method is a modified version of the T2 control chart 

proposed by Kang and Albin [2]. To reduce the effect of 

autocorrelation that exists between error terms within profiles, 

all the parameters, ),...,,,( 210 kAAAA , of the original 

model are replaced by their transformed ones. This method is 

used when the number of parameters )(k  is not very large. 

The modified 
2T statistic is obtained by Eq. (8) as follows: 

   
   

2 1

1 2 1 2

1 2 1 2

T

j oj j j kj oj j j kj

oj j j kj oj j j kj

ˆ ˆ ˆ ˆT A ,A ,A ,...,A A ,A ,A ,...,A

ˆ ˆ ˆ ˆA ,A ,A ,...,A A ,A ,A ,...,A

           
         

   (8) 

where 

2 1T[ ( X X ) ]                                                 (9) 

 
TABLE І 

The effect of autocorrelation coefficient on in-control ARL performance of  GLT/R control chart under different shifts in intercept, 

second parameter, third parameter and error standard deviation without utilizing the proposed transformation method 

  (Shift in the intercept) 

   

Autocorrelation  

coefficients 

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 200.1 197.6 185.2 159.2 124.7 95.6 69.2 48.5 34.7 24.3 18.0 

0.1  181.3 178.8 150.6 123.9 95.9 72.5 51.2 36.5 26.3 19.1 14.1 

0.3 81.3 75.4 66.7 53.1 41.3 32.9 23.8 18.3 13.7 10.7 8.6 

0.5 24.5 23.9 21.9 18.6 15.7 13.3 11.1 9.1 7.4 6.2 5.1 

0.7 7.2 7.1 6.7 6.4 5.8 5.5 4.9 4.5 4.1 3.6 3.3 

0.9 2.6 2.5 2.6 2.5 2.5 2.3 2.3 2.2 2.1 2.1 2.0 

  (Shift in the second parameter) 

    

Autocorrelation  

coefficients 

  0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 

0 200  195.4 191.8 190.9 170.2 149.3 130.4 107.6 89.3 71.5 57.9 

0.1 182.3 178.2 171.2 161.1 140.4 121.1 101.2 83.7 67.0 53.8 43.6 

0.3 79.8 80.8 74.2 68.2 60.1 52.4 45.1 38.6 31.9 26.9 22.1 

0.5 24.6 24.3 23.6 22.4 20.6 18.6 16.8 14.9 13.1 11.7 10.2 

0.7 7.1 7.0 7.0 6.7 6.5 6.3 5.8 5.5 5.2 4.9 4.5 

0.9 2.6  2.6 2.5 2.4 2.4 2.3 2.3 2.2 2.2 2.1 2.1 

  (shift in the third parameter) 

   

Autocorrelation  

coefficients  

  0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

0  200.5 199.2 188.4 166.1 135.7 108.3 79.9 58.1 41.5 30.5 21.9 

0.1 185.1 177.2 156.8 136.3 111.1 83.2 60.9 44.1 32.2 23.4 17.3 

0.3 81.5 78.6 69.1 58.7 48.1 37.4 29.3 22.7 17.1 13.2 10.5 

0.5 24.6 24.4 22.5 20.1 17.3 14.8 12.7 10.5 8.7 7.2 5.9 

0.7 7.2 7.1 6.9 6.5 6.2 5.6 5.2 4.6 4.2 3.7 3.3 

0.9 2.6 2.6 2.5 2.5 2.4 2.4 2.3 2.2 2.1 2.1 1.9 

  (shift in the standard deviation) 

   

Autocorrelation  

coefficients  

  1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 

0 200.7 95.3 40.0 19.5 10.7 4.7 3.5 2.8 2.3 2.3 2.1 

0.1 186.7 108.1 50.2 24.3 13.2 8.1 5.6 4.1 3.2 2.5 2.1 

0.3 80.1 71.4 47.8 28.2 16.6 10.4 6.9 5.1 3.8 3.1 2.5 

0.5 24.0 23.7 22.2 18.1 13.8 9.8 7.4 5.4 4.3 3.4 2.8 

0.7 7.1 7.1 6.9 6.7 6.2 5.5 4.8 4.1 3.5 3.1 2.6 

0.9 2.7 2.6 2.6 2.6 2.5 2.5 2.3 2.3 2.1 2.1 1.9 

 

 

 

 

V.  SIMULATION EXPERIMENTS  

 In this section, we first evaluate the performance of the 

GLT/R control chart for monitoring polynomial profiles 

when within-profile autocorrelation presents and the 

proposed transformation method is not utilized. The 

following example is used to study the performance:  
2

1

3 2ij i i ij

ij ( i ) j ij

y x x

a
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Where ija  follows a normal distribution with mean zero 

and variance one and x-values are 

1 2 3 4 5 6 7 8 9 and 10, , , , , , , , , .  In the simulation 

experiments, the effect of different autocorrelation 

coefficients   on the performance of GLT/R control chart  

 

TABLE ІІ 
Out-of-control ARL comparisons under shifts from 0A to 0A  with 0 1.   and 0 9.   

0 1.       

Methods 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

 2T  200 173.7 122.3 76.2 44.6 26.9 16.6 10.4 7.8 4.7  3.5 

GLT/R 199.4 162.3 102.4 56.8 29.7 16.2 9.5 6.1 3.8 2.8 2.2 

 0 9.     

Methods 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

 2T  200.1 198.4 196.7 196.2 195.2 193.0 187.3 183.0 180.6 172.2 169.8 

GLT/R 200.5 192.2 199.2 200.5 191.4 191.7 186.8 173.7 163.6 160.8 157.6 

 

TABLE ІІІ 

Out-of-control ARL comparisons under shifts from 2A to 2A  with 0 1.  and 0 9.   

0 1.       

Methods 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

 2T   199.2 174.6 127.5 80.1 49.7 29.4 18.5 11.9 7.7 5.4 3.9 

GLT/R 198.9 28.1 3.7 1.3 1.1 1.0 1.0 1.0 1.0 1.0 1.0 

 0 9.     

Methods 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

 2T   200.4 191.6 167.8 138.4 109.7 84.2 63.6 47.6 35.7 27.4  20.3  

GLT/R 197.4 155.8 71.9 33.5 16.5 8.8 4.9 3.1 2.1 1.6 1.3 

 

TABLE ІV 
 

Out-of-control ARL comparisons under standard deviation shifts from  to   with 0 1.   and 0 9.   

0 1.       

Methods 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 

 2T  197.4  72.1 32.4 17.9 11.5 8.0 5.9 4.6 3.7 3.2 2.7 

GLT/R 196.6 175.2 125.2 76.1 41.1 23.7 14.2 9.3 6.7 4.9 3.9 

 0 9.     

Methods 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 

 2T   200.6 70.4 32.8 18.1 11.3 7.9 5.8 4.6 3.7 3.2 2.7 

GLT/R 198.3 174.2 125.5 75.3 41.2 23.6 14.4 9.4 6.7 5.1 3.9 

 

under different shifts in the intercept  , the second 

parameter  , the third parameter  , and error standard 

deviation   using in-control average run length criterion is 

studied in 10,000 simulation runs. The results are 

summarized in Table I. In this table,  ,, and   are 

measured in multiples of  and the in-control average run 

length is considered 200. As shown in Table I, when the 

transformation technique is not used, the in-control ARLs of 

GLT/R control chart decrease in the presence of 

autocorrelation within profiles, leading to its poor 

performance. Moreover, this effect is more considerable 

when the autocorrelation coefficient gets bigger. When the 

proposed transformation method is used, the performances 

of 2T and GLT/R are compared employing the same 

example introduced earlier in Eq. (10). Two autocorrelation 

coefficients 0 1.  (weak autocorrelation) and 0 9.   

(strong autocorrelation) are considered where all control-

charting methods are designed to have an overall in-control 

ARL of 200. To achieve this, in the GLT/R control chart, 

we set the value of L equal to 3.8 for both 0 1.   and 
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0 9.   autocorrelation coefficients. For 2T  chart UCL is 

set 12.84. Finally, For GLT/R chart UCL is set 12.916. We 

used 10,000 simulation runs to study out-of-control ARL 

under different shifts in the intercept, the second parameter, 

the third parameter, and the error standard deviation. The 

results are summarized in Tables II through IV. The results 

in Table II show that under the intercept shift from 

0A to 0A  in both weak and strong autocorrelations 

( 0 1.   and 0 9.  ), the GLT/R chart uniformly 

performs better than the other one. Further, it can be seen 

that the out-of-control ARLs for the strong autocorrelation 

case are larger than the ones in the weak autocorrelation 

situation. Similar results are obtained under shifts in the 

second parameters. So we avoid reporting the results in the 

paper. Based on the results of Table III under shifts in the 

third parameter  , in both weak and strong autocorrelation 

coefficients, GLT/R method outperforms the T2 control 

chart. Finally, the results in Table 4 show that under the 

standard deviation shift from  to   in both weak and 

strong autocorrelation situations, the T2 control chart 

performs uniformly better than the GLT/R method. 

VI. CONCLUSIONS 

 In this paper, the effect of within-profile autocorrelation 

on the performance of a GLT/R chart designed to monitor 

polynomial profiles under independency of the error terms 

was first investigated. The results showed that 

autocorrelation leads to poor performance of the GLT/R 

control chart. Then, the transformation technique of 

Soleimani et al. (2009) that was originally proposed for 

simple linear profile was extended and employed for the 

polynomial profile. Finally, the performances of GLT/R and 

T2 control charts are compared in terms of average run 

lengths criterion using 10,000 simulation runs. The results 

showed that the GLT/R scheme performs better than the 
2T charts under the different shifts in the regression 

parameters. However, the 2T  method was better than the 

GLT/R method under the shifts in the standard deviation.  
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