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Abstract: The main difficulty with the use of mathematical programming for structural optimization problems in which the structural form is
specific is the formulation of constraints, such as displacement and stress limitations, as explicit functions of the design variables. In this
research, a new method, called Consistent Approximation (CONAP), was developed to explicitly formulate constraints and objective func-
tions based on an efficient approximation concept. In the proposed method, some important parameters are designed using design sensitivities
o increase the method's flexibility and consistency in various optimization problems. It is shown that existing methods based on approxi-
mation concepts can be casily derived from CONAP with the definition of special values for the designed parameters. In the presented
approach, the primary optimization problem is replaced with a sequence of explicit sub-problems. Each sub-problem is efficiently solved
using the Sequential Quadratic Programming (SQP) method. Several examples are given to demonstrate the capability and applicability of the
method. It is shown that the proposed method speeds up the convergence of the optimization process. DOI: 10.1061/(ASCE)CP.1943-5487

D000133. © 2012 American Society of Civil Engineers.

CE Database subject headings: Approximation methods; Optimization; Structural design; Computer programming,

Author keywords: Consistent: Approximation; Optimization; Structural; Design; Sensitivity,

Introduction

Structural optimization is currently one of the most important
topics in structural engineering and has a wide range of applicabil-
ity. The objective of structural optimization is to find design var-
iables for a structure that minimize cost and satisfy various design
requirements. A large number of optimization techniques have
been developed and used in structural optimization. These tech-
niques can be broadly divided into two groups: (i) gradient-based
and (1) direct-search (stochastic, or non-gradient-based), Direct-
search techniques explore the design space by generating a number
of suceessive solutions to guide the algorithm to an optimal design,
Genetic algorithms (Erbatur et al. 2000; Adeli and Cheng 1994
Togan and Daloglu 2006; Degentekin et al. 2008), simulated
annealing algorithms (Kirkpatrick 2002; Lamberti 2008; Hasancebi
and Erbatur 2002), evolutionary programming (Kicinger et al.
2005) and evolutionary strategies (Hasancebi 2008) are the most
notable direct-search optimization techniques used for the solution
of engineering problems. The main charactenstic of these algo-
nithms is the imitation of biological and physical events by the evo-
lution of a good-enough or near-optimal solution over a number of
successive iterations. These techniques do not require the evalu-
ation of gradients of objective and constraint functions, but they
require a significant amount of computing power. In structural op-
timization problems. design variables are repeatedly perturbed to
satisfy nonlinear constraints on displacements, stresses, and critical
buckling loads (Haftka and Gurdal 1992; Vanderplaats 1998). For
this purpose, gradient-based methods formulate and solve a set of
sub-problems in which the original nonlinear functions are replaced
by linear, quadratic, or higher-order approximations built using
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gradient information. The use of these methods can speed up
the optimization process. In this regard, most investigators have
followed nonlinear programming (NLP) approach and achieved re-
murkable results (Schmit 1960; Vanderplaats and Moses 1973
Schmit and Farshi 1974 Schmit and Miura 1976; Arora and Haug
1976; Harless 1980; Belegundu and Arora 1985; Adeli and Kamal
1986; Ringertz 1985; Joseph 1987). Some investigators have tried
to benefit from the particular physical nature of structural problems,
resulting in the development of the optimality criterion (OC) algo-
rithm for finding un optimal design (Razani 1965; Venkayya et al.
1969, Venkayya 1971, and 1978; Fleury 1979; Fleury and Sander
1983: Allwood and Chung 1984: Patnaik et al. 1995). Sequential
linear programming (SLP) has been applied to structural problems
by several investigators to elicit all the capabilities of this approach.
Recent developments in this research strand are attributed to Lam-
berti and Pappalettere (2000, 2003, and 2004), who have used ef-
ficient move-limit definitions incorporating a trust-region method.
Sequential quadratic programming (SQP) has also been applied to
structural optimization problems (Holzleitner and Mahmoud 1999,
Horowitz and Afonso 2002: Mahmoud and Holzleitner 1994;
Mahmoud 1997).

Among optimization methods, the mathematical programming
method is attractive because of its generality and its rigorous theo-
retical basis. Because of the dependence of the involved constraints
and the variety in the objective function upon each design variable,
the achievement of a successful and efficient optimization pro-
cedure for different Kinds of problem essentially depends on
whether appropriate approximation schemes are selected. Valuable
research has been carried out on this subject. Schmit (1960) was the
first to give a comprehensive statement of the use of mathematical
programming techniques to solve the nonlinear-inequality-
constrained problem of elastic structures design. Schmit (1981
has provided an excellent historical review of the development
of this concept. Schmit and Farshi (1974) have introduced approxi-
mation concepts into the structural design process, including design
variable linking, temporary constraint deletion, and construction
of high-quality explicit approximations of retained constraints
using reciprocal variables and first-order Taylor series. These
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spproximations have led to the emergence of computationally ef-
Soent mathematical programming techniques for structural design
eptmization. A detailed description of approximation concepis
with numerous examples has been presented by Schmit and Miura
11976). Definitive research, such as the work of Fleury (1979), has
offered fundamental insight into mathematical programming for
sructural optimization. Schmit and Fleury (1980) have developed
an efficient structural synthesis process by combining the Dual
method with approximation concepts. These approximation con-
cepts include (1) design variable linking: (2) temporary reduction
of the number of inequality constraints by deletion techniques: and
(3) construction of high-quality explicit approximations of retained
constraints using Taylor series expansions, These approximation
concepts convert the optimization problem into a sequence of
explicit, primal problems of convex and separable form. which
makes the Dual method especially attractive for the solution pro-
cess. Schmit and Fleury (1980) have also successfully extended the
Dual method to deal with pure discrete and mixed continuous-
discrete design variable problems. Fleury and Braibant (1986} have
introduced conservative first-order approximations by using mixed
direct and reciprocal vanables at the same time. This property was
mitially demonstrated by Starmes and Hafika (1979), who em-
ploved conservative approximation to hundle difficult buckling
constraints. Svanberg (1987) has proposed the method of moving
asymptotes (MMA) bascd on a special type of convex approxima-
tion. This method can give the user some control of the conver-
gence properties of the overall optimization process. By
introducing sequential quadratic programming (SQP) in the dual
space, Fleury (1989) has developed the Convex Lincarization
(CONLIN) optimizer. Some important applications of this method
include optimization of trusses (Kuritz and Fleury 1989), optimi-
zation of robot path planning (Braibant and Geradin 1985), and
optimization of composite structures using NASTRAN (Nagendra
and Fleury 1989). Zhang et al. (1998) have applied a mixed
approximation method called DQAGMMA to truss configuration
optimization. A combination of diagonal quadratic upproximation
(DQA) and the generalized method of moving asymptotes
(GMMA) is used in their method. Habibi (2007) has proposed
an efficient optimization algorithm for optimal performance-based
design by considering some modifications of the CONLIN method.

Although the convex linearization method can be eflicient for
problems that have a large feasible design space, one of its disad-
vantages is that it decreases the feasible domain in such a way that
calculation of a feasible solution is difficult in some problems. This
disadvantage has been explained by Fleury (1989). In the present
study, the elimination of this deficiency was attempted.

In this study, a new method was developed for high-quality
nonlincar approximation. This method can generate existing
approximation concepts, including linear approximation, concave
approximation, and convex approximation. Moreover, the designed
parameters of the approximated functions can increase the flexibil-
ity and consistency of the proposed method. Accordingly, these
parameters can make the method consistent with various structural
optimization problems, The efficiency and applicability of the
method are illustrated by several numernical examples. It is shown
that the proposed method can speed up the convergence of the
solution procedure.

Proposed Method

In this section, the proposed method for the approximation of de-
sign constraints and objective functions, called the Consistent
Approximation method (CONAP), is explained. Because the

design sensitivities can affect the approximated function and in-
crease the accuracy of the approximation, s new design vanable
(x/) is applied as a function of the design sensitivities with respect
to the ordinary design variable (x;). This new variable is defined as
xf = (x;)™, where the power parameter «, is & function of the de-
sign sensitivity and 7 denotes the number of vanables. In this
schema. selecting o = | results in obtaining the ordinary vaniable
1, By selecting o, = 1, the reciprocal design vanables used by
Fleury (1979) are obtained, The mixed design variables (a combi-
nation of ordinary and reciprocal variables) used by Fleury and
Braibant (1986) can be obtained by selecting o, = | and o, = —1
for the positive sensitivities and negative sensitivities, respectively.
Accordingly, the new variable introduced can handle the vanables
applicd in the previous rescarch. Moreover, other design vanables
can be generated to improve the existing approximation methods by
proper selection of the power parameter. For this purpose. assuming
that the power parameters «; and o, correspond to the minimum
sensitivity (5,) and maximum sensitivity (s, ), respectively, of the
function under consideration, the following linear equation is pro-
posed to compute each sensitivity parameter:

N8

a; = o+ (@, — o)) ——
Su ™9

(1)

where §; is the sensitivity of the function under consideration with
respect (o the design variable x;. Eq. (1) shows that the power
parameter o, is a function of its lower and upper limits (o, and
a,). Moreover, it is dependent on the sign and the magnitude of
the function’s sensitivity with respect to the design varable under
consideration. In conventional approximation methods, varables
cunnot include the sensitivities, In the convex lineanzation concept
developed by Fleury (1989), vanables can only include the signs of
the sensitivities of the approximated functions. Accordingly. in the
proposed method better approximation is expected 1o be achieved
because of the inclusion of the magnitudes of the sensitivities in
addition to their signs. In the proposed equation for the power
parameter. ordinary and reciprocal variables can be generated by
selecting ar, = 11 5, = 5, and o I; 5; = 3. respectively. The
convex lincarization method can be achieved by consideration of
these two cases simultancously. Morcover, it is shown by the
numerical results that better approximations can be made by select-
ing other values for the power parameter, Since variation in design
variables whose design sensitivity values are high can affect the
function value and vanation in power parameters whose values
are high and can also change the function value, it seems that there
exists a relation between the power parameter and the design sen-
sitivity. Accordingly, the assumption of a proportional relation be-
tween each minimum sensitivity and its corresponding  power
parameter (o) & s;), and also between cach maximum sensitivily
and its corresponding power parameter (o, &Cs,), can be sug-
gested. It should be noted that such assumptions need o be verified
by numerical tests (see Section 4). This assumption leads to the
relations oy = ky; and o, = ks, where k1S i non-zero constant.
Therefore, the following proportional relation is proposcd:

(i“, ' Ny (2‘
w X

From the above assumption, the following simple equation for
calculation of the power parameter can be denved:

A) Ry
= —‘ﬂ,;-'-u {3)

0 -
M s

{
w

Eq. (3) can be applied to compute the power parameter given «
or a,. Eq. (1) can be generally applied to calculate the power
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parameter, given a; and a,, without the assumption in Eq. (2). The
last relation shows that the power parameter for each design var-
iable can be obtained by multiplying the ratio of the sensitivity of
the function with respect to that variable in the lower limit of the
sensitivities by the lower limit of the power parameter. It can also be
calculated by multiplying the ratio of the sensitivity of the function
with respect to that variable in the upper limit of the sensitivities by
the upper limit of the power parameter. Therefore, by selecting a
proper value for the lower or upper limit of the power parameter
and knowing the values of the sensitivities, the magnitude of the
parameter for each design vaniable can be calculated from Eq. (3).
By defining the new variable by the power parameter, each ar-
bitrary function can be approximated by the first-order Taylor series
expansion in terms of new design variables as follows:

f(x) = f(x%) + Z%(x’. -x7) (4)
(% R

The derivative 2 can be expressed in terms of the main design

Ll

variable x; = (x/)"

o _ofox
ax. axor "

'

__l_ %"g_ ! a—f o, ”
:-—“'t.!;"] o (x0) x O

By substituting Eq. (5) into Eq. (4) and rearranging Eq. (4) in
terms of the main design vanable, the following equation can be
obtained:

= ] l_ Dy o, 1) o o (2]
flx) = flx ”Zu.-‘““’ Oll)™ =2 (6)

In the above equation, f, is the first derivative of the function
f(x) with respect to the design variable ;. To calculate these deriv-
atives for structural optimization problems in which the constraints
or objective function cannot be expressed explicitly in terms of the
design variables, the theory of sensitivity analysis must be em-
ployed. The symbol ¥, denotes summation over the terms for
which ¢ is the power parameter of the ith design variable, whose
value depends on the magnitude and sign of the first derivative of
the function with respect to the design variable. It can be concluded
from Eq. (6) that this equation leads to the Taylor series expansion
in terms of the main design variables (v,) fora, = L Fora, = —1in
the equation, an approximation based on the reciprocal vanables
(1/x;) can be obtained. With a;, = | for the positive sensitivities and
o = — 1| for the negative sensitivities, a convex approximation can
be generated from Eq. (6). It is convenient to normalize the design
variables so that they are equal to unity at the current point .
For this purpose, from the definitions &' =y, /x and f7 =

"x! /oy and from Eq. (6). the following equation can be obtained:

e (L RS WA ARSI ES WA HLET e Wi
(7)

where f;, is the value of the function at the current point 1. Eq. (7)
is the basis of the CONAP strategy for approximation of structural
optimization problems. In the next section, the proposed optimiza-
tion algorithm based on the CONAP technique is presented,

Optimization Algorithm
To propose an efficient optimization algorithm based on the

CONAP strategy, the structural optimization problem is mathemati-
cally considered in the following general form:

'."') -‘is'tls
(

mingy(x) subject to ¢(x) 0, (

® X

where ¢;(x) denotes the objective function, which usually repre-
sents a structural characteristic to be minimized (e.g., the weight),
and ¢;(.x) denotes the behavior constraints that impose limitations
on the structural response quantities (e.g., the upper bounds on
stresses and displacements). The design variables must be bounded
by the upper and lower values of xf and x/. The objective function
and the constraints can be lincar or nonlinear functions of the de-
sign vaniables. Applying the CONAP technique to each function
¢;(x) and dropping the superscript //, the optimization problem
[Eq. (8)] can be approximated by the following explicit
sub-problem:

min Z“ﬁ'("‘l )"‘I = i"(-
|

(9
subject to : Zc,,(.\',)"\ SG (f=1,...m)

4 ~
NEy Ly

where ¢;; denotes the first derivative of the objective or constraint
functions cvaluated at the current point x” multiplied by the current
design variable divided by the power parameter. o, denotes the
power parameters allocated to the design variables. These param-
eters are not the same for the various constraints and the objective
function. The constants ¢; are calculated as follows:

&= cj—eis)

U=0..m) (10}

The approximated sub-problem |Eq. (9)] has a simple algebraic
structure and separable design vaniables. These properties make
solution of the sub-problem using mathematical programming at-
tractive. In this research, the Sequential Quadratic Programming
method (SQP) was applied to solve each sub-problem. The SQP
implementation consists of three main stages, including update
of the hessian matrix, solution of the quadratic problem, and deter-
mination of the search direction and optimum point. For more
details about this method, see Arora (1989),

The CONAP optimization algorithm developed in this study can
be carmed out in the following steps:

I. Setk = | and assume proper initial values for the design van-
ables (initial design point #*) and convergence parameter.

2. Compute the values of the objective and constraint functions af
the current design point.

3. Perform a sensitivity analysis and evaluate the gradient vectors
of the objective and constraint functions at the current de-
sign point,

4. Assume proper values for the upper and lower limits of the

power parameters for the objective and constraint functions

(it is proposed that positive limits for the positive sensitivities

and negative limits for the negative sensitivities be applied)

. Construct the sub-problem (9) based on the CONAP strategy o

the current design point.

6. Solve the sub-problem using the SQP method and find the
optimum design variables v**!

7. Check the optimality criterion [’—'-’-—-ﬂ. <z where fiand f,
are the values of the objective funcnon at the optimum point
and current point. respectively, and 2 is the convergence
parameter.

8. If the optimality criterion is satisfied, stop the optimizatios
process: otherwise, set k = k + 1 and x* = ¥**! and then go
back to Step 2.

wh
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- Evaluation of the Efficiency of the Proposed Method

To evaluate the proposed method of structural optimization, six
sumerical examples are presented in this section. The objective
of the first example in the preceding section was to demonstrate
$e consistency of the proposed method with existing methods,
and the capability of the proposed method to vary the degree of
convex approximation and increase the quality of approximated de-
sign constraints compared with conventional methods. In the other
examples, the newly proposed approximation concept was used to
perform optimum design for five problems in structural engineer-
mg. and the results were compared to those of conventional meth-
ods. Based on the algorithm developed in Section 3, a computer
program was prepared to design structures using CONAP. For some
examples, Finite Element Analysis and Sensitivity Analysis pro-
grams were linked with the optimization program. The optimiza-
uon software was run on a Personal Computer with a Pentium
Dual Core 2.66 GHz processor and 3.48 GB of RAM under the
Microsoft Windows XP operating system.

Approximation of a Design Constraint

Approximation of the following design constraint with two design
varidbles at the design point ¥ = (2.2) was considered:

elx) = Sx-—\*SIO (1)

This constraint had previously been evaluated using four differ-
ent methods, including linear approximation, approximation using
reciprocal vanables, concave approximation, and convex approxi-
mation (Fleury and Braibant 1986). The results are given as
follows:

1. Linear: Sx; —4x, €6

2. Reciprocal: =20/x; + 16/x, £2

3. Concave: =20/x; — dx; £ —14

4. Convex: 5x, + 16/x, <22
As can be observed, in Case | (lincar approximation), ordinary de-
sign vartables had been used; in Case 2 (reciprocal approximation),
reciprocal design variables had been used: in Case 3 (concave
approximation), én ordinary varable and a reciprocal variable
had been used for Design Variables | and 2, respectively; and
1n case 4 (convex approximation), an ordinary vanable and a recip-
rocal variable had been used for Design Variables 2 and |, respec-
tively. To prove that each of these approximations can be derived
from the proposed approximation concept [Eq. (6)], it was neces-
sarytouseay = oy = Loy =0y = 1,0, = ~a, = land a, =
~0y = —1 for cases 1, 2, 3 and 4, respectively, as follows:

1. 6 +}(z)'-'( -4)l(x)' -2 + }(2)' '(5)l(x)' 2" < 10

= S5 — 4%, 6 (12)
2 64— (@) (=4) ) -2 1]+ L @5y -2 )
<10 = ~20/% + 16/x, S 2 (13)
3. 64 7@ =9)l(n)' -2+ @) (5)[aa) -
S10= -20/x, — 4y, £ - 14 (14)
4. 6+7'l-(2)‘”(—4)l(x.)" -2 +%(2)"‘(5)!(x:)' -2

S10= 55 4+ 16/x, €22 (15)

The above inequalities show that the existing approximation
methods can be simply derived from the CONAP method.

Accordingly. it can be concluded that the existing methods are spe-
cial cases of the proposed method by assuming special values of the
power parameter. To show the applicability and efficiency of
CONAP in increasing the quality of approximation and controlling
the degree of convex approximation, two additional cases were
considered, Relation 3 was applied to calculute the power param-
eters for these two cases. The lower limits of the power parameter
were dssumed to be ap = ~0.5 and o, = —2 for Case 5 and Case 6,
respectively. Using these assumptions and taking the sensitivities of
the function with respeet to Design Variables 1 and 2 at point X to
be —4 and 5, respectively. the power parameters were obtained
from Relation 3 (—0.5 and —0.625 for Design Variables | and
2, respectively, for Case 5 and —2 and 2.5 for Design Variables
I and 2, respectively, for Case 6). Accordingly, the design con-
straint was approximated using Relation 6, as follows:
1. CONSISTENT 1

6+—l—(2l"°"(—4)[(.\’ )~-05 -9 05!

06’,5 (2,' 06.5(‘)[( )(H\.$ 2().625]

<10 = 10.3747(xy )" 4 22.6274/(x,)"* €36 (16)

2. CONSISTENT 2

6+-I7,{ (=4)(x;)* =22

[ oxe

+35 @) ) - 224
<10 = 0.7071(x;:)*5 +16/(x;)? £ 12 (17)

To better explain the core steps of the proposed procedure for
approximation of the constraint, Case 6 (o, = —2) was considered.
The following Seps were necdud 10 approximate the constraint
g(x) = 5x» — a7 at the point A = (2,2):

Step 1. Calculate the sensitivity (s;) of the function with respect
1o the design variables, using Eq. (18).

(18)
=85

axy |,
Q!;
i,

N =

X, )

Step 2. Calculate the minimum and maximum sensitivities
(s;:5,) using Eq. (19).

5; = min(s;.5:) = min{-4.5) = -
7 I (19)

5, = max(s;,s:) = max(—4.5) =

Step 3. Calculate o, using Eq, (2), as follows:

o, § 5, 5 y
— =" a, == —xX-2=25 {20)
oy & AT -4

Step 4. Caleulate the power parameters (o) for all of the design
variables using Eq. (1) or Eq, (3). as follows:

] - | 5h 5 e
nl:-—'—(l[——x -2= -2 "2:_.(”:_)(-2:2"\
5 -4 5 -
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Step 5. Calculate the values of the function and its derivative
with respect to the new variables using Eq. (5), as follows:

(’(vlo) = Q‘l‘(ﬂ =3x2- 2' =0

(")R_l nlu.ag_")ll-lj >5 .
e o L i | i k)
92 _ 1 oyi-ay 98 _ 1 5vi-2s

== — () 2 = ()25 x 5 =0,

axYy  a & ’d.rz 25() =00

Step 6. Determine the approximated function as a function of
the new vanables using Eq. (4), as follows:

g(¥) 2 (") + Z 5 (=)

=6+ 16x (x| - 2-?) +0.7071 x (¥ — 2%)
= ]6x| = 0.707)x; - 2 (23)

Step 7. Determine the approximated function as a function of
the main varables by substituting v/ = 1 in0 g(x) or using
Eq. (6). as follows;

2(x) = 16v) + 0.7071x — 2 = 16x]' +0.70713" — 2

= 16572 4 0.70713° - 2 = §+07m|8 -2 (24

Step 8. Determine the approximated function as a function of

the normalized variables (x = x;/x) using Eq. (7), as follows:
gl = Moy = =4 %2/ =2=4;
5/ m / (25
g = 88/ay =5x%x2/25=4

sel) = Zgj’(.t"’ )+ gy — Zg:’
AN UAPI 46~ (44 4)

4
+ 4(xf)?S ~
B

Six approximated constraint surfaces (Cases 1 to 6} and the real
constraint surface are plotted in Fig. 1. This figure shows that the
concave approximation (Case 3) had a maximum feasible sub-
domain and that the second consistent approximation (Case 6)
had a minimum feasible sub-domain. The feasible sub-domains
of the concave and reciprocal approximations (Cases 2 and 3) were
larger than the feasible sub-domain of the real constraint, and the
feasible sub-domains of the linear, convex and consistent approx-
imations (Cases 1, 4, 5 and 6) were smaller than the feasible
sub-domain of the real constraint. Comparison of the various
approximation methods for this example shows that CONAP
can generate the vanous approximations (Cases | to 4). Moreover,
it can be intuitively venfied that CONAP can yield the most
conservative approximation (Case 6),

As observed [rom Fig. 1, the feasible sub-domain of the second
consistent approximation {Case 6) was smaller than that of the con-
vex approximation (Case 3), while the feasible sub-domain of the
first consistent approximation (Case 5) was larger. Therefore, the
proposed approximation can enlarge the feasible sub-domain (see
Case 5) and consequently does not have the lack-of-feasible-
solution problem that the convex approximation method has.
The proposed method can also be efficiently applied to approxi-
mate comphicated nonlinear design constraints because of its
conservative results (see Case 6),

x1

Fig. 1. Comparison of different approximation methods for the con-
straint gx) = 5x; - x} €10

Optimum Design of a Beam with a Rectangular
Cross-Section

As a numerical test of the proposed method, CONAP was applied
to the optimum design of 2 beam with a rectangular cross-section.
This problem had previously been solved using the analytical
methed, the graph method and the Constraint Steepest Descent
(CSD) method (Arora 1989). For solving such simple problems,
in which the objective and constraint functions are explicit func-
tions of the design vanables, it is not necessary to apply approxi-
mation methods, This problem was selected because it can be used
to compare the proposed and existing methods. The objective func-
tion to be minimized was the area of the cross-section. The design
variables were the width (b) and the height (d) of the section. The
design constraints were limitations (g;). the shear stress (g;), the
ratio of height 0 width (gy), and the lower and upper limits of
the design variables (g, 5. 8¢ and g;). Using these definitions,
the optimization problem was formulated as follows:

oM

minf(b.d) =bd subjectio: gy =——=-1250
c‘lﬂbd
Vv
g3=-|5—~l<() =d-rb0) g,=b-b<0
Tabd
ge=b—b,S0 g=d-d<0 g=d-d,50

(26)

where M is the maximum bending moment of the beam: V is the
maximum shear force of the beam; oy is the allowable bending
stress: 7,y 18 the allowable shear stress; rois the maximum ratio
of height w width: & and b, are the lower and upper limits of
the width, respectively: and d; and d,, are the lower and upper limits
of the height, respectively. For this test example, it was assumed
that b =d; =10 mm: b, =d, = 1.000 mm; r=2; oM
24 x 10° mm” and 1Y = 1.12,500 mm”. The optimal analytical
solution of this pnoblcm is a curve. The mimmum value of the ob-
jective function that had been obtained was 112.500 mm?; the ac-
tive constraint was g,, and s Lagrange multiplier had been
obtained a5 112,50 (Arora 1989). This problem was solved with
CONAP assuming (50, 200) mm as an initial point, which violated
some constraints. This imtial point had been considered by Arora
{1989). The convergence criterion for the objective function was
assumed to be 0.001. The following two states were considered
for the solution:
a. Use of a; = 1 for the positive sensitivities and o, = — 1 for the.
negative sensitivities; and
b. Determination of the power parameter (o) from Eq. (3) assum-
ing ;= —1 for the design constraints and o; = 1 for
objective function.
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Cuse (1) led 10 the convex approximation (CONLIN) method,
developed by Fleury (1989).that mixes ordinary and reciprocal var-
wables. This is a special case of the method developed in this paper.
In this state, the optimization algonthm converged in five iterations,

Case (b) illustrated the capability of the proposed method com-
pared with the other methods. The lower limit of the power param-
cter was assumed to be positive for the positive sensitivitics and
negative for the negative sensitivities, It had been shown in pre-
vious work that this assumption can lead to convex approximation.
Considenng this fact and the fact that the seasitivities of the objec-
tive function are usually positive while those of the design con-
straints are pegative, a positive value for the lower limit of the
power parameter of the objective function and a negative value
for lower limit of the power parameter of the design constraints
were selected. In this state, the optimization algorithm also
converged in five iterations.

The results of the optimization for the four methods, including
CONAP (Case b), CONLIN (Case u). CSD (Arora 1989) and the
exact solution (Arora 1989), are compared in Fig. 2 and Table 1. It
can be observed that the minimum value of the objective function
resulting from the four methods was 112,500 mm?, The optimum
values of the design variables resulting from CONAP, CONLIN
and CSD were different. while the minimum values of the objective
function from the three methods were the same. This observation is
related 10 existing solutions to this problem. The exact results val-
wdate this observation; that is, the optimum values obtained from the
three methods can be obtained from the exact solution, The iters-
uon history, shown in Fig. 2, shows that CONAP led to
conservative results compared with CONLIN and CSD in all iter-
ations, This property can be efficient for the design optimization of
structures with complicated nonlinear design constraints, Fig, 2
shows that although a jump existed in the CONAP iteration history
in Iteration | because of the violation of some of the constraints,
CONAP rapidly converged in the following iterations. This illus-
trates the capability of the proposed method to approximate design
constraints. To compare the computational ¢fforts of CONLIN and
CONAP for this problem, the execution times were measored. The
execution time of CONLIN was 0.32 s and that of CONAP was

400000

360000 -
7 320000 - \
E 230000 - /
3 240000 - \
¥ 200000 - /
‘_i 160000 -
T 120000 -

80000 -

40000
o Y L) A4 LJ
0 1 2 3 4 5 6 7
Design stage

Fig. 2. The iteration history of the beam with rectangular cross-section

Table 1. Optimizaticn Results for the Beam with 1 Rectangular Cross-
Section

Design variable CSD CONLIN Exact solution CONAP

b (mm) 315.17 2895465 b2 237.1708 256.55(4
d (mm) 3569 388.5387 112.500/h 4385103
Objective function (mm®) 112,500 112,500 112,500 112,500

0.30 s. This shows that the computational effort of CONAP was
less than that of CONLIN,

Optimum Design of a Cantilever Beam

A cantilever beam, built from five beam elements as shown in
Fig. 3. was considered. Each beam element had a quadratic
cross-section as shown in Fig. 3. The beam was rigidly supported
at Node 1, and subjected to an external vertical force at Node 6 (see
Fig. 3). This problem was a good and important design example
because its analytical solution exists (Svanberg 1987). This prob-
lem had previously been solved using the MMA method (Svanberg
1987). Therefore. it was possible to venfy the results of the pro-
posed method, The design variables were the dimensions v; of
the different beam elements, and the thicknesses were held fixed.
The objective function to be minimized was the weight of the beam.
There was only one behavior constrnt, which was a limit on the
vertical displacement of Node 6, where the given load acted. The
lower bounds on the design variables were so small, and the upper
bounds were so large, that they never became active in this prob-
lem. Using classical beam theory, after some manipulations and
assumptions (Svanberg 1987), the optimization problem was
formulated as follows:

Minimize C,(x; -+ xy + X3 + x4 + x5

(27)
Subject 1061/x} +37/x3 + 19/6 +7/x} + 1/8 £ C;
where
Yy
C,=4Lry and Cy= ‘—";'T'\?ﬂ (28)

where L is the length of the beam elements: £ 18 the thickness of the
elements: v is the unit weight; £ is the modulus of elasticity; P is the
magnitude of the given load and A is the allowable displacement.
In this test problem, it was assumed that C; = 0.0624 KN/cm
and Cs = 1/em'.

As a starting point for the numerical test of CONAP, the feasible
solution x; = 5 cm was used for all /. This solution had also been
considered as a starting point for the MMA method (Svanberg
1987). At this point, the displacement constraint was satisfied with
equality, and the total weight of the beam was 1,560 kN,

To illustrate the effect of the power parameter on the efficiency
and convergence of the proposed method and 1o compare the
CONAP results with the CONLIN resulis, the following five cases
of power parameter lower limit were considered:

Nodel Node2 Node3 Noded NodeS Node6

1 2 3 4
v
Given thickness
xi —ip] P
R e
X
Fig. 3. Cantilever beam
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l. oy =1 for the objective function and a; = —1 for the design
constraint (CONAP 1),
. 0y = 2 for the objective function and o,
constraint (CONAP 2).
1. oy = 3 Tor the objective function and o, = 1 for the design
constraint (CONAP 3).,
4. oy = | for the objective function and o, = —2 for the design
constraint (CONAP 4).
5. oy = 1 for the positive sensitivities and o, = ~1 for the nega-
tive sensitivities (CONLIN).

For the convergence criterion of 0,001 (the relative difference
between the objective functions at the fast two iterations had to
be less than 0.001), the results of the iteration history for Cases
1 10 4 (CONAP) are plotted in Fig. 4 and compared with those
for Case 5 (CONLIN) and MMA (with the parameter 1 = 1/16).
For this problem, the execution times for Cases 1 to 4 were
3,146, 0.98, 0.6, and 2.664 seconds, respectively. In Case 5, the
method diverged. That is, its execution time was extreme. The op-
timal design variable values are summarized in Table 2 for Cases |
10 4 and compared with those of the exact solution. The optimal
results show that the minimum objective value resulting from Cases
I 1o 4 was 1.34, the same result obtained from the exact solution
and MMA. This proves that the results of the proposed method
were correct. The iteration history shows that CONAP converged
in 22, 7. 4, and 18 iterations for Cases 1, 2, 3, and 4, respectively.
The MMA method converged in |2 iterations. By increasing the
lower limit of the power parameter of the objective function from
I 10 2 and 3, considerable improvement was made in the conver-
gence and speed of CONAP. As Fig 4 and Table 2 show, selection
of proper and consistent values of the power parameter can speed
up the convergence of the proposed method. In Case 4, the conver-
gence of CONAP was further improved by decreasing the lower

12

<1 for the design

16

14

12
§ 1 i CONAPL
'g —®- CONAP2
<2 % “a CONAPS
i o8 e CONAPA
8 - MMA

s e CONUN

02

0 2 4 4 8 30 12 14 16 18 20 22 24 256 23 M
Design stage

Fig. 4. lteration history for the cantilever beam

Table 2. Optimal Solution of the Design Variables for the Cantilever Beam

Method
Design Exuct
vanable CONAP | CONAP 2 CONAP 3 CONAP 4 solution
X, 60163 6.0193 6.0126 60133 6016
X 5.3081 53134 5.3095 5.3092 5.309
X, 4.4895 4.4990 44971 44958 440
X, 3.5042 34932 3.5007 3.5036 3502
X 2.1555 2.1483 2,1538 2.1517 2.153
Weight (kN) 1340 1.339 1.340 1.340 1.340

limit of the power parameter of the design constraint from —1
to —2, although the convergence rate compared with Cases 2
and 3 was very low. For this problem, it can be concluded that
the rate of convergence of CONAP was considerably affected
by a change in the power parameter of the objective function, while
the effect of a change in the power parameter of the constraint was
not as significant,

For Case 5 (CONLIN), it can be observed that the iteration history
never converged. The divergence of another traditional optimization
method has also been shown for this problem (Svanberg 1987).

It is remarkable that for this problem, CONLIN did not converge
at all, whereas CONAP converged to the optimal solution obtained
from the analytical method for all of the tested values of o,
(1 £a; £3 for the objective function and -2 € 0, € —1 for the
design constraint). The best values of o, for this specific problem
were 3 and — 1 for the objective function and the design constraint,
respectively. With these values of o, the convergence was remark-
ably fast; only 3 iterations were needed.

Optimum Design of a Two-Bar Truss

This problem, shown in Fig. 5, was selected because it contained
both a configuration and a sizing varable. It was also a good prob-
lem because the results of CONAP could be compared 1o those of
SLP. CONLIN and MMA (Svanberg 1987) as well as the exact
solution, The two design variables were the cross-sectional area
of the members (xy) and half of the distance between Nodes
I and 2 (x;). The truss was subjected only to stress constraints.
The muss was subjected to an external force F = (F, F,) ot
the unsupported node (Node 3), where F, = 248 kN,
F, = 198.4 kKN, and (F| = 200 kN. The height of the truss (/)
was assumed to be | m. The lower bounds on the vanables were
¥ = 0.2 cm® and &% = 0.1 m, respectively. The upper bounds on
the variables were xf = 4 ¢m® and ¥4 = 1.6 m, respectively. None
of these four bounds became active at the optimal solution.

The objective function tobe minimized was the weight of the truss.
The tensile stress had to be less than 100 MPa(a,; = 100)in each of
the two members. This simple problem was formulated analytically
(this was not necessary for the proposed method 10 work), as follows:

Minimize C,x, \/h’ +x3

" o 4+ [ F, F,)
Subject 10 — = —nF [ = 4 — | 1) and
s o"a.v 204 (-‘lh RIR S = (Beel)
% R
a ir+xs(F, F,
— e ® | e < Bar |
Tutt 2am‘l ("Ih "lxz) ' ( 2 )
NS S ASnSa

(29
/F
NECVAANICY
2

X, X,

Fig. 5. Two-bar truss
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where C; = | g/em’. Itisobvious from this formulation that the sec-
ond constraint (the stress constraint on Bar 2) could never become
active, because the stress in Bar | was always strictly greater than
the stress in Bar 2. Therefore, the first constraint (the stress constraint
in Bar 1) was active. To find the exact solution for this problem, first,
the variable x, was determined by solving the active constraint
equation, as follows:

/.' _: F
_.h—.-’-—‘;(y F) qu'

20.{; I,h IR S

By substituting the above equation into the objective
function, the following unconstrained problem was then
generated:

Table 3. Optima! Results for the Two-Bar Truss

Minimize f(x) = Cyxy (/I + 23

gy +"(f-- ﬁ) W4 5
2(7.]| h X2 o
£y
el ( F)(hw 2) (31)
-Um h X

To minimize f(x), its first derivative had to vanish, as follows:

df F i
T =0=2 ;,‘J+(" N3 -h=0 (32)
By solving Eq. (32), the exact value of x; was obtained, and then
by substituting its value in the x; equation, the exact value of x; was
computed.
A feasible starting point, in which the design variables were
G = 1.5 em® and x, = 0.5 m (the same initial point assumed

Iteration Variable 1, vanable 2, Exact
number stress ratio and weight solution CONAP MMA CONLIN sLP
0 £ (cm?) 14116 1.50 1.50 1.50 1.50
0 (m) 0.3771 0.50 0.50 0.50 0.50
a\/ow 1 092 0.92 0.92 092
Wx 1072 (g) 1.5086 1.68 1.68 1.68 1.68
1 X (em?) 1.3864 1.39 1.39 1.38
X3 (m) 0.1000 0.10 0.25 025
ay/ow 1.6180 1.62 L11 111
Wx 107 (g) 1.3933 1.40 1.43 1.42
2 X fem?) 14114 0.63 1.33 114
X3 (m) 0.3006 0.62 0.50 0.50
/o 1.0392 223 1.04 1.22
Wx 107 (g) 14737 0.74 149 1.27
3 £ (em?) 14048 1.45 1.39 1.34
Xy (m) 0.3760 0.10 0.25 0.25
a /oy 1.0052 1.54 111 114
Wx 107 (g) 1.5008 1.46 143 1.38
4 Xy (em?) 14100 1.04 1.33 1.15
¥ (m) 0.3806 0.34 0.50 0.50
ay /o 1.0000 1.38 1.04 1.21
Wx 1072 (g) 1.5086 1.10 149 1.28
5 Xy {em®) The method 1.42 1.39 1.34
X3 (m) s converged 0.40 0.25 0.25
oy/ow 0.99 111 1.14
Wx 107 (g) 1.53 143 1.38
6 £ (em?) 141 1.33 1.15
£ (m) 0.38 0.50 05
o /o 1.00 1.04 121
Wx 107 (g) 151 1.49 1.28
7 Xy (em?) The method 1.39 1.34
xs (m) is converged 0.25 0.25
ay/an L1 114
Wx107% (g) 1.43 1.38
8 X {em?) The method The method
£ (m) 15 diverged 1s diverged
/0w
Wx 1072 (g)
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for SLP. CONLIN and MMA), was chosen. At this point. the
weight of the truss was 1.677 x 107 g and the stress ratio in Bar
| was 0.925. Optimum design of the truss was performed using
CONAP with o; = 3 for the objective function and oy = ~| for
the design constraints, For this problem, the computation time
of CONAP was 0.264 s and that of CONLIN was extreme (the
CONLIN method diverged). The results of optimizations using
the five methods (CONAP. SLP, CONLIN, MMA and the exact
solution) are shown in Table 3. It can be observed that CONAP
converged 1o the exact solution: that s, the CONAP results were
in good agreement with the exact results. Neither SLP nor
CONLIN converged, while MMA and CONAP converged to the
optimal solution in 6 and 4 iterations, respectively. Therelore.
CONAP can guaraniee good convergence in problems in which
size and shape variables are simultaneously considered. (Of course,
this claim needs more cuse studies to support it.)

Optimum Design of a Ten-Bar Truss

In this problem. optimum design of a practical example of a strue-
tural system was performed. This example was concerned with the
famous ten-bar truss, shown in Fig. 6, which had been studied pre-
viously (Arora 1989: Fleury and Bruibant 1986). This truss had
been specially devised to make the problem difficult to solve with
conventional methods (Fleury and Braibant 1986). The objective
was to minimize the weight of the truss, The cross-sectional area
of each member was considered 10 be a design variable, and there
were ten design variables. The displacements at Nodes 4and 5 were
limited 10 2 in €5.08 cm) and 1 in (2.54 cm), respectively. Insiead of
assigning a maximum allowable stress limit to the eritical Member
6. the stress flow (i.e., the force) in Member 6 was limited to
2.500 1h (1,1124 N). The lower bound and upper bound on the var-
iables were assumed to be 0.25in* (1.613¢m’) and 100 in’
(645,16 cm?). respectively. The difference between this example
and three aforementioned examples was that the design constraints
were not explicit functions of the variables in this problem. In
general, this presents i serious difficuhty for structural optimization
in practical problems. This difficulty causes conventional optimi-
zation algonithms to be inapplicable.

The CONAP method was used 1o solve this problem, in which
there were no explicit constraints. The finite element method was
used to perform the structural analysis. To evaluate the design sen-
sitivities, 4 sensitivity amalysis of the truss was performed using the
Finite Difference Method (FDM). In the initial design, which was
used 10 start the optimization process, all of the design variables were
considered to be 20 in® (129.03 co® ). This initial point was seriously
infeasible and violated all of the constraints. For values of 1 and 1

914.4 ¢cm 914.4 cm

< —-< >

914.4 cm

445 KN
Fig. 6. Ten-bar truss

~@— CONLIN
~i— CONAP

Weight (N)
:

v

o
-
V4
o

3
Design stage

Fig. 7. lteration history for ten-bar truss example

for the lower bounds of the power parameters of the objective func-
tion and the constraints, respectively, the iteration history of C ONAP
is shown in Fig. 7 and compared with that of CONLIN. The optimal
solutions for Design Variables 1 1o 10 were, respectively.

239759, 4.2366. 0.25. 39182, 21.1317, 025, 13.0401
16.6808, 5.5397, and 6.0475.

The solution vilues show that the lower bounds on Design Var-
iables 3 and 6 were active in the optimal solution. That is, 1o min-
imize the weight of the structure, Members 3 and 6 had to be selected
for minimum possible strength or deleted from the truss, as long as it
remained stable. 1t seems that this was because of the limit of the
force of Member 6 that had been used as a constraint according
10 the assumptions of Fleury and Braibant (1986). This problem
could be eliminated by using the stress constraint instead of the force
constraint. The results show that two displacement constraints were

AZ

— ; - et S

b=60 in (152.4 cm)

Fig. 8. Geometry of a seventy-two-bar truss
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Table 4. Element Grouping for the Seventy-Two-Bar Truss Structure

Group Elements Group Elements

I 1.2.34 9 37, 38. 39, 40

2 5.6, 7,89 10,11, 12 10 41,42, 43, 44, 45, 46, 47, 48
3 13, 14, 15, 16 I 49. 50, 51. 52

1 17, 18 12 53,54

s 19, 20,21, 22 13 55, 56, 57. 58

6 23,24,25,26,27, 28, 29, 30 14 59, 60, 6]. 62, 63, 63, 65, 66
7 31,3233 34 15 67, 68, 69, 70

8 35, 36 16 71,72

active in the optimal design. That is, in the optimal design, the dis-
placements of Nodes 4 and 5 were 2 in (5.08 cm) and 1 in (2.54 cm),
respectively. Comparison of the CONAP results with those of CON-
LIN (Fig. 7) shows that the total number of iterations required for
CONAP was less than that for CONLIN. It can also be seen that the
execution time of CONAP was 6.88 s, while that of CONLIN was
8.43 5. This shows that the computational effort of CONAP was less
than that of the CONLIN, Therefore, with the proper choice of
power parameters in the proposed method, the convergence rute
can increase in comparison with other methods such as CONLIN.
The results show that the optimal design satisfied all of the con-
straints despite its reduced cost, but that the initial design, with
an almost 30% greater cost, violated the constraints,

Optimum Design of a Seventy-Two-Bar Truss Structure

To test the functionality and reliability of the proposed method with
a4 more complex example problem, the 72-bar four-level skeletal
tower shown in Fig, 8, which hud been previously wreated by other
investigators (Schmit and Miura 1976: Arora and Haug 1976; Chao
ctal. [984; Sedaghati 2005; Lamberti 2008; Farshi and Alinia-ziazi
2010), was considered. The Young's modulus of the material was
68.971 GPa. and the mass density was 2,767.991 kg/m’. Because
of the symmetry of the structure, variable linking was adopted
by grouping the cross-sectional arcas of the truss members into

Table 5. Optimization Results for the Seventy-Two-Bar Truss Structure

;v )
~i— CONAP
- —a
0 1 2 3 4 5
Design stage

Fig. 9. The iterwtion history for the seventy-two-bar truss structure

16 groups, and the cross-sectional area of the bars of each group
was taken as & design vanable, vielding 16 sizing vanables. The
member numbers and the corresponding group numbers are given
in Table 4. The structure was subjected 1o two loading conditions:
a. 22,248.706 N (i.c.. 5 Kips) in the positive x- and y-directions and

the negative =-dircction at Node 1.

b, 22,248.706 N (i.c., 5 Kips) in the negative z-direction at Nodes 1,

2,3 and 4.

The objective was to minimize the weight of the truss. The op-
timization was performed with 320 non-linear constraints on the
nodal displacements and member stresses. The displacements at
the uppermost nodes, Nodes 1, 2, 3. and 4, in the x- and y-directions
had to be less than £6.35 mm (1.¢.. £0.25 in). The allowable stress
(tensile and compressive) for all of the members was 172.4 MPa
(e, 25 ksi). The lower bound of the cross-sectional areas was
64.516 mm* (i.c.. 0.1 in?). The optimization was started from
an infeasible design, In the initial design, all of the cross-sectional
areas were set 1o 322.58 mm* (i.e.. 0.5 in’). This initial point vio-
lated all of the displacement constraints,

Schmit Schimit Arora
andd and and Chao Lee and Fasshy and

Group Venkayya Farshi Mium Haug ctal, Geem Sedaghati  Alnia-ziaz

Number  Members  (1971) (1974) (1976) (1976) (1984) (2004) (2005) (2010) GA CONAP
| Al:A4 0.1610 0.1580 0.1570 0.1564 0.1570 0.1560 0.1565 0.1565 02874 01567

2 ASIAI2Z 03370 0.5940 0.5460 05404 0.54%0 0.5470 0.5456 0.5457 07907  0.5371

3 AlXAL6 03770 0.3410 04110 04110 0.4060 0.4420 04104 0.4106 0.2967 04155

4 AITAIS 05060 0.6080 0.5700 0.5712 0.5550 0.5900 0.5697 0.5697 03300 05707

5 Al9:A22 06110 0.2640 0.5230 0.5263 0.5130 0.5170 .5237 0.5237 03296 05289
6 A23AZ0 05320 0.5480 0.5170 05178 0.5290 0.5040 (.5171 0.5171 06411 05125

7 AILAX 01000 0.1000 0.1000 01000 0.1k 01000 01000 01000 D158 01000
8 ASLAZM 0000 0.1510 O, 1000 0. 1000 0, 1400 G010 0. 1000 0.1000 0.1043 0.1000
u A3T:A40  1.2460 1.1070 1.2670 1.2702 1.2520 1.2290 1.2684 1.2685 0.8205 1.2681

10 A4LA4S 05240 0.5790 0.5120 0.5124 0.5240 0.5220 05117 05018 0.6931 05112

1 AAS2 01000 0.1000 0, 1000 0.1000 0.1000 (.1000 0,1000 0.1000 0.1033 01K

12 ASEASE 01000 0. 1000 01000 01000 0.1000 {.1000 0.1000 01000 01049 . 1000

13 ASS:ASS L8180 20780 1 8850 1.8656 1.8320 1.7900 1.8862 1.8864 1.5597 1.9266

14 ASO:AGG 05240 0.5030 05130 05131 0.5120 05210 05123 0.5122 07378 05134

15 AGT:ATO 01000 01000 01000 01000 01000 0, 1000 01000 (106X 0.1418 0, 1000

6 ATEAT2 01000 0.1000 01000 0. 1000 0.1000 0. 1000 0.1000 0.1000 01014 01000

Weight (N) L695.58 172863 168864 168855 168855  1,686.99:°  1.688.55 1,688.68 19244 | 68873

*Some of the constraints were slightly violated.
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The iteration history of the 72-bar truss, as shown in Fig. 9,
shows that CONAP converged in four iterations. The CONAP al-
gorithm found the optimal weight to be 379.6575 Ibs, and there
were no constraint violations after 132 structural analyses (one
analysis for evaluation of the constraints and 32 analyses for cal-
culation of the sensitvities at each iteration), which took 200 s, The
initial design, with a 12.4% greater cost, violated all of the displace-
ment constraints. Optimal designs reported in the literature, in
which the initial design variables have been assumed to be
0.1 in?, are listed in Table 5 together with the optimal design from
CONAP. It can be observed that the optimum design weights ob-
tained from the algonithms developed by Schmit and Miura (1976),
Arora and Haug (1976), Chao et al, (1984), Sedaghati (2005), and
Farshi and Alinia-ziazi (2010) are almost the same as that obtained
from CONAP. The problem was also solved using a GA algonithm,
The GA program was run eight times to achieve the global mini-
mum, on the same computer which had been used for the run of the
CONAP program, Total execution time of these runs was 116.5 s,
Among them. the best solution. for which the objective function
value was less than that of other solutions, is been reported in
Table 5. For this solution, execution time is 12.9 s and the objective
function value is cqual to 1.924.4 N: that is about 14% heavier than
for the CONAP design. The results show that the computational
effort of GA is less than that of the CONAP: however. the minimum
weight resulting from CONAP is less than the minimum weight
resulting from GA.

Conclusions

In this paper, a new method for structural optimization is devel-
oped. In this method, named Consistent Approximation (CONAP),
the design sensitivities with respect o the design variables are used
to explicitly express the objective function and the design con-
straints. It is shown that the power parameters used in the approxi-
mated functions can expand (or constrict) the design space. This
property makes the proposed method consistent with vanious struc-
tural problems. It is also shown that existing approximation meth-
ods can be generated as specific cases of the proposed method by
selection of specific values of the power parameter used for the
approximated functions.

It is not claimed that the results obtained for the test problems
are ypical. Additional aspects, including discrete design variables
and non-linear structural behavior, need to be investigated to gen-
cralize the results presented in this paper. For many problems,
CONLIN can be very efficient. However, it is believed that the re-
sults obtained demonstrate the flexibility and consistency of
CONAP. which gives the user some control of the convergence
of the overall optimization process. From the results of the evalu-
ated numerical examples. it is shown that the computational effont
of CONAP is less than that of CONLIN,
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