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Abstract 

The paper aims at undertaking a Bayesian evaluation of surrogate endpoints which has the 

potential to decrease the exposure of patients while at the same time being cost-effective. As 

such, the current research, with an individual-level evaluation, intends to introduce a new 

Bayesian criterion based on some of the previous research works. Taking into account the 

surrogate and the true endpoint variables, the statistics that derived for the exponential family of 

distributions particularly is for a binomial one. In due process, the paper shows the relationship 

between the Bayesian likelihood reduction factor (LRFB) and its frequentist counterpart (LRF). 

Finally, to show some intuition in the nature of LRFB, it has been applied in a multi-center 

simulation and a uni-center real example. In real data, LRFB is carried out to evaluate the 

immunological factor IL-18 BPa Serum in the long-term effect of skin lesions of people who 

were exposed to mustard gas. 
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1. Introduction 

Gradual application of biomarkers as the surrogate endpoints in medical and pharmaceutical 

research has stemmed out of various reasons, a complete list of which can be found in a review 

paper by Weir and Walley (2006). In fact, Prentice (1989), in his seminal paper, for the first time 

highlighted the statistical evaluation of the surrogates. As such, he proposed the first criterion to 

test the hypothesis. Freedman et al. (1992) extended the idea further to estimate the degree of 

validity of a surrogate endpoint. 

Using a potential outcome frameworks introduced by Frangakis and Rubin (2002), later 

researchers like Li and Elliott (2010) proposed a Bayesian estimation to evaluate the causal 

probabilities associated with the cross-classification of potential outcomes of S and T when both 

are binary. To evaluate the potential outcomes, they preferred a log-linear model. 

With respect to meta-analysis, Buyse et al. (2000) followed the Prentice criterion to evaluate the 

validity of surrogate. Alonso et al. (2004) found a lack of unified approach for applying these two 

criteria when according to them; neither the biomarker nor the true endpoint is normally 

distributed. Consequently, they proposed a likelihood reduction factor (LRF) which is not 

restricted to the normal variables. This measure of individual-level association could be used 

under any generalized linear model for a single trial or meta-analysis. In other words, with a 

generalized linear model, the LRF is derived from modeling the effect of treatment on the 

biomarker and the true endpoints. It can be scaled between 0 and 1 while at the same time does 

not have the PTE weaknesses i.e. lack of interaction between the surrogate and the true endpoints 

as alluded above. 

Following the Bayesian approach, the current paper uses the LRF to evaluate biomarkers as the 

surrogate endpoints. Indeed, the Bayesian LRF denoted by LRFB benefits from the prior 

knowledge on the situation under study. The proposed study is mainly concerned about the 

exponential family of distributions for the surrogate and the true endpoint variables.  

The rest of the paper is as follows. Section 2 deals about methods applied during the course of 

study and how the LRFB criterion is derived for the exponential family. Section 3 presents a 

simulation study with the aim to measure its performance. Section 4 illustrates the proposed 

methodology incorporating a real example concerning patients suffering from the mustard gas 

exposure. Finally, section 5 concludes with a discussion.  

 

2. Methods 

In order to lay down the foundation, the authors briefly took into account the prerequisite 

materials for the proposed study. As mentioned before, Alonso et al. (2004) employed two 
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generalized linear models to explain the effects of treatment on the surrogate (S) and true (T) 

endpoints. 

 2.1 The model 

Taking into account the ideas of Alonso et al, at the ith trial, the two following generalized linear 

models (a reduced and a full model) were considered:  
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Where it is assumed that i=1… N trials are available in the ith of which j=1, … ni subjects are 

enrolled. Si denotes the variables of interest; jth is the value of surrogate marker which subjected 
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The link function g(.) is appropriately chosen to relate the explanatory variables the conditional 

mean of the true endpoint variable.  

Based on this formulation, Alonso et al. (2004) presented the likelihood reduction factor (LRF) 

as: 
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Where N is the number of trials, each involving ni subjects, and Gi
2
 is the likelihood test ratio for 

comparing models (1) and (2) within trial i. The LRF equals R
2

 indiv in a special case of the 

normally distributed surrogate and the true endpoints. 

It is worth mentioning that the Bayesian approach is beneficial with respect to its simplicity, 

exactness and coherency. And, the Bayesian inference provides a formal mechanism for 

incorporating and updating the prior knowledge (Link and Barker, 2010). As such, the Bayesian 
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approach could be useful while dealing with binary and count data with asymmetric regression 

coefficients. In other words, in clinical studies, the Bayes factor seems to be more appropriate 

criterion than the non-Bayesian statistics. Consequently, a new criterion (LRFB) is proposed to 

evaluate the validity of surrogate biomarkers at individual level in a single or multiple trials. This 

criterion is based on the Bayes factor as well as the approximation of Schwartz Criterion (BIC) 

(Robert 2001). 

2.2 The Bayesian approach 

           Considering the models (1) and (2) wherein the true endpoint variable jth subjected to ith trial, Tj, it 

is assumed to follow an exponential family distribution. The generic variable y is said to have an 

exponential family distribution if its probability is expressed as: 
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Where, 
T

s1
),,(   is the natural parameter vector and }V,....,V{V

s1
  is the vector of 

sufficient statistics. The quantities Tj and β in (1) and (2) are identified by y and η in (4), 

respectively. 

To perform a Bayesian analysis, one needs to specify priors for elements β. The proposed study 

assumed some independent priors for j 's. Under the Bayesian paradigm, since the prior 

distributions for parameters are assumptions, the effects of priors on inference can be evaluated 

by trying some of them (Link and Barker, 2010). In this study, normal priors have been 

considered. Thus, one option is ),(N~
2

iii  . In case of lack of reliable prior knowledge, one 

may use a non-informative prior. In fact, the Bayes factor as a model criterion has been advocated 

by previous researchers such as Kass and Raftery (1995), and Berger and Perrichi (1996). For 

comparing the full and the reduced models, the Bayes factor BFB21 was considered which is 

defined in each center (i) as: 
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Where )MT(p ki  is the marginal distribution of Ti under model k ( k=1, 2) that can be shown as:  

 

  d)M()M,T(p)MT(p kkiki                    (6) 
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Where )M( k is the prior function on the . In the exponential family, a closed form of (6) is 

available for the conjugate priors. In general, it does not have a closed form, but a good 

approximation can be provided via Laplace expansion, Tierney and Kadane (1986), Erkanli 

(1994), and Kadane and Lazar (2004), in a way that for ith center and kth model, the equation (6) 

via Laplace expansion is approximated as: 
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Where β is substituted by its MLE, kq is the dimension of   under the model k, and k̂  is the 

inverse of the corresponding negative Hessian matrix. Alternatively, k̂  can be the inverse of the 

observed or expected Fisher information matrix, evaluated at the maximum likelihood estimation 

of β. According to Kass et al. (1990), this approximation is good enough for sample sizes (n) of 

greater than kq20  up to )n(o 1 . 

Applying (7) in the numerator and denominator of (5), the logarithm of Bayes factor for ith center 

is approximated as: 
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Where, )M,T(p)M,T(P 2i1i12,in 


is the likelihood ratio of model 1 to model 2 for center i 

with sample size ni. Thus, there found to be close relations between BF and n. In a special case 

where )( )k(
k   is degenerated at )( )k( and P(MB1B)=P(MB2B)=

2

1
, the Bayes factor reduces the 

likelihood ratio, implying that the frequentist test is a special case of the Bayesian. In (3), Gi
2
 is 

the same as Bni,12B for the ith center. In fact, it is equivalent to BFBi,12. 

Schwartz’s Bayesian information criterion (BIC) is yet another vastly used criterion for the model 

choice as suggested by Smith and Spiegelhalter (1980), Nishii (1984), Haughton (1988), Kass and 

Wasserman (1995). In the present study, it is denoted by ‘Sch’. Here, Schwartz’s Bayesian 

information criterion for ith center is: 
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Kass and Wasserman (1995) established that for the prior ),0(N~)(   with )(I   , the 

Schwartz criterion can be used as an asymptotic equivalent for log(BF) with the relative error of 

)n(o 21
. Thus, for the prior N ),0(  , the Schwartz criterion can be viewed as a good 

approximate of log(BF).                                                                                               

The current paper is searching for an exact link between BF and ‘Sch’ and hence: substituting (9) 

in (8) in each center, one can have  
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Where )ˆ,ˆ(K )2()1(   is remainder terms in (10), 

 

)
)ˆ(

)ˆ(
log(log

2

1
)2log()qq(

2

1
)ˆ,ˆ(K

)2(

2

)1(

1

2

1

12

)2()1(








          (11) 

 

Consequently, one obtains 
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Such that )ˆ,ˆ(K2)ˆ,ˆ(K )2()1()2()1(  . As the equation (12) shows the relations between G
2
 

and log (BF12), the paper proceeds to use it in evaluating the surrogate endpoints.  

Prentice (1989) believed that one requires )ST(p)Z,ST(p  while evaluating the validity of the 

surrogate. And, based on Kent’s (1983) suggestion, the LRF measures partial correlation between 

S and T, accounting for the effect of Z, fitting the models (1) and (2) by equation (3). In the 

Bayesian approach, this correlation is computed through the comparison of models in each center 

by BFi. Since )n(o)ˆ,ˆ(K 21)2()1(  as n  , it can be shown that  
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LRFB like LRF can be employed when multiple markers are studied as surrogates and when there 

is a nonlinear relation between S and T. 

Close examination of the equation (13) reveals that when the smallest 
i

n , the 

term 0)log( ii nn . It can be ignored for moderate to large sample sizes. Also, the 

interpretation of LRFB is similar to that of BF21. Indeed, if the model (2) is not better than the 

model (1), it implies that 1BF
21i
 , 0)BFlog(
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  for all i and hence; LRFB=0. If 0)ZS,T(  , 

it implies that S is not a good surrogate for T. The proposed study proves the situation Lim 

  by a theorem mentioned in appendix. However, if BFi21 is large enough, 1LRF
B
 , 

favoring S as a good surrogate.  

2.3. Exact Value of Bayesian Likelihood Reduction Factor in the Exponential Family of 

Distributions 

Based on the equations (3) and (12), the exact form of LRFB is shown as: 
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In moderate samples, one needs to compute the exact value of LRFB relative to their priors 

2,1k),M( k
)k(

i    and i=1,2,…,n This, however, requires the computation of the remainder 

)ˆ,ˆ(K
ii n,2n,1   in (11). In the present work, three types of priors have been considered each of 

which reflects the degrees of prior knowledge available to the researchers: 
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2 , i.e., 
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With this approach, if the reference prior (ii) is chosen, it needs the Fisher information matrices 

)(I )k(
i for (1)

 and (2),
 in the contexts of models (1) and (2) in each center i. This part shows how 

to compute )(I )k(
i for 3 forms.  
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3- Here, supposing T as a response variable with a distribution belonging to the exponential 

family or presuming that the trials, in the contexts of models (1) and (2), have been performed in 

N centers. Consequently, the information matrix )(I )k(  for )k( of the generalized linear models 

under the model k is a square matrix with dimension )k(  whose entries are defined below. It is 
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canonical link function, the information matrices are same and the approximation is better.  
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Table 1 indicates the exact values of )ˆ,ˆ(K )2()1(   for the exponential family of distributions, in 

general, and {within the braces} for the binomial distribution, in particular. Now, the exact value 

of LRFB can be computed for moderate sample sizes by substituting )ˆ,ˆ(K )2()1(   as in equation 

(14). For instance, this value for reference normal prior is  
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3. A Simulation Study 

In the present study, a simulation example has been used with the help of R-software to show the 

behavior of LRFB against its frequentist counterpart LRF to ascertain the advantage of the 

proposed criterion in multi-center. The generated data simulate 150 different multicenter trials 

datasets at 3 positions: 

1) 50 datasets with 5 centers in each set,  

2) 50 datasets with 10 centers in each set,  

3) 50 datasets with 50 centers in each set,  

500 unicenter sets of data are generated too. 

Each center contains 500 observations, with half of them for treatment and half of them for 

observing the controlled groups. When S and T lack strong relations (0.5<LRF<0.6), it is 

assumed that the treatment has a discernible effect on both. The clinical endpoint variable follows 

a binomial distribution with success probability equals to 0.8 for the treatment and 0.1 for the 

control. The surrogate endpoint is simulated as a continuous variable for four possible situations: 

(T=0, Z=0), (T=1, Z=0), (T=0, Z=1), (T=1, Z=1) from normal distributions with different means 

and variances.  

To evaluate the surrogacy value, the current research initially fit the models (1) and (2) into the 

generated data (T, S, Z). Here, the logistic link function is used. Next, from the equation (5), the 

Bayes factor BFB21B is computed for 8 different values of the prior variance
2 . 

Finally, LRFB is computed numerically from the equation (13) by N=50 and ni=500 i=1, …, 50 

for each multicenter dataset. The corresponding LRF is computed from equation (3) where G
2
 is 

the likelihood ratio statistic. Comparing models (1) and (2) in all 500 unicenter datasets, their 

results are computed separately with N=1, n=500. Table 2 gives the means of LRF and LRFB for 

various choices of prior variance
2 . 
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Table 2 and Figs. 1 & 2 make it clear that LFR is almost larger than LRFB. The difference 

between the two becomes zero and results of both the Bayesian and frequentist approaches 

approximately equal when the variance of prior distribution goes to infinity. In fact, the LFR can 

be viewed as a special case of LRFB. 

 

4. Application 

The proposed method is illustrated by a real example concerning the validity of immunologic 

factor “IL-18 BPa Serum” as a surrogate for long-term effect of dermatologic lesions caused by 

the mustard gas exposure during the Iraq-Iran war. The clinical endpoint T is a binary variable 

denoting the existence of Xerosis, while the surrogate is a continuous variable, measuring the 

amount of IL-18 BPa in the patient’s blood. IL-18 BPa is precisely measured in the laboratory 

and recorded for each subject by milligram (IL-18 BPa/100). The explanatory variable Z is an 

indicator variable with Z=1 for the exposed subjects and Z=0, for otherwise.  

The data are borrowed from a large scale epidemiologic study in a war zone (Ghazanfari et al. 

2009). The study includes 461 people including 339 from the town of Sardasht who were injured 

during chemical bombardments of the area, and 122 persons from the town of Rabat as the 

control group. Among those exposed, 159 were hospitalized and 180 were treated as outdoor 

patients.  

The controlled group was similar to the exposed one in terms of their age or ethnic, cultural and 

religious characteristics, even the amount of stress caused to them while living in the war zone. 

The only difference between these two population groups was that the Sardasht was subjected to 

chemical bombardment by Iraqi forces. 

Now, we are to evaluate the validity of IL-18 BPa factor as a surrogate for the long-term effect of 

Xerosis. With logit link functions used in the models (1) and (2), we therefore have:  

i
TIZ
i Z365.1514.1)(Logit                   (P-value<0.0001) 

ii
Z,S,TI

i S045.0Z334.1706.1)(Logit                (P-value=0.024) 

Other explanatory variables did not have a discernable effect on the response, hence; are deleted 

from the models. It must be noted that we have only one big center, i.e., N=1, n=461, and since 

there is only one surrogate, 1qq
12
 , therefore, 



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 To compute the Bayes factor applying R software for the above models, normal priors, 

),0(N~
2

jj  were used. The numerical results were stable after 1000 iterations. The value of 
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LRF from equation (3) is 1.05%, and the value of LRFB depended on the prior variance 2 . As 

Fig. 3 shows, the values ranged from 1.03% up to 4.84% corresponding to the values of 90
2

j   

up to 0
2

j  . Both approaches show a low validity for this surrogate hence; no significant 

relations could be found between the laboratory measurements of IL-18 BPa and Xerosis 

existence, after adjusting the mustard gas exposure. 

 

5. Discussion 

In this study, we have tried to explore a Bayesian approach with the aim to evaluate the validity 

of a surrogate at the individual level. Prior knowledge is inevitably used for all inferences, no 

matter Bayesian or otherwise, if only to provide a context in which “data” is more than a list of 

numbers or symbols. The legitimate inference always acknowledges and ponders its assumptions, 

thus reducing the chance of self-deceit as well as the appearance of biased advocacy. The 

Bayesian inference is not merely data analysis, but analysis of data and priors. This paper is based 

on the framework laid down by Prentice (1989) which was later modified by Buyse and 

Molenberghs (2000) and then extended further to meta-analysis for multi-center trials by Alonso 

et al. (2004).  These efforts led to the likelihood reduction factor, LRF, which is employed to 

evaluate the validity of surrogate at the individual level. A viable alternative is the Bayesian 

approach which we have followed here and compute the LRF via the Bayesian approach, namely 

LRFB. . We used an approximation to BIC criterion in model choice. Preference given to BIC is 

based on the argument that the likelihood ratio statistic G
2
 should not be considered alone without 

its degrees of freedom. While BIC itself takes care of the degrees of freedom, it can be used in 

moderate samples too. Furthermore, Bayes factor makes sense that there should be a simple 

mechanism for describing the accumulation of evidence in favor of one model over another (Link 

and Barker, 2010).  

Due to sensitivity of the test results to the employed prior in a Bayesian analysis, one must be 

careful in choosing a prior. To illustrate this point, we have simulated different trials with 

different priors in the logistic regression models. The results show that the LRF can be viewed as 

a special case of LRFB relative to a certain prior. Hence, the importance of prior knowledge in the 

Bayesian analysis is shown. 

The proposed procedure has been illustrated in a real example concerning the skin lesions of 

people who exposed to the chemical warfare, i.e. mustard gas used by Iraqi forces during the 

Iraq-Iran war. The results concerning the evaluation of “IL-18 BPa Serum” as a surrogate for 

long-term effects of skin lesions in injured persons have been obtained.  
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Appendix 

Theorem: For large sample size, when we have  )2()1(


 (small G
2
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                  LRFLimLRFB          

    

Proof: We have from equation (10)  
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And proof is complete. 
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Table 1.The exact amounts of )ˆ,ˆ(K )2()1(   based on different priors for exponential family true 

endpoints. (The results for the special case of Binomial distribution are given within braces) 
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Table 2.Mean and standard error of LRF and LRFB based on 8 different values of prior variance 

2  in each dataset for 150 multicenter and 500 unicenter simulated dataset 

50 50 50 500 Number of Simulated 

dataset 

5 10 50 1 Number of Center in 

each dataset(N) 

ni=500 

i=1,…,5 

ni=500 

i=1,…,10 

ni=500 

i=1,…,50 

n=500 Number of Subjects in 

each center 

0.548155 0.547933 0.548610 0.547774 LRF 

0.546028 0.545830 0.546479 0.545626 Var = 1000  

 

 

LRFB 

0.543980 0.543709 0.544438 0.543605 Var = 100 

0.519942 0.519572 0.520482 0.519660 Var = 10 

0.501507 0.500774 0.502049 0.501217 Var = 5 

0.423415 0.422184 0.423868 0.422984 Var = 1 

0.223791 0.222757 0.224389 0.223600 Var = 0.1 

0.096751 0.096758 0.097471 0.096893 Var = 0.01 

0.083364 0.083837 0.084310 0.083666 Var =0.001 
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Figure 1: Plots of individual level criterion of surrogacy for LRF and LRFB relative to various 

values of the prior variance in 500 different unicenter datasets. 

 

 



650              S. Jalaie, S. Faghihzadeh, F. Eskandari, T. Ghazanfari and M. R. Meshkani 

Number of centers

50105

M
e

a
n

.6

.5

.4

.3

.2

.1

0.0

LRF

LRFB(var=1000)

LRFB(var=100)

LRFB(var=10)

LRFB(var=5)

LRFB(var=1)

LRFB(var=.1)

LRFB(var=.01)

LRFB(var=.001)

 

Figure 2: Plots of mean of individual level criterion of surrogacy for LRF and LRFB relative to 

various values of the prior variance in 150 multicenter different datasets 
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Figure 3: Plot of LRFB against the different values of the prior variance used for evaluation of IL-

18 BPa as a surrogate for Xerosis due to long term effects of mustard gas. (Reference line 

indicates LRF) 


