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Abstract The aim of this study is applying nonlinear

methods to assess changes in brain dynamics in a placebo-

controlled study of midazolam-induced amnesia. Subjects

injected with saline and midazolam during study, per-

formed old/new recognition memory tests with EEG

recording. Based on previous studies, as midazolam causes

anterograde amnesia, we expected that midazolam would

affect the EEG’s degree of complexity. Recurrence quan-

tification analysis, and approximate entropy were used in

this assessment. These methods compare with other non-

linear techniques such as computation of the correlation

dimension, are suitable for non-stationary EEG signals.

Our findings suggest that EEG’s complexity decreases

during memory retrieval. Although this trend is observed in

nonlinear curves related to the midazolam condition, the

overall complexity were greater than in the saline condi-

tion. This result implies that impaired memory function

caused by midazolam is associated with greater EEG’s

complexity compared to normal memory retrieval in saline

injection.
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Introduction

One way to study memory is comparing the performance

of normal subjects to subjects with impairments (e.g.

Cohen and Squire 1980; Scoville and Milner 1957;

Weiskrantz 1970). Differences in performance can be

used to infer that a given impairment might affect a

specific brain mechanism or cognitive process that is

thought to underlie memory. A number of conditions

lead to memory impairment (broadly defined), but the

focus of this research is to investigate changes in brain

dynamics in impairments of episodic recognition mem-

ory due to the temporary influence of the drug

Midazolam.

Midazolam is a short-acting bezodiazepine central ner-

vous system (CNS) depressant. Benzodiazepines are drugs

with anxiolytic, sedative, and muscle relaxant properties

(Buffett-Jerrott and Stewart 2002; Curran 1986). These

drugs also produce ‘anterograde amnesia’—forgetting of

information learned after drug administration. In contrast,

benzodiazepines do not induce ‘retrograde amnesia’—for-

getting of information learned before drug administration

(e.g. Twersky et al. 1993).

Midazolam is known to impair the explicit memory

abilities of adult patients undergoing conscious sedation

while leaving their implicit memory abilities intact (e.g.

Polster et al. 1993). It appears that midazolam induces

dissociation between explicit and implicit memory

(Stewart et al. 2006). Furthermore some studies found that

midazolam disrupts the mirror-patterned word-frequency

effect for recognition memory by reversing the typical hit-

rate advantage for low-frequency words (Hirshman et al.

2002). Using a computational model, Malmberg et al.

(2004) suggest that midazolam decreases the accuracy with

which memory traces are stored.
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Memory theories based on such observations might,

however, be constrained by the auxiliary assumptions

concerning how a given impairment affects brain and

cognitive processes. That is, deeper insights might be

available by combining such empirical explorations with

EEG analysis.

Event Related Potentials (ERPs) are specific patterns of

electrical changes extracted from EEG, which are known to

correspond with cognitive processes. They can inform our

understanding of information processing in the brain

(Donchin et al. 1978). For example, many studies on rec-

ognition memory used ERP signals have shown that ERPs

reliably differ between correctly classified old (items that

have already been studied, Called ‘‘Hits’’) and new items

(that have not previously been studied and usually called as

‘‘Correct Rejections’’) starting *300 ms after stimulus

onset (Friedman et al. 2000; Rugg and Allan 2000). Several

studies have reported two different ERP components: a

mid-frontal ERP old/new difference peaking at *400 ms

(‘‘FN400 old/new effect’’) and a parietal old/new differ-

ence peaking at *600 ms (‘‘parietal old/new effect’’). The

FN400 ERP effects analyzed within superior, anterior

regions of interest (Fig. 1, LAS and RAS) from 300 to

500 ms, has significant difference whit more positive

amplitudes for old than new items. Furthermore, the pari-

etal ERP effects within superior, posterior regions of

interest (Fig. 1, LPS and RPS) from 500 to 800 ms shows

greater amplitudes for old items than new one. These

effects were observed for old/new items in midazolam.

Especially, in parietal effects, there was a significant dif-

ference between saline and midazolam conditions. The

average ERPs for all subjects/trials has been shown in

Fig. 2.

Since EEG results from a spatial integration of

activity of large formations of neurons (Nunez 1981),

and they are known to be nonlinear devices because of

their sigmoid activation function (Kandel et al. 1995), it

seems EEG should be treated as nonlinear time series.

Applying nonlinear techniques of data analysis to EEG

measurements has a long tradition. Most of these efforts

have been done by computing the correlation dimension

of spontaneous EEG (e.g. Babloyantz et al. 1985; Rapp

et al. 1986; Gallez and Babloyantz 1991; Lutzenberger

et al. 1992; Pitchard and Duke 1992). While correlation

Fig. 1 Location of regions of

interest used in analysis are

shown by arrows
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dimensions are only well defined for stationary time series

generated by a low dimensional dynamical system moving

around an attractor, these measures fail in investigating EEG

(Sutton et al. 1965), because they are non-stationary by

definition [time-dependent changes of EEGs power in dif-

ferent frequency bands, which is modeled by allowing the

variances of the driving noises to change with time (Wong

et al. 2005)].

Applying the concepts of the recurrence quantification

analysis (RQA) to EEG data could be one way of dealing

with this problem. RQA is a non-linear analysis method

based on recurrence plots (RPs). The main advantage of

this method is that it can be used for non-stationary signals.

RQA has been used in previous EEG studies. For example

Thomasson used RPs on EEGs to predict seizure (Thom-

asson et al. 2001). Marwan et al. applied extended RQA to

data from single-trials of the oddball experiment, and

detected transients in EEG signals around 300 ms, corre-

sponding to p300 component (Marwan and Meinke 2002;

Marwan et al. 2007). The N400 is also detected using

Order Pattern Recurrence Plots by Schinkel (2007). Instead

of using the spatial closeness between phase space trajec-

tories, order patterns recurrence plots use order patterns p

for the definition of a recurrence.

The approximate entropy (ApEn) is also useful for short,

noisy time series because it is capable of providing a

robust, model-independent, information-theoretic estima-

tion of dynamical complexity (Pincus 1991, 1995). Prior

studies have shown that EEG-based ApEn can be a sensi-

tive discriminator of various neurophysiological states or

conditions such as sleep, anaesthesia, epilepsy, depression

and Alzheimer’s disease (Radhakrishnan and Gangadhar

1998; Hornero et al. 1999; Bruhn et al. 2000; Levy et al.

2003; Abasolo et al. 2005; Burioka et al. 2005a, b). In the

study of Chen et al. 2008, there was a significant difference

between ApEn computed for deep coma and brain death

conditions. According to previous studies, the ApEn mea-

sures the complexity of the EEG and may indicate the

degree of arousal (Stam 2005).

In a previous study we used RQA to assess brain dynamic

changes during an intact memory retrieval process (Talebi

and Nasrabadi 2010). We used EEG signals from subjects

who were injected with Saline. We found a decrease in brain

complexity during memory retrieval. Our measurements

expressly showed a complexity reduction onset 400 ms after

delivering of the recognition memory test stimuli.

In this paper, we used RQA and ApEN to investigate

changes in brain complexity during impaired memory
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Fig. 2 ERP waveforms. Grand-averaged ERPs are shown for each condition (saline/midazolam-old/new), averaged within the regions of interest

used in the analyses. Region locations are shown in Fig. 1 (LAS, RAS, LPS, RPS)

Cogn Neurodyn

123



performance, and compare it with the result of our previous

study for intact memory. Data was from a placebo-con-

trolled study: Subjects were injected by saline and/or

midazolam immediately prior to studying a list of words.

After the drug had worn off, approximately 70 min later,

subjects were asked to label the test words as old or new.

Based on previous studies we hypothesize that midazolam

would affect the EEG. This study addresses the question of

whether the complexity of brain dynamics would also

change during impaired memory performance. Are there

differences between old and new nonlinear features in

midazolam condition, and if so, do they differ from saline?

Finally, are brain dynamics affected by midazolam more or

less complex than the saline condition?

The first section off this study consists of a short

introduction into RQA and ApEn. In the next section this

method will be used for single-trial EEG recorded during

memory recognition test in saline/midazolam administra-

tion. The nonlinear measures will be computed for these

signals and finally these measures compared in four dif-

ferent Old/New and saline/midazolam conditions.

Method

Data

The data used in this article was previous published

along with a standard ERP analysis (Curran et al. 2006).

Twenty students of University of Colorado participated

in the experiment. Each subject participated in two ses-

sions (once with saline and once with midazolam,

double-blind). Stimuli were 480 low-frequency English

words. The words were divided randomly into four

120-word sets that appeared equally often in each con-

dition (old/new-by-midazolam/saline). Each word was

displayed in the center of a computer monitor for 4 s,

with a 1 s inter-word interval. During the recognition

memory task, scalp voltages were collected with a 128

channel high-input impedance amplifier. Amplified ana-

log voltages (0.1–100 Hz band-pass) were digitized at

250 Hz. Recording starts 100 ms before stimulus onset

and continued 1,000 ms after that. The EEG was digi-

tally low-pass filtered at 40 Hz. Trials were discarded

from analyses if they contained incorrect responses, eye

movements (electrooculogram over 70 lV), or[20 % of

channels were bad (average amplitude over 100 lV or

transit amplitude over 50 lV). EEG was measured with

respect to a vertex reference (Cz), but an average-ref-

erence transformation was used to minimize the effects

of reference-site activity and accurately estimate the

scalp topography of the measured electrical fields (Picton

et al. 1995; Dien 1998).

Data analysis

Recurrence quantification analysis

The method of recurrence plots (RP) was introduced to

visualize the time dependent behavior of the dynamics of

systems, which can be pictured as a trajectory in the phase

space (Eckmann et al. 1987). It represents the recurrence of

the m-dimensional phase space trajectory xi [Rm (i = 1,…,

N, time discrete) to a certain state. The main step of this

visualization is the calculation of the N 9 N-matrix

Ri;j :¼ e� xi
!� xj

!�

�

�

�

� �

; i; j ¼ 1; . . .;N; ð1Þ

Where, xi
! is a trajectory of system in its m dimensional

phase space, e is a cut-off distance, ||.|| is the norm of

vectors,H is the Heaviside function and N is the number of

states. Usually the phase space has to be reconstructed from

the original one-dimensional time series (Takens et al.

1981, Packard et al. 1980). Because analysis of system’s

trajectory in phase space is dependent on the embedding

dimension, m, it has to be chosen appropriately.

In a recurrence plot there are three small scale struc-

tures: single points which can occur if states are rare; a

diagonal line of length l, Riþk;jþk � 1
l� 1

k ¼ 0

�

�

�

�

� �

, occurs

when a segment of the trajectory runs almost in parallel to

another segment (i.e. through an e-tube around the other

segment), and a vertical (horizontal) line with v the length

of the vertical line (Ri;jþk � 1
v� 1

k ¼ 0

�

�

�

�

), marks a time

interval in which a state does not change or changes very

slowly. In order to go beyond the visual impression yielded

by RPs, several measures of complexity which quantify the

small-scale structures in RPs have been proposed in some

studies (e.g. Webber et al. 1994; Marwan et al. 2002) and

are known as recurrence quantification analysis (RQA).

A computation of these measures in small windows (sub-

matrices) of the RP moving along the LOI1 yields the time

dependent behavior of these variables. Recurrence rate

(RR), based on the recurrence point density, is simply the

average number of neighbors that each point on the tra-

jectory has in its e-neighborhood. The measures based on

diagonal line distribution are determinism (DET), Average

diagonal line length (Lmean or\L[), the longest diagonal

line (Lmax) and entropy (ENTR). The diagonal line distri-

bution encodes main properties of the system, such as

predictability and measures of complexity. The more a

system is determined the greater amplitude of these mea-

sures. Finally measures based on vertical lines structures

are laminarity (LAM), trapping time (TT), and maximal

1 Line Of Identity Ri;i � 1 N
i¼1

�

�

� �

.
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length of the vertical lines (vmax). Measures based on ver-

tical lines, marks state where trapped for some time. This is

a typical behavior of laminar states.

As was mentioned before, for RQA, the reconstructed

signal in phase space is required. Embedding dimension, m,

is an important parameter and has to be chosen correctly.

Correlation dimension and false nearest neighbors are two

common approaches to estimate the smallest sufficient

embedding dimension. Both of these methods return the

same m = 4 for saline and midazolam EEGs (EEGs

recorded during saline and midazolam sessions). We used

spatial embedding to reconstruct the state space of the

system. In this case the m coordinates of the state space

vectors are taken as the values of the m time series at a

particular time; by repeating this for consecutive time

points a series of vectors is obtained. The connection

between successive vectors defines the trajectory of the

system. In this case the embedding dimension m (4 in this

study) is equal to the number of channels used to recon-

struct the vectors. We took central electrode from each

region [LAS, RAS, LPS and RPS (Fig. 1)] respectively.

These four regions were originally used in Curran et al.’s

(2006) ERP analysis. Measures of complexity were com-

puted using moving window along the LOI, yielding the

time dependent behavior of these variables. Computing

these measures depends on several parameters. The most

important of them is threshold, e. A common method is to

choose e as 10 % of the maximum phase space diameter,

which in this article is used. In addition parameters

lmin,vmin, size of moving window w, and Thiler window

size should be selected properly (Thiler and spurious 1986,

Marwan and Meinke 2002). In this study we considered

vmin = lmin = 4, moving window size w = 200 ms, and

Theiler window size 2. RQA computation was performed

for both saline and midazolam EEGs with the same

parameters (e.g. embedding dimension, e, lmin,vmin, etc.).

Approximate entropy

ApEn is an index that quantifies the irregularity or com-

plexity of a dynamical system. It is particularly effective

with short and noisy time-series data. ApEn measures the

logarithm of the frequency with which neighborhoods of

temporal patterns of length m within a certain distance r in

phase space remain close together (\r) for patterns that are

augmented by one time point (i.e. for patterns of length

m ? 1). Thus, smaller values of ApEn imply stronger

regularity or persistence in a time series. Conversely, larger

values of ApEn signify greater fluctuation or irregularity in

a time series.

ApEn is computed from the correlation integral Cm
i rð Þ,

which represents the number of points within a distance r

from the ith point of the time series when the signal is

embedded in an m-dimensional space, that is, when

embedded in a phase space with embedding dimension m:

Cm
i rð Þ ¼ ðN � m� 1ð ÞÞ�1

X

N� m�1ð Þ

j¼1

Hðr � Xi � Xj

�

�

�

�Þ ð2Þ

Where HðtÞ is the Heaviside function (if t C 0, H tð Þ ¼ 1;

if t\ 0,H tð Þ ¼ 0) and Xi and Xj are vectors in phase space,

embedded from the time series.

These two vectors represent size-m vectors (or temporal

patterns) of x values at regular intervals, beginning with the

ith and jth points, respectively. ApEn is defined as

ApEn m; rð Þ ¼ Um rð Þ � Umþ1ðrÞ ð3Þ

Where

Um rð Þ ¼ ½N � ðm� 1Þ��1
X

N� m�1ð Þ

j¼1

lnCm
i ðrÞ ð4Þ

In this study we computed ApEn for 200 ms-windowed

embedded signal, and shifted the window through the time.

Here, we selected m = 4 and r = 20 % of the standard

deviation (SD) of the EEGs as suitable values; these values

are based on a previous study showing their validity for

estimating ApEn (Abasolo et al. 2005; Sohn et al. 2010).

Result

Applying RQA on data showed an increase in the mea-

surements, indicating decreases in signal’s complexity,

after presentation the test stimuli. This reduction was

greater for correctly recognized old (hits) than new items

(correct rejections), and these changes in brain complexity

were observed either in saline EEGs or in midazolam

signals. Figure 3 shows the average RR % of all trials of all

subjects. The onset of the increasing of the parameters is

about 200 ms before the event. This is due to the windowed

analysis of the RPs (200 ms windows). We have chosen the

beginning of the RP window for the time, which results in a

200 ms earlier onset of the RQA variables. Actually,

400 ms after stimulation RQA variables start to increase,

reflecting a reduction in system’s dimension and com-

plexity (Fig. 3: each point of this curve is the result of

computation during 200 ms later than it (Talebi and Nas-

rabadi 2010). These changes in complexity are consistent

with occurrence of ERP component (i.e. FN400). As it is

obvious in Fig. 3, the increase in the amplitude of Recur-

rence Rate (RR) is also observed after delivering a stimulus

in the midazolam condition, but it is less than changes in

saline-related RRs (the amplitude increment of RR was

17 % in saline/old, 9 % in saline/new, 14 % in midazolam/

old, and 7 % in midazolam/new). In addition, the
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difference between old and new items is more distinct in

saline (77 %of p values were less than 0.05) thanmidazolam

(49 % of p values were less than 0.05). Furthermore, the

overall magnitude of RR is greater for saline related curves

than midazolam’s. All of these results imply that impaired

memory retrieval performance (caused by midazolam) cor-

responds with higher complexity compared to controls

(saline condition).

As it mentioned before, RQA measures computed in

moving windows, allow us to study the change of them

with time, which can reveal transitions in the system.

Whereas the diagonal-wise defined measures (DET, ENTR,

\L[, and L_max) are able to find chaos-order transitions

(Trulla et al. 1996), the vertical-wise defined measures

(LAM, TT, V_max) indicate chaos–chaos transitions

(Marwan et al. 2002). The more a system is determined the

greater amplitude of these measures. As you see in Fig. 4,

both groups of measures consistently reveal that in the ERP

data, there are transitions from less determined (or laminar)

states to more regular states after the occurrence of the

event. Furthermore, the difference of all RQA measures

between saline and midazolam condition is significant,

indicate the difference in brain complexity between intact

and impaired memory performance, respectively.

ApEn was estimated for the same reconstructed signals

in phase space used in RQA. The results have been aver-

aged on all trials of all subjects. Figure 5 shows the mean

values of ApEn with their 95 % confidence interval for the

saline/midazolam—old/new conditions. It can be seen that

in midazolam injection, subjects had greater ApEn than in

saline. In this case, the amplitude decrement of ApEn (7 %

in saline/old, 10 % in saline/new, 12 % in midazolam/old,

and 11 % in midazolam/new), and distinction between old/

new groups (midazolam: 63 % of p values less than 0.05,

vs. saline: 58 % of p values were less 0.05) was more in

midazolam than saline. However, there is significant

overlap of confidence intervals shown in Fig. 5, which

cause less distinction than the case of RQA. The results

also suggest that EEG activity is more regular (less com-

plex) in times that memory retrieval happened. Like the RR

curves, because we used a windowed signal of length

200 ms, the ApEn decreases before 400 ms.

Discussion

The notion of ‘complexity’ as a nonlinear EEG analysis

has been applied extensively to study the cortical dynamics

of various conditions. The amount of EEG’s complexity

carries important information about the structured compo-

nents of the data, such as oscillatory components. Such

structured components may be helpful for understanding of

EEG dynamics (e.g. prediction/detection of epileptic sei-

zures from EEG, Gao et al. 2011, diagnosis of Alzheimer’s

disease (AD), Dauwels et al. 2010, performance of visual

cortex, Hu et al. 2011, Working memory dynamics,

Colliaux et al. 2009, etc.).

For more clarification of ‘complexity’ one can refer to

two new concepts introduced by Stam (2005). The first is

the functional source, which is defined as the part or parts

of the brain that contribute to the activity recorded at a

single sensor. A functional source is an operational con-

cept, which does not have to coincide with a well defined

anatomical part of the brain, and is neutral with respect to

the problems of source localization and volume conduc-

tion; it is simply shorthand for denoting the part of the

brain being measured at a single recording site. The second

concept, a functional network, is then defined as the full
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matrix of all pair-wise correlations between functional

sources. So ‘dynamical complexity’ can be defined as the

randomness or lack of interactions between the elements of

a dynamical system. This definition can be easily translated

to the functional source/functional network terminology

introduced above: ‘dynamical complexity’ of a functional

network is related to the lack of correlations between its

functional sources. Alternatively we can state: the higher

the level of synchronization between functional sources in

a functional network, the lower its dynamical complexity.

The EEG results from the summation of postsynaptic

activity of a large number of spatially distributed but
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functionally connected and interacting cortical neurons and

neuronal assemblies i.e. functional sources (Anokhin et al.

2006). Accordingly, the EEG time series has a complex

structure reflecting the complexity of the underlying neural

generators (Lutzenberger et al. 1992; Pritchard et al. 1995).

A greater number of independent processes contributing to

the EEG results in a greater complexity of EEG time series

(Lutzenberger et al. 1995). EEG complexity may reflect the

number of states of a system resulting from the interaction

among its elements, with higher complexity reflecting a

larger number of separable oscillatory networks (Tononi

et al. 1998). On the other hand, the complexity of the

system’s dynamics can be thought of as a measure of the

degrees of freedom.

In this study we have analyzed the EEG activity by

means of RQA and ApEn. Subjects participated in two

sessions of memory retrieval test (once with midazolam

injection which causes memory impairment and ones with

saline that leaves memory intact). The RQA and ApEn

advantage compare with some nonlinear methods like

computation of correlation dimension is that they do not

need any stationary assumption about signals and are

suitable for non-stationary short length EEG signals. These

nonlinear measures, as indexes of complexity, showed that

during memory retrieval, EEG’s complexity decreases.

This reduction is indicated by decrease in ApEn values,

and increase in RQA measures. Note that as a signal

become more regular, recurrences of trajectories in phase

space occurred more, and resulted RQA measures have

higher amplitude. In other hand, loss of irregularity or

complexity causes reduction in ApEn value. This result

implies that either recognizing an studied old item, or

trying to identify an unstudied new item, which both

involve memory processes in brain, cause a decrease in

EEG complexity. Although RQA measures suggest that

recognizing studied words decreases complexity more than

non-studied words, this was not confirmed by ApEn.

Nevertheless, both methods reveal that EEG’s complexity

is greater in impaired memory function compared to nor-

mal processing.

Midazolam is a benzodiazepine, which causes a

decrease in accuracy of memory storage. (Benzodiazepines

inhibit the firing GABAergic interneurons in the hippo-

campus (Deadwyler et al. 1979). Hence, if Midazolam

inhibits the firing of those cells that regulate the orderly

firing of the vast majority of hippocampal cells, then it is

reasonable to speculate that the result is a noisier episodic

memory trace. Because of this noisier episodic memory

trace, it is acceptable that the complexity of the signal is

higher following midazolam than saline, reflecting

impaired memory retrieval and a higher degree of ran-

domness in brain dynamics underlying recognizing an

item.

Nevertheless, several studies report an increase in the

correlation dimension or related complexity measures

during cognitive tasks (Bizas et al. 1999; Meyer-Linden-

berg 1998; Micheloyannis et al. 1998, 2002; Molle

et al. 1995; Stam et al. 1996; Tomberg 1999). However,

decreases in complexity have been reported, most notably

during a working memory task (Molnar et al. 1995; Sam-

mer 1996, 1999). Sammer showed that a working-memory

load induced by a memory-scanning task has an effect on

nonlinear descriptors of the EEG dynamics. The effect was

locally specific above the fronto-temporal (right) cortex

and it was described as a reduction in the dimensional

complexity of cortical brain activity. In an investigation of

Kirsch and his co-workers, it was showed that the com-

plexity of the signal under cognitive challenge is higher in

schizophrenic patients than in normal control subjects,

reflecting the impaired information processing abilities of

the patients. For that EEG complexity measure no differ-

ences occurred under the baseline condition. In contrast,

during the first minute under task conditions the control

subjects showed a decrease of the dimension while no

changes were found for the schizophrenic group (Kirsch

et al. 2000).

Although both methods show this trend, but RQA has

better distinction between old/new groups than ApEn

(Fig. 3, 5). Furthermore difference of impaired and normal

memory in RQA measures is more significant than ApEn

values (RQA: average saline/Mdz difference = 47 %;

ApEn: average saline/Mdz difference = 6 %). It seems

that RQA properly follows dynamical changes in brain

functions, and can be a powerful tool to reveal hidden

characteristics of EEG signals.

Further work is now required to test the potential value

of RQA and ApEn prospectively, i.e. apply them to a new

and larger data set or comparison of these methods in the

EEG of cognitive processes with other nonlinear

quantifiers.
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