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Abstract— In this paper, a novel approach is proposed for 

secondary feature extraction based on clusters tracking in 

spectro-temporal domain. Because of high dimensionality of the 

spectro-temporal features space, this domain is unsuitable for 

practical speech recognition systems. In order to reduce the 

dimensions of the feature space, weighted K-means (WKM) 

clustering technique is applied to spectro-temporal domain. The 

elements of mean vectors and covariance matrices of clusters are 

considered as the feature vector of each frame. However the 

cluster locations change gradually over the time. The main 

approach is based on the idea that the variations in clusters 

locations should be temporally tracked frame by frame and the 

parameters of these variations are considered in the extraction of 

secondary feature vectors of each speech frame. Several models 

are used to register the clusters in the new coming frame. In 

addition, a new architecture is proposed to classify the speech 

frames by a combining classifier using both tracked and non-

tracked secondary features. The assessments were conducted for 

the proposed feature vectors on classification of several subsets of 

TIMIT database phonemes. Using tracked secondary feature 

vectors, the result was improved to 77.4% on voiced plosives 

classification which was relatively 1.8% higher than the results of 

non-tracked secondary feature vectors. The results on other 

subsets showed good improvement in classification rate too. 

Keywords-Speech recognition; Feature extraction; Clustering 

methods; Image matching; Auditory system; Speech processing 

I.  INTRODUCTION  

The main goal of speech features extraction methods is the 
extraction of maximum relevant information in the extracted 
features while reducing the amount of data to minimum. Mel 
scaled frequency Cepstral coefficients [1] and spectro-temporal 
features [2-4] are the most frequently used representations of 
audio signal that are both inspired from physiological audition 
findings. In recent years, a computational auditory model has 
been proposed based on psycho-acoustical and neuro-
physiological findings in early and central stages of the 
auditory section of the brain [2]. High dimensionality of 
spectro-temporal features space makes the system impractical 
work in this domain and affects the parameter estimation 
accuracy in the training phase of the speech classifier. 
Traditional dimensionality reduction methods such as PCA, 
LDA, MPCA and neural network based features reduction 
techniques have been used to reduce the number of features in 

spectro-temporal domain [3, 5]. However, these common 
methods are not exactly compatible with the speech nature and 
classification problems. 

The proposed method in this paper follows our previous 
research which clustering methods had been used to reduce the 
dimensions of spectro-temporal feature space in order to extract 
secondary features extraction [6, 7]. It had been shown that in 
the new clustered features space; phonemes are more separable 
because the classes' information is concentrated in the specific 
parts of the features space. For this purpose, Gaussian Mixture 
Model (GMM) and weighted K-means (WKM) clustering 
methods had been used for features space clustering and the 
mean vectors and covariance matrices elements of the clusters 
had been considered in the secondary feature vector of each 
frame. The results had been shown that better results in 
phoneme classification had been obtained using WKM 
clustering in comparison to GMM clustering. In addition, the 
computational complexity of the secondary feature extraction 
using WKM clustering was less than GMM clustering. 
Therefore, in this study, WKM clustering method is used to 
reduce the spectro-temporal features into a few effective 
secondary features for each frame. One of the open issues in 
the previous study was the order of clusters in the feature 
vector. This sorting order determines the consistency in the 
meaning of each element of the feature vector and dramatically 
affects the classification rate, if arranged inappropriately. In 
previous study, it was assumed that the energies of clusters in 
each frame are the intrinsic characteristics of the phonemes and 
can be considered as the measure of clusters sorting in a 
features vector. Therefore, to overcome this deficiency, the 
clusters had been sorted based on their energy. Although this 
presumption is often true in central parts of phonemes, 
especially in long duration phonemes, however, this cannot be 
assumed in the gradual interchange of co-articulated phonemes 
which are frequently occurred in an uttered sentence. The 
motivation of this study is to improve the classification rate of 
phonemes by considering the correct order of clusters in a 
frame. The main approach is based on the idea that the 
variations in clusters locations should be temporally tracked 
frame by frame and the order of clusters of each frame should 
be registered in the whole sequence based on a reference vector 
before sending them to the classifier. There are various 
techniques for feature matching and registration over the 
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consecutive frames in image and video processing [8]. In the 
present study, the Euclidean distance measure is used for 
temporal tracking of the clusters. In other words, the clusters 
centers of two frames are matched based on their weighted 
Euclidean distance. The clusters are sorted using two strategies 
in feature vectors. In the first strategy, the clusters of each 
frame are sorted based on energy measure and in the other 
strategy; the clusters are re-arranged using temporal matching 
results of the secondary feature vectors sequence. The results of 
these two strategies are compared to each others. In addition, 
combining mechanisms of two features sorting models is 
applied to optimize the classification rate. 

The organization of the paper is as follows. Spectro-
temporal representation of speech is briefly reviewed in section 
2. The proposed phoneme feature extraction and clusters 
tracking algorithms in spectro-temporal domain are introduced 
and formulated in sections 3 and 4. Experimental results and 
performance evaluation of the proposed features on standard 
datasets for phoneme classification task are presented in section 
5. The paper is concluded in section 6. 

II. AUDITORY MODEL 

Auditory model is a mathematical model for internal ear 
and the first layer of auditory brain section that is proposed for 
speech processing applications in recent years [2, 3].  This 
model is obtained using neuro-physiological, biophysical, and 
psycho-acoustical investigations at various stages of the 
auditory system. The block diagram of auditory model is 
shown in Fig. 1. It consists of two basic stages. In the primary 
stage of auditory model, the acoustic signal is transformed into 
the auditory spectrogram. The central stage analyzes the 
spectrogram to extract the spectro-temporal features. 

A. The Primary Stage of the Auditory Model  

While the audio signal passes through the ear, the neural 
sensors of the basilar membrane of the cochlea convert one 
dimensional audio signal into a two-dimensional auditory 
spectrogram image which the frequency axis of this 2D image 
is a tonotopic (nearly logarithmic) axis. Basilar membrane can 
be considered as a band-pass filter bank. This filter bank 
includes 128 asymmetric band-pass filters with the frequency 
responses which are uniformly distributed along the tonotopic 
axis. 

⇒

 
Figure 1.  The block diagram of auditory model 

 

The cochlear filters outputs are converted into auditory nerve 

patterns by an inner hair cell stage (IHC). IHC stage consists 

of a high-pass filter in time domain, an instantaneous 

nonlinear compression and a time domain low-pass filter. The 

last part of this stage is a model of lateral inhibitory network 

(LIN) activity, which increases the frequency selectivity of the 

cochlear filters. LIN is approximated by a first order derivative 

along the tonotopic axis the final output of this stage, is 

obtained by using a half wave rectifier and an integrator 

during a short time window [2]. 

B.  The Cortical Stage of Auditory Model 

The primary auditory stage of the brain analyzes the 
auditory spectrogram as an image. At this stage, a two-
dimensional wavelet transform of auditory spectrogram is 
calculated. This transform is performed using a spectro-
temporal mother wavelet, similar to a two-dimensional Gabor 
function. In other words, the spectral and temporal modulation 
contents of the auditory spectrogram are estimated via a bank 
of modulation-selective 2-D filters. Each filter is tuned to a 
spectral-temporal modulation index pair. Spectro-temporal 
impulse responses of these filters are called spectro-temporal 
response fields (STRFs). Each of STRFs in the bank of 
directional selective filters can be generated by multiplying two 
uncoupled complex functions of time and frequency. The 
resulted STRF is the real part of this multiplication. There are 
two primitive 2-D STRF types which are named upward (+) 
and downward (-) respectively which are demonstrated as 
positive and negative rates respectively. The output of each 
branch of filter-bank is computed by a convolution of its STRF 
with the input auditory spectrogram. The output of each branch 
of filter-bank is computed by a convolution of its STRF with 
the input auditory spectrogram. Therefore, the cortical 
representation of speech has four dimensions, scale (Ω in 
cycles / octave) which is the STRF scaling factor along 
frequency axis, rate or velocity (ω in Hz) which is the temporal 
scaling factor of STRF, frequency (f, the number of the band-
pass filter) and time (t, the frame number). The two latter 
parameters show the position of the point in the filtered 
spectrogram.  

The dimensions of this feature space are very large which 
may bring the system to the curse of dimensionality limitation 
in the training phase of a speech recognition system. Therefore, 
the reduction of features space dimensions is a crucial task to 
train the parameters of artificial speech classifiers efficiently. 

III. PREPARE YOUR PAPER BEFORE STYLING PHONEME 

FEATURE EXTRACTION USING WKM CLUSTERING IN THE 

SPECTRO-TEMPORAL SPACE 

In the first stage of the proposed feature extraction method 
using WKM clustering, the auditory spectrogram of a speech 
frame was calculated. Then, the auditory spectrogram is 
analyzed by a bank of spectro-temporal modulation selective 
filters that each filter was tuned to a different rate-scale pair. 
The outputs of the upward and downward cortex STRFs (two 
amplitudes of the complex outputs) were calculated for each 
point of four-dimensional space of scale (Ω in cycles / octave), 
rate (ω in Hz), frequency and time as the coordinates of the 
auditory output.  
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Figure 2.  The block diagram of the proposed feature extraction mechanism 

As it is common in spectro-temporal space literature, the 
downward parameters may be represented as negative rates to 
make a unified 3D space for each frame. In other words, to 
combine both upward and downward STRF responses, the 
output of both sets of filters were concatenated in the rate axis. 
Therefore, in each frame, two 3D cubes with rate axis, scale 
axis and frequency axis were combined to have one new 3D 
cube with twice lengthened in the rate axis. Scale, rate and 
frequency are the coordinates of the point in the new space in 
each frame which should be considered as the primary feature 
vectors. In this paper, the auditory spectrogram was obtained 
using an infinite impulse response filter bank with 128 
frequency channels between 180 and 7246 Hz at the resolution 
of 24 channels per octave. In addition, a time constant of 8ms 
was used for the leaky time integration and filter-bank outputs 
were sampled every 4 ms to compute the auditory spectrogram. 
Temporal parameter of the filters (rate), ranging from 2 to 128 
Hz and spectral parameter of the filters (scale), ranging from 
0.25 to 8 cycle/octave, were considered to represent the 
spectro-temporal modulations of the speech signal. Thus, the 
dimensions of the resulted spectro-temporal feature space were 
very large (11 (scale filters) ×26 (rate filters) ×128 (frequency 
channels) =36608 attributes). Therefore, in the proposed 
cluster-based feature extraction method, WKM clustering is 
used to extract the features with informative discriminative 
attributes. It means that the primary features space was 
segmented into clusters using WKM clustering algorithms. As 
a result, the main clusters in each speech frame were 
determined and new feature vectors were extracted with 
reduced dimensions.  

In WKM clustering method, K clusters are distributed in 
the space to model the space. Each sample in the feature space 
is assigned to the nearest cluster. In addition, a weight is 
assigned to each feature vector, which is determined according 
to the importance of each sample in the quality of the clustering 
overall fitness function [9]. In this clustering algorithm, the 
weight of each point is considered in the clusters estimation. 
The weight of each point may be interpreted as a soft repetition 
of the vector in the cluster center calculation. The magnitude 
component of each point was considered as the weight in 
WKM algorithm to emphasis on high energy points of the 
space in the clustering procedure. The weight of a cluster was 
defined as the mean magnitude of all recruited samples for each 
cluster.  

A. Secondary Feature Extraction Using WKM Clustering 

The secondary feature extraction mechanisms in each frame 
are shown in Fig. 2 using WKM clustering methods. In the 
proposed feature extraction method, the samples in the primary 

feature space (denoted as the vector
iv ) were applied to the 

clustering algorithm to extract secondary features. Each point 
in the input space was defined as a three dimensional 

vector ),,( iiii fsr=v . In this vector, r denotes the rate, s  is 

the scale, f is the frequency of the output of upward or 

downward STRFs at each points of the spectro-temporal space. 

The magnitude components of points 
ii Aw =  were 

considered as the weighting factor of input vectors.  

These primary feature vectors 
iv  were clustered using 

WKM algorithm assuming diagonal covariance matrix and the 
centers of clusters were considered as secondary feature 
vectors. The mean vector and covariance matrix elements of 
the clusters were considered in the secondary feature vector of 
each frame as )σ,σ,σ,μ,μ,(μV 321321= assuming three clusters 

for each frame. 
iμ  and iσ  are mean and variance vectors of 

i
th
 cluster. Each mean vector consists of three components as 

),,(
iii fsri µµµ=μ and variance vector consists of three 

components as ),,(
iii fsri σσσ=σ . Thus, the secondary feature 

vector had 18 elements. 

IV. TWO MODELS FOR CLUSTERS SORTING IN THE 

SECONDARY FEATURE VECTORS 

A. Clusters sorting in feature vectors using energy measure 

In the first strategy, it is assumed that the center of cluster 
with larger magnitude bears more information. Therefore, the 
features are sorted in accordance to the clusters amplitude. 
Time variations of clusters are not considered in this method 
and the clusters centers sorting are performed based on energy 
measure. It means that the magnitude component of clusters 
centers are sorted descending. In addition, variance 
components of clusters centers are sorted according to the 
value of their mean components as )σ,σ,σ,μ,μ,(μV 321321= .   

B. Clusters Sorting in Feature Vectors Using Temporal 

Tracking Results 

The former cluster ordering strategy may cause the system 
sensitive to noisy conditions; because the cluster locations are 
changed in the scale, rate and frequency axes during time. 
Therefore, the results of temporal tracking of the clusters over 
the time are used for features sorting in the second strategy. In 
this method, the clusters centers are matched to a reference 
vector using a distance measure. The result of this matching 
determines the order of clusters. 
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While the locations and shapes of the cluster centers change 
gradually over the time, the clustered should be tracked during 
consequent frames. In this study, Euclidian distance measure 
was employed to track the clusters. Two mechanisms in 
various conditions were used for temporal clusters tracking.  

C. Clusters Matching Over the Consecutive Frames 

In the first mechanism, the cluster centers are matched over 
the consecutive frames. Therefore, the distances between each 
cluster center of the current frame and all cluster centers of the 
previous frame are computed. Then, the best match of the 
current frame cluster centers with the cluster centers of the 
previous frame is determined by minimizing the Euclidean 
distance between their corresponding features. Three clusters 
were assumed for each frame. Therefore, a 3×3 distance matrix 
is obtained for each frame. Each element of distance matrix, 

 
),( jidis  is defined as 

∑
=

−=
n

k
jpiC kkjidis

1

2))()((),( CC                         (1) 

Where 
iCC  and 

jpC are the i
th
 cluster center of the current 

cluster and the j
th
 cluster center of previous frame respectively 

and n  is the numbers of features in each cluster center. Each 

cluster center vector have six components which is defined as 

),,,,,(
iiiiii fsrfsri δδδµµµ=C                        (2) 

In this matching strategy, the clusters centers of the first 
frame of each phoneme are sorted in descend according to their 
amplitudes. Then, the cluster centers of the next frames are 
rearranged by the matching results using the status matrix that 
defines possible permutations of the clusters in features 
vectors. Status matrix is defined as 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

211323

123132

332211

S                             (3) 

Each column of the status matrix shows the position of 

clusters centers in each speech frame after cluster matching 

over the time. In fact, the column number of the status matrix 

shows the matching status number. Although in some frames, 

the positions of clusters centers remain unchanged, (e.g. the 

first column of the status matrix); however, the positions of 

most clusters centers change over the time. To determine the 

clusters matching result of each frame, the cost vector is 

defined using the status matrix. Cost(k)  is the cost function of 

the k
th
 matching status according to the k

th
 columns of the 

status matrix.
  
The cost function is calculated for all columns of 

status matrix in each frame as 

)),(,(.Cost(k)
3

1

kiSidisw
i

i∑
=

=                        (4) 

where
 { }1,0w i ∈  is the death/birth factor of the i

th
 cluster. This 

factor is zero, if the minimum distance between a cluster in 

current frame and the clusters of previous frame is more than 

the empirical threshold value T.  

⎩
⎨
⎧ ≥

=
Otherwise

Tjidisif
wi

1

)),(min(0                    (5) 

If this factor is zero, it means that a cluster is dead and a 

new cluster is born in the new frame. In this case, the i
th

 cluster 

with 0w i = is not considered in the cluster matching procedure. 

Finally, the best matching is determined regarding to the 

minimum value of the cost functions of the status matrix 

columns as  

t)Argmin(Cos
k

BM =                                         (6) 

3,2,1,),()(B == iBMiSiMatchingest         (7) 
The clusters locations of the current frame (except the first 

frame) are permuted according to the best matching that is 
obtained from Equation (7). 

D. Clusters Matching Using the Reference Vector 

In another matching mechanism, the clusters of the primary 
feature vectors which are sorted using the energy measure are 
matched with the clusters of a reference vector. Two reference 
vectors are assessed in this clusters matching strategy. 

In GM strategy, the frames of all phonemes are matched 
according to a global references frame.  This global reference 
vector is calculated by averaging all of the training feature 
vectors of all phonemes. The calculated global reference vector 
is also used for clusters matching in the test phase of phoneme 
classification. Then, the distances between each cluster center 
of current frame and the cluster center of the global reference 

vector is computed using Equation (1). In this case, 
jpC is the j

th
 

cluster center of the global reference vector. Finally, the cluster 
centers are rearranged using matching results that are obtained 
between each frame and the reference vector according to 
Equation (7). 

In CBM mechanism, the reference vectors are determined 
by averaging between all feature vectors of each class in the 
training phase. In this mechanism, the number of reference 
vectors is depended on the numbers of the phonemes classes 
that should be classified. Assuming a class for each unknown 
utterance is a prerequisite for this reference vector selection 
mechanism, which contradicts with the main goal of a 
classification application. Therefore, the classifier architecture 
should be adapted to this tracking mechanism. The block 
diagram of this architecture is proposed in Fig. 3. In this 
architecture, the distances between each cluster center in the 
current frame and the cluster centers of the reference vector are 

calculated using the Equation (1). In this case, 
jpC is the j

th
 

cluster center of a reference vector. In the training phase, the 
features vectors of each class are matched to the reference 
vector of the same class. In contrast, in the test phase, the 
features vectors of an unknown phoneme are matched to the 
reference vectors of all classes.  
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Figure 3.  The block diagram of clusters matching mechanism using a class 

based reference vectors  

The feature vectors that are matched with reference vector 
of i

th
 class are classified using the i

th
 class versus the rest binary 

SVM classifier. The class of an unknown phoneme is 
determined with respect to the maximum value of decision 
levels of the classifiers outputs. In other words, each frame of 
an unknown phoneme is matched with the best reference vector 
of the classes by using the confidence levels of the classifiers 
outputs.  

E. Combining the Classification Results of Tracked and Non-

Tracked Features  

After a subtle error analysis of different proposed 

classification methods, it was observed that there is a 

considerable mismatch between error samples sets in tracked 

and non-tracked classifiers. This led us to design a combining 

classifier mechanism to tune the result.  

 

In this mechanism, parallel classifiers are trained using two 

types of tracked and non-tracked secondary features vectors. 

To have consistent architectures for classifiers, the proposed 

one-versus-the-rest SVM classifier architecture was used for 

the phoneme classification in each branch. Finally, phoneme 

classification is performed using the combination of confidence 

values of the classifiers that are obtained in each branch. In this 

fusion strategy, ),,...,,( 121111 nCLCLCLCL = and 

),,...,,( 222122 nCLCLCLCL =  are the confidence levels vectors for 

each unknown phoneme that are obtained using the outputs of 

n  classifiers of the first and second branches respectively. In 

this paper, the overall confidence of the i
th

 class 
iCL is 

empirically evaluated by a few fusing rules:  

),( 21max ii
i

i CLCLCLrulesMaximum =                         (8) 

Finally, the maximum confidence value will indicate the 

winner class:  

)max(
i

i

CLC =                                                 (9) 

V. EXPERIMENTAL RESULTS 

A. Exprimental setup 

The overall evaluation of the tracked features is tested on 
classification of main categories of phonemes. Although, /b/, 
/d/, /g/ as one of hard to discriminate set of phonemes was used 
as the benchmark of many studies in this field [10, 11]. 
Therefore, in this study, most of the experiments are conducted 
on /b, /d/, /g/ phonemes to evaluate and tune the tracking 
performance of proposed cluster tracking strategies. The 
evaluation of proposed feature extraction method is performed 
on clean speech and the phonemes are selected from TIMIT 
acoustic-phonetic continuous speech corpus which contains 
short sentences spoken by male and female speakers from 8 
major dialect regions of the United States [12]. TIMIT contains 
6300 sentences, where 10 sentences have been spoken by each 
of 630 male and female speakers. 

 In the first stage of the evaluation system, the phonemes 
were selected from TIMIT database. Then primary features 
were extracted from spectro-temporal space for each phoneme 
and secondary features vectors are obtained using new cluster-
based feature extraction method. After features sorting 
procedure, the new features vectors were classified using the 
proposed classifier architecture. Radial basis function (RBF) 
was used as SVM kernel. 

B. Phoneme Classification Results of one-versus-the-rest 

SVM 

One of the determinant parameters of efficiency of 
matching strategies is death/birth factor. In Fig. 4, classification 
results of (/b/, /d/, /g/) phonemes in each matching strategy 
using death/birth threshold values are shown.  The best 
phoneme classification rates are obtained with smaller 
death/birth threshold value in matching strategy 1.  In fact, 
temporal tracking are often not performed for small death/birth 
threshold values and the clusters are sorted using energy 
measure; because the death/birth factor is zero ( 0w i = ) for 

most of the frames in this case. It is clear from the results that 
first matching strategy was not successful for temporal tracking 
of the clusters. The best results of temporal tracking are 
obtained using T=1.7 for this strategy and T=1.5 was the 
optimum threshold for strategies 2 (GM) and 3 (CBM).  

C. Combining the classification Results 

The results of /b/, /d/, /g/ phonemes classification using 
energy-ordered and temporally tracked features and combining 
mechanism for the best death/birth threshold values are 
tabulated in table 1. The results show that the temporally 
tracked features gave better results in comparison to energy-
ordered features. In addition, it can be observed that the best 
phoneme classification results are obtained by fusing two 
classifiers. This is due to the fact that the errors of two 
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classifiers are not the same. The classification rates on different 
categories of phonemes using energy-ordered and temporally 
tracked features and combining mechanism were evaluated and 
the results are tabulated in table 2. As it can be observed, the 
classification results using temporally tracked features was 
improved in comparison to energy-ordered features in all 
categories of phonemes. In addition, phoneme classification 
results were fine tuned using combining mechanism. 

VI. CONCLUSION 

In this paper, cluster tracking methods were employed for 
enhancing the discriminative behavior of spectro-temporal 
secondary features. Secondary features vectors were extracted 
using WKM clustering in spectro-temporal domain and the 
mean vectors and covariance matrices elements of the clusters 
were considered in the secondary features vector of each frame. 
Two strategies were used for clusters sorting in features 
vectors. In the first strategy, the clusters were sorted with 
respect to their energy in spectro-temporal space. In the second 
strategy, the cluster centers were sorted in feature vectors based 
on temporal tracking results. Various matching strategy were 
used for temporal tracking of the clusters. In overall, GM and 
CBM strategies were successful in comparison to the first 
matching strategy. In addition, fusing the classifiers showed 
good performance to cover the errors in tracked and non-
tracked approaches. 
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Figure 4.  Classification results of (/b/, /d/, /g/) phonemes versus death/birth 

threshold 

TABLE I.  FRAME-WISE CLASSIFICATION RATES USING ENERGY-
ORDERED FEATURE AND TEMPORALLY TRACKED FEATURES AND COMBINING 

MECHANISM ON /B/, /D/, /G/ PHONEMES  

Matching Strategy 1 2 3

Classification Results 
Energy-ordered features 

75.7 75.7 75.7

Death/Birth Threshold Value 1.7 1.5 1.5

Classification Results 
Temporally tracked features 

74.2 76.9 77.4

Combining Mechanism 
Classification Results 

76.3 77.6 77.8

Fusion Rule Maximum Maximum Maximum

TABLE II.  ME-WISE CLASSIFICATION RATES USING ENERGY-ORDERED 

FEATURE AND TEMPORALLY TRACKED FEATURES AND COMBINING 

MECHANISM IN MAIN CATEGORIES OF PHONEMES 
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a

n
t 

Voiced 
Plosives  
(b,d,g) 

 

75.6 77.4 CBM 77.8 

Unvoiced 
Plosives 
(p,t,k)  

70.6 71.4 GM 71.9 

Voiced 
Fricatives 

(v,dh,z) 
83.6 84.2 GM 84.7 

Unvoiced 
Fricatives 

(f,s,sh) 
89.6 90.1 CBM 90.6 

Nasals 

(m,n,ng) 52.5 53.9 CBM 54.4 

V
o

w
e
l 

Front 
Vowel 

(ih,ey,eh,ae) 
64.4 65.2 CBM 65.9 

Back 
Vowel 

(uw,uh,ow,aa) 
74.9 75.7 GM 76.2 
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