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Abstract. A resistive gas sensor (RGS) under temperature modulation regime is considered as a 
system for gas detection. Five target gases including Methanol, Ethanol, 2-Propanol, 1-Butanol, and 
Hydrogen each at 11 concentration levels, were selected for diagnosis using a single commercial gas 
sensor. For modulating the sensor, a staircase containing five voltage steps each with 20s plateau is 
applied to micro-heater of the sensor. This, in turn, alters both the temperature and the resistance 
profiles of the sensing layer which are considered as the input and the output of the defined system, 
respectively. In this way, five systems corresponding to five steps of the system input can be 
distinguished. Next, each system under the influence of the examined target gases is modeled with 
neuro-fuzzy network. Local linear model tree (LOLIMOT) used as learning algorithm of the systems 
and weights of the trained networks utilized as the features of the sensor in presence of target gas. 
Mapping these feature vectors using linear discriminant analysis showed successful classification of 
all target gases. 

Introduction 

Resistive gas sensor (RGS) is cost effective, small, durable, and high sensitive. These sensors 
operate at high temperatures which are provided by micro heater placed in proximity of sensor 
sensitive layer. The response of these sensors to the presence of stimulus in air is appeared by shift 
in their electrical resistance [1-2]. The value of this shift is strongly depends on the operating 
temperature of the sensor. A single RGS is unable to discriminate among the different target gases 
(TGs). Use of multiple sensors in the form of sensor array is one of the most common methods 
which is utilized to enhance the selectivity in RGSs [3]. Modulating the sensor operating 
temperature is another most popular method which is presented to overcome non-selectivity 
problem in a single RGS [4-7]. It is believed that the dynamic sensor response due to the 
temperature changes of the sensing layer, includes enough information about the nature of the 
unknown TG [3]. The extraction and classification of distinction features available in dynamic 
sensor response to an unknown TG is mainly based on pattern recognition and system identification 
techniques. 

Artificial neural networks (ANNs) based analysis is used extensively as a diagnosis tool for the 
gas sensing systems. In ANNs, the relation between inputs and outputs is determined by various 
training algorithms and correcting the network weights. In [8], e.g., a 4-component thick film sensor 
array used to identify seven alcohols and alcoholic beverages. Considering sensor responses as the 
input and type of the TGs as the output of the ANN, it was showed that RBFNN is more powerful, 
much faster, and less sensitive to learning parameters rather than MLPNN.  

Although ANN methods have been successful in many cases, but the time consuming network 
training process makes them inappropriate for online applications. In addition to ANNs, Fuzzy 
systems have been used in modeling many nonlinear processes. One of the difficulties of fuzzy 
systems is related to production of the fuzzy rules. Combination of these two networks (ANN and  
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Figure1. The normalized responses for (a) Methanol; (b) Ethanol; (c) 2-Propannol; (d) 1-Butanol and (e) 

Hydrogen. The recorded and simulated responses are shown by point markers and solid lines, respectively. 

The heater voltage waveform and the corresponding changes of the sensing layer temperature are shown in 

Figs. (a) and (e), respectively.   
 

Fuzzy) leads to neuro-fuzzy systems which have been used in electronic nose. In [9], neuro-fuzzy 

classifier is used for qualitative and quantitative classification of the data which was pre-processed 

by PCA algorithm. 

In this work, we have applied a special neuro-fuzzy technique to analyze a thermally modulated 

RGS as a system and identify its discriminatory parameters. The diagnostic information was 

searched among the weights of the trained networks. This, in turn, has afforded the identification of 

the nature of the prevailing TGs. Good class separability in both training and verification data was 

obtained by dimension reduction. 

Experimental 

Five TGs including Methanol, Ethanol, 1-Propanol, 1-Buthanol and Hydrogen, each at 11 

concentration levels, were selected for diagnosis using a single commercial gas sensor (SP3-AQ2, 

FIS Co., Japan) under temperature modulation mode. A resistive heater was used to evaporate the 

alcohol types of this group. A staircase voltage waveform with 5 steps, from 1 to 5 V, each with 20 

s plateau was used to excite the sensor heater as depicted in Fig. 1c. It has been shown in previous 

works that 20s is the optimal time for modulating the utilized commercial RGS with this waveform 

configuration [5]. As the heater voltage is changed, the sensing layer temperature is accordingly 

altered as depicted in Fig. 1e. Details of the experimental procedure have been reported elsewhere 

[4], [5]. As a sample, two normalized recoded responses of each analytes are given in Fig. 1a-e with 

point marker. 

System modeling and analysis 

The discriminatory features contained in the response patterns of the sensor, which some of them 

given in Fig. 1, are exploited using single-input-single-output (SISO) modeling. The time varying 

temperature of the sensing layer is considered as the input, u(t), and its corresponding transient 

response as the output, y(t), of the system. Both variables are altered by applying staircase voltage to 

the sensor heater. So, the atmosphere polluted by examined TGs is defined as a part of the system. 

For each step of the staircase, a neuro-fuzzy model with the network architecture presented in Fig.2a 

was used to model the corresponding recorded temporal response. Network training was achieved 

by the local linear model tree (LOLIMOT) algorithm. The main approach with a local linear neuro-  
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Figure 2. (a) Structure of a local linear neuro-fuzzy network. (b) the average MSE plot of the simulated 

sensor outputs versus the number of neurons in hidden layer, m, of neuro-fuzzy network and used for the 

modeling of step IV of the responses recorded for all the contaminants examined. 

 

fuzzy model is dividing the input space into small linear sub-spaces with fuzzy validity functions. 

Any produced linear part with its validity function is described as a fuzzy neuron. So, the total 

model is a neuro-fuzzy network with one hidden layer and a linear neuron in the output layer which 

simply calculates the weighted sum of the outputs of local linear models. Details of the algorithm 

can be found in ref. [10]. Taking five steps of the heater voltage into account, five LOLIMOT 

trained networks is also obtained. Although from one system to another, the number of neurons in 

hidden layer can be different but, it is fixed in any five systems, individually. By changing the TG, 

weights of the networks will be changed. The mean square error (MSE) of the simulated outputs 

was utilized to determine the best number of the neurons in hidden layer of the networks, m, in each 

step. For instance, the average of MSE values computed over 11 concentration levels of each TGs 

by increasing m values and for step IV are shown in Fig. 2b. Once the m is known, each network can 

describe the system with the parametric vector given in Eq. 1: 

= �

T
1 2 mθ (w w w )                                                                                                               (1) 

in which, the w's are the weights of the trained network. Parametric vector components defined in 

Eq. 1 can be calculated by comparing measured output, y(t), and the simulated output, 
�

y(t)  

computed from the trained networks. The best values for m in each of the five systems are m = 7 for 

steps I to IV of the staircase and m = 8 for the last step. The simulation results are compared with 

the experimentally recorded responses in Fig.1a-e. The close fitting of the simulated and the actual 

responses validates the model utilized here.      

By combining parametric vectors of five different parts of a response pattern, the total parametric 

vector for each atmosphere contaminated TG is obtained by Eq. 2: 
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Fisher’s linear discriminant analysis (LDA) is utilized for mapping high dimension Θ vectors to low 

dimension vectors. Results of this mapping are shown in Fig. 3 in 3D space. In this figure, the 

unfilled markers show training data. In each case, the same LDA transformation matrix developed 

in the classification process of the training data was applied to feature vectors of the 25 verification 

experiments (5 of each TG). A successful classification of the five TGs, for both training and 

verification data, was achieved in a reduced feature space according to Fig. 3. 

 

(a) 

(b) 
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Figure 3. LDA mapping of the feature vectors of the sensor responses to the air polluted with the stated 

compounds in the 3D feature space. Unfilled and filled markers represent the vectors related to the training 

and the verification responses, respectively. 

Conclusion 

We demonstrated that the neuro-fuzzy network with LOLIMOT training method is robust 

instrument to extract the discriminative features from the responses of a temperature-modulated 

chemoresistor to the air polluted with methanol, ethanol, 2-propanol, 1-butanol, and hydrogen. A 

staircase heating voltage was used for temperature modulation. The feature vector of each segment 

of a recorded response was assigned by weights of LOLIMOT-trained NN which is used to fit it. 

Three dimensional LDA mappings were utilized for the classification of the feature vectors of the 

analytes which successfully classified all the analytes examined. 
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