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The Achievable Distortion of Relay-Assisted Block Fading Channels

Sayed Ali Khodam Hoseini, Soroush Akhlaghi, and Mina Baghani

Abstract—This letter concerns the achievable distortion of
a Gaussian source over a relay-assisted block fading channel
under mean square-error distortion measure. It is assumed the
communication is occurred in two hops through the use of a
relay node, where the Decode and Forward (DF) strategy is
employed at this node. Also, the transmitter does not have the
channel state information, while the channel gains associated
with both hops are available at the relay. It is assumed the
Gaussian source is hierarchically encoded through using scalable
source coding approach, and is sent to the DF relay through the
use of a multi-layer code, while the relay sends the retrieved
information through a single layer code. In this regard, in a
Rayleigh block fading environment, the optimal power allocation
strategy across code layers is derived, showing the resulting
distortion outperforms that of using AF relaying or exploiting a
single layer code.

Index Terms—Channel assignment, Hungarian algorithm, re-
source allocation.

I. INTRODUCTION

THE notion of relaying is mostly regarded as a promis-

ing solution to improve the coverage and reliability of

wireless communication networks. In this regard, extensive

researches are carried out to explore effective coding strate-

gies at the relays, among them, Amplify-and-Forward (AF),

Decode-and-Forward (DF), and Compress-and-Forward (CF)

are mostly addressed in the literature, each performing well

under certain conditions. For instance, when the direct link

between the source and the destination is in poor condition

and destination has only access to the information transmitted

by the relay, the DF strategy is optimal in the terms of rate

maximization at the destination [1].

We consider a point-to-point relay-assisted channel in which

there is not a direct link between the transmitter and the affil-

iated receiver. The channel studied here is constant through-

out one transmission block and varies independently for the

next blocks. The relay is assumed to be simple, meaning it

cannot do buffering, water-filling across time or coding over

consecutive blocks. We assume the DF strategy is employed

at the relay, where a special case in which the Channel State

Information (CSI) is not available at the transmitter, while the

CSI associated with both hops are available at the relay, is

considered. As a practical implication, one can consider the

case in which the relay is close to the destination, while is far

from the transmitter. Thus, due to the large distance between

the transmitter and the relay, the CSI at the transmitter (CSIT)

may be outdated or too noisy, thereby is less likely to be

incorporated at the transmitter [2].
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In a point to point channel with Gaussian noise, when

the CSIT is available, the use of a single layer code is

optimal. However, in the lack of CSIT, it is demonstrated

the so-called broadcast strategy which makes use of multi-

layer coding approach is optimal in terms of maximizing the

average achievable rate [3]. In fact, the original problem can

be translated to a point to multi-point network encompassing

a continuum of virtually ordered destinations, each corre-

sponding to a channel strength. Accordingly, it is shown the

superposition code can achieve the sum-rate capacity of such

network. This problem is further extended to the relay-assisted

networks, where the average achievable rate of using various

coding strategies at the relay is studied [3], [4]. On the other

hand, the successive refinement (SR) source coding approach

is useful when trying to broadcast the source information

to multiple receivers with different channel conditions. In

SR method, the source information is hierarchically refined

through multiple source layers such that the upper layers are

refinements of lower layers and the base layer is the most

protected one.

This motivated Tian et al. to concurrently incorporate SR

source coding and multi-layer channel coding approaches to

derive an achievable distortion of Gaussian source over a

single hop channel when the CSIT is not available [5]. This

motivated us to pursue addressing the achievable distortion of

Gaussian source in two-hop relay-assisted networks, assuming

the transmitter is unaware of channel gains, while the relay

perfectly knows the channel gains associated with both hops.

This paper is organized as follows. The problem formulation

for a single hop channel is presented in Section II. Section III

extends the terminology to a two-hop network and presents

the results for Rayleigh fading channel. Finally, Section IV

summarizes findings.

II. SYSTEM MODEL

In a point-to-point block fading channel, the received signal

at the destination can be written as yk = hxk + nk for k =
1, . . . , N , where xk and yk denote the kth complex channel

input and the corresponding output at the kth channel use,

respectively. nk is an additive complex white Gaussian noise

of unit variance, i.e., nk ∼ CN (0, 1). Moreover, h ∈ C

represents the current channel fading coefficient with strength

γ = |h|2, and is assumed to be constant within a block,

while it varies independently across different blocks. Finally,

N represents the number of channel uses in each transmission

block.

Assuming K complex-valued samples of a Gaussian mem-

oryless source are sent within each transmission block, the

source channel mismatch factor is defined as b = N/K .

Also, it is assumed each channel block to be long enough to
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approach the rate-distortion limit, while still shorter than the

coherence time, i.e., the time interval in which the channel

gain is approximately constant.

The transmitter uses a multi-layer code with infinite number

of layers, in which the fractional power ρ(γ)dγ is set to

the layer indexed by γ, thus the corresponding fractional

rate becomes dR(γ) = log
(

1 + γρ(γ)dγ
1+γT (γ)

)

≃ γρ(γ)dγ
1+γT (γ) ,

where T (γ) =
∫∞

γ
ρ(u)du is the power allocated to the

layers indexed by γ + dγ to +∞, hence, it is the sum

power assigned to layers which are not decodable when the

channel strength is γ. As a result, the total rate decoded at

the destination with channel strength γ is the sum of all

fractional rates allocated to the layers indexed below γ, i.e.,

R(γ)=
∫ γ

0
uρ(u)du
1+uT (u) . Considering the complex channel model,

the distortion of a Gaussian source represented by R(γ) can

be written as D(γ) = exp
(

− bR(γ)
)

. Congruent to what is

done in [5], we use an auxiliary function based on D(γ) as

I(γ) = exp
(

R(γ)
)

. Using this function, the transmit power

constraint can be written as
∫∞

0
I(γ)
γ2 dγ ≤ Pt, where Pt rep-

resents the maximum transmitted power for transmitting each

coding block. Noting D(γ) = I(γ)−b, the minimum average

achievable distortion and the aforementioned constraint can be

formulated as,

D = min
I(.)

∫ ∞

0

f(γ)

I(γ)b
dγ s.t.

∫ ∞

0

I(γ)

γ2
dγ ≤ Pt , (1)

where f(γ) denotes the pdf associated with the channel

strength γ. Accordingly, the best function Iopt(γ) which

minimizes (1) is derived in [5], showing for each continues

interval which meets the constraint d
dγ

(

γ2f(γ)
)

> 0, there is

at most one positive interval with positive power allocation.

For instance, in Rayleigh channel it is shown there is only

one continues power allocation interval which meets the

aforementioned constraint. Assuming the interval γ ∈ [γ1, γ2]
is the only positive power allocation region in this interval,

the values of γ1 and γ2 as well as the function Iopt(γ) are

obtained.

III. DISTORTION MINIMIZATION FOR DF RELAYING

In this work, the transmitter is assumed to be unaware

of the channel state information, thus, it makes use of joint

successive refinement source coding together with a multi-

layer channel code to transmit the information to the relay.

Then, during the second hop, the DF relay sends the retrieved

information through a single layer code since the relay is

aware of the channel gain associated with the second hop,

thus the use of a single layer code is optimal. The problem is

to find the optimum power allocation across the code layers

of the first hop, leading to the minimum average achievable

distortion at the destination. Note that as is argued in the

preceding section, the instantaneous achievable distortion at

the relay can be written as Dr(γ) = It(γ)
−b, where, γ is the

instantaneous channel strength of the first hop and It(.) is the

auxiliary function, defined as It(γ) = exp
(

Rt(γ)
)

.

As is stated above, the relay makes use of a single layer

code with the maximum rate of Rr(l) = log(1 + lPr) to

transmit its retrieved information, where l and Pr denote,

respectively, the channel strength of the second hop and

the relay’s maximum transmit power. Thus the instantaneous

achievable distortion at the destination becomes Dd(l) =
exp

(

− bRr(l)
)

= (1 + lPr)
−b. However, it may happen

the relay does not have that much information to transmit.

In other words, the achievable distortion at the destination

can not be lower than that of received at the relay, thus we

have, Dd

(

l|Dr(γ)
)

= max
(

Dr(γ), (1 + lPr)
−b

)

which can

be simplified to

Dd

(

l|Dr(γ)
)

=

{

(1 + lPr)
−b if l < lth

Dr(γ) o.w.
, (2)

where lth can be readily computed from (1 + lthPr)
−b =

Dr(γ), leading to lth = 1
Pr

(Dr(γ)
−1
b − 1). Therefore the

average distortion at the destination, considering the available

distortion at the relay to be Dr(γ), becomes

Dave|Dr(γ) =

∫ ∞

0

fr(l)Dd

(

l|Dr(γ)
)

dl

=

∫ lth

0

fr(l)(1 + lPr)
−bdl +Dr(γ)

∫ ∞

lth

fr(l)dl

= G
(

Dr(γ)
)

, (3)

where fr(.) denotes the pdf associated with the chan-

nel strength of the second hop. Thus the average dis-

tortion at the destination can be computed as Dave =
∫∞

0
ft(γ)G

(

Dr(γ)
)

dγ, where ft(.) is the pdf of channel

strength associated with the first hop. The goal is to find

the auxiliary function It(.) such that the average achievable

distortion at the destination is minimized, i.e.,

Dave = min
It(.)

∫ ∞

0

ft(γ)G
(

Dr(γ)
)

dγ

s.t.

{

∫∞

0
It(γ)
γ2 dγ ≤ Pt

I ′t(γ) ≥ 0
. (4)

The first constraint in (4) ensures the transmitted power not

to exceed its maximum value and the second one guaran-

tees It(γ) to be monotonically non-decreasing function, i.e.,

to have a non-negative auxiliary (rate allocation) function

(R(γ) ≥ 0 for γ ≥ 0). In what follows, we first relax the

second constraint and derive the solution. Then, we will prove

that the derived solution meets the second constraint, thus, is

the optimal solution.

Let’s assume the optimal power allocation falls within a

single interval γ ∈ [γ1, γ2]. Defining H
(

γ, It(γ), I
′

t(γ)
)

=
ft(γ)G

(

Dr(γ)
)

, and noting G
(

Dr(γ)
)

= 1 for γ ∈ [0, γ1] as

there is a zero rate allocation in this interval, and again noting

the fact that G
(

Dr(γ)
)

= G
(

Dr(γ2)
)

for γ ∈ [γ2,∞) due

to the zero rate allocation in this region, the objective of (4)

changes to,

D(It) =

∫ ∞

0

H
(

γ, It(γ), I
′

t(γ)
)

dγ

=

∫ γ2

γ1

H
(

γ, It(γ), I
′

t(γ)
)

dγ +

Ft(γ1) +
(

1− Ft(γ2)
)

G
(

Dr(γ2)
)

, (5)

where Ft(γ) denotes the commutative distribution

function (cdf) associated with the first hop. Defining
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W
(

γ, It(γ), I
′

t(γ)
)

= It(γ)
γ2 , the power constraint in (4)

becomes,

P (It) =

∫ γ2

γ1

W
(

γ, It(γ), I
′

t(γ)
)

dγ +
It(γ2)

γ2
−

1

γ1
≤ Pt. (6)

Using lagrange multipliers method, the problem in (5) and

the constraint in (6) can be encapsulated into a single-letter

formula as L(It) = D(It) + λ
(

P (It) − Pt

)

, where we aim

at finding the optimum auxiliary function It(γ) with the con-

straint It(γ1) = 1 to minimize L(It). Therefore, following the

same approach as is done in [5], taking an arbitrary increment

δIt(γ) on It(γ) within the interval γ ∈ [γ1, γ2], the lagrangian

increment will be given by ∆(δIt) = L(It + δIt)−L(It). As

a result, noting δIt(γ) = 0 for γ /∈ [γ1, γ2] and δIt(γ1) = 0
(It(γ1) = It(γ1) + δIt(γ1) = 1), equating the linear part of

the increment to zero, gives,
∫ γ2

γ1

[

HIt + λWIt −
d

dγ
[H

I
′

t
+ λW

I
′

t
]
]

δIt(γ)dγ

+
(

H
I
′

t
+ λW

I
′

t

)

∣

∣

∣

γ=γ2

δIt(γ2) +

(

(

1− Ft(γ2)
)

G′
(

Dr(γ2)
)∂Dr(γ2)

∂It(γ2)
+

λ

γ2

)

δIt(γ2) = 0,

(7)

where G′
(

Dr(γ)
)

is the partial derivative of G
(

Dr(γ)
)

with

respect to Dr(γ). Due to the arbitrariness of the function δIt(.)
and noting HI

′

t
= WI

′

t
= 0, and Dr(γ) = I−b

t (γ), we shall

have the following equalities at the optimal point,

ft(γ)G
′(

Dr(γ)
) −b

It(γ)b+1
+

λ

γ2
= 0,

(

1− Ft(γ2)
)

G
′(

Dr(γ2)
) −b

It(γ2)b+1
+

λ

γ2
= 0. (8)

Knowing It(γ1) = 1 and setting γ = γ1 in the first equation

of (8), we get λ = bγ2
1ft(γ1)G

′
(

Dr(γ1)
)

, thus it can be

concluded that,

It(γ) =

(

γ2ft(γ)G
′
(

Dr(γ)
)

γ2
1ft(γ1)G

′
(

Dr(γ1)
)

)
1

b+1

. (9)

Taking partial derivative of G
(

Dr(γ)
)

with respect to Dr(γ)
1

and solving equation (9), one can derive the optimal value

of Ioptt (γ). However, the values of γ1 and γ2 have yet to be

addressed. To this end, setting γ = γ2 in the first equation

of (8), one can find λ as a function of γ2. Then, plugging

λ into the second equation of (8), γ2 can be found from the

following identity,

γ2ft(γ2) = 1− Ft(γ2). (10)

Also, γ1 can be readily found through substituting Ioptt (γ) into

the power constraint in (6). Finally, plugging Ioptt (γ) into (5),

one can compute the achievable distortion.
Now, we are going to state the condition in which there

is just one single interval γ ∈ [γ1, γ2] with positive power

allocation. To this end, the lagrangian function associated with

(4) can be written as,

L(It) =

∫ ∞

0

(

ft(γ)G
(

Dr(γ)
)

+ λ
It(γ)

γ2
− I ′t(γ)φ(γ)

)

dγ, (11)

1Note that lth in (3) is a function of Dr(γ)

where λ is the corresponding lagrange multiplier of the first

constraint and φ(γ) is an arbitrary non-negative function,

ensuring I ′t(γ) is monotonically non-decreasing at each point

(the second constraint). Now using the variational method,

the best function It(.) can be found from the following

equation [6],

−bG′
(

Dr(γ)
) ft(γ)

It(γ)b+1
+

λ

γ2
+ φ′(γ) = 0. (12)

where φ′(γ) = dφ(γ)
dγ

. Note that according to the slackness

condition, in the region which there is a positive power

allocation, i.e., I ′t(γ) > 0, we should have φ(γ) = 0. In this

case, referring to (12), it follows,

It(γ) =

(

γ2ft(γ)G
′
(

Dr(γ)
)

λ

)
1

b+1

. (13)

Taking derivation of (13) w.r.t. γ and considering the definition

of G
(

Dr(γ)
)

, it can be concluded that the necessary condition

to have I ′t(γ) > 0 is,

d

dγ

(

γ2ft(γ)
)

> 0. (14)

Moreover, in the sequel, we are going to show that there

is at most one single interval in any interval which (14)

holds. Suppose otherwise; we assume in the region [l, u] the

constraint (14) meets, while there are two disjoint positive

power allocation intervals [m1, n1] and [m2, n2] (m1 < n1 <
m2 < n2) with zero power allocation between them, i.e.,

I ′t(γ) = 0 for γ ∈ (n1,m2). In [6], it is shown for a piecewise

smooth continuous extremal solution, the following corner

condition at each corner point γc, i.e., γc = n1,m2, must

be satisfied [6].

LI′

t

∣

∣

γ=γ
−

c
= LI′

t

∣

∣

γ=γ
+
c
. (15)

Substituting (11) into (15), we arrive at,

φ(γ−
c ) = φ(γ+

c ). (16)

According to the slackness condition, as we have positive

power allocation in [m1, n1], we have φ(n−
1 ) = 0. By the

same token, it follows φ(m+
2 ) = 0. Noting this and referring

to (16), it follows,

φ(n−
1 ) = φ(n+

1 ) = 0,

φ(m−
2 ) = φ(m+

2 ) = 0. (17)

On the other hand, noting we have assumed I ′t(γ) = 0 within

the interval (n1,m2), we get It(n
+
1 ) = It(m

−
2 ). Also, from

(12), the following holds in the interval γ ∈ (n1,m2),

φ′(γ) = G
(

Dr(n1)
) bft(γ)

It(n1)b+1
−

λ

γ2
. (18)

This is due to the fact that Dr(γ) and It(γ) are constant in

this interval as we have a zero power allocation. Also, noting

φ′(n1) = 0 (φ(γ) = 0 for γ ∈ [m1, n1]), the equation (12)

at point γ = n1 becomes, G
(

Dr(n1)
)

bft(n1)
It(n1)b+1 − λ

n1
2 = 0.

Replacing λ from this equation into (18), we get φ′(γ) =
bG
(

Dr(n1)
)

γ2It(n1)b+1

(

γ2ft(γ) − n2
1ft(n1)

)

. As a result, noting this

equation and (14), it follows φ′(γ) > 0 in the interval

γ ∈ (n1,m2), meaning φ(γ) should be an increasing function.
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Fig. 1. Comparison results.

This, however, contradicts the corner condition in (17) which

states φ(n1) = φ(m2). Thus, there is only one continues single

interval in the region which (14) holds.

For Rayleigh channel, assuming the channel strength as-

sociated with both hops are i.i.d. and follow exponential

distributions, i.e. ft(γ) = exp(−γ), fr(l) = exp(−l), one

can readily verify that to have (14), it follows γ ∈ (0, 2).
Thus, as is argued earlier, there is at most one positive power

allocation interval in γ ∈ (0, 2). On the other hand, referring

to (10), it follows γ2 = 1, confirming the positive power

allocation interval [γ1, γ2] falls within the interval γ ∈ (0, 2).
Note that γ1 as well as Ioptt (γ) have yet to be addressed.

To this end, plugging fr(l) = exp(−l) into (3), and taking

the partial derivative of G
(

Dr(γ)
)

w.r.t. Dr(γ), it follows,

G′
(

Dr(γ)
)

= exp(−Dr(γ)
−1
b −1

Pr
). Substituting this into (9),

gives Ioptt (γ) = (b+ 1)PrWL

(( γ2exp( 1
Pr

−γ+γ1)

γ2
1

) 1
b+1

(b+1)Pr

)

, where

WL(.) is the omega function and is the inverse of the function

f(W ) = WeW . Finally, substituting Ioptt (γ) and γ2 = 1 into

the power constraint (6), gives the value of γ1.

For the sake of comparison, the achievable distortion of

the proposed method is compared to that of the AF strategy

as well as the case of using a single layer code at the first

hop, called the outage approach. In AF strategy, it is assumed

the relay amplifies the received signal and retransmits it to

the destination. In this case, the pdf of the equivalent channel

between the source and the destination can be computed and

the optimal power allocation can be found as if there is just

one point-to-point channel [7]. On the other hand, in outage

approach, it is assumed the source makes use of a single

layer code and the DF relay can successfully decode the

information as long as the channel strength of the first hop (γ)

exceeds a certain threshold. This threshold, i.e., γopt, should

be optimized such that the average achievable distortion at the

destination is minimized. In this case, the achievable distortion

at the destination can be formulated as follows2,

Dave = 1× Ft(γ) +
(

1− Ft(γ)
)

G
(

Dr(γ)
)

. (19)

Also, from (2) and noting Dr(γ) = (1 + γPt)
−b, it follows

lth = Pt

Pr
γ. Taking derivative of Dave with respect to γ and

equating to zero, the optimal value of γ, i.e., γopt, can be

found from the following,

1−

∫

Pt
Pr

γopt

0

exp(−l)(1 + lPr)
−bdl −

(1 + γoptPt)
−b

(

1 +
bPt

1 + γoptPt

)

exp(
−Pt

Pr

γopt) = 0.

(20)

Fig. 1 is provided to compare the performance of the proposed

approach to that of using a single layer code as well as the

AF strategy, when the transmit SNR is set to 20dB and the

SNR at the relay changes from 0dB to 30dB.

IV. CONCLUSION

This paper aims at investigating the average achievable

distortion of a two-hop DF relay-assisted network through

using joint successive refinement source coding and multi-

layer channel coding approach. To this end, the optimal power

allocation policy across code layers is derived, leading to the

minimum achievable distortion. The result is also compared to

the case of using AF relaying as well as using a single layer

code at the first hop, showing at moderate to high SNR region

of the second hop the achievable distortion of the proposed

approach has a sizable gap to the single layer code, while the

gap to the AF relaying approaches to zero.
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