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ABSTRACT

Background and Objective: Cardiovascular disorders continue to constitute major 

causes of morbidity and mortality in diabetic patients. In this study, the effect of chronic 

administration of naringenin was investigated on aortic reactivity of streptozotocin (STZ)-

induced diabetic rats.

Materials and Methods: Male diabetic rats (n=32) were divided into control, naringenin-

treated control, diabetic, and naringenin-treated diabetic groups of eight animals each. 

The latter group received naringenin for 5 weeks at a dose of 10 mg/kg/day after diabetes 

induction. The contractile responses to potassium chloride (KCl) and phenylephrine (PE) 

and relaxation response to acetylcholine (ACh) were obtained from aortic rings. Meanwhile, 

participation of nitric oxide (NO) and endothelial vasodilator factors in response to ACh 

were evaluated using N (G)-nitro-l-arginine methyl ester (L-NAME) and indomethacin 

(INDO), respectively.

Results: Maximum contractile response of endothelium-intact rings to KCl and PE was 

significantly (P<0.05) lower in naringenin-treated diabetic rats as compared to untreated 

diabetics. Endothelium-dependent relaxation to ACh was significantly (P<0.05-0.01) 

higher in naringenin-treated diabetic rats as compared to diabetic ones and pretreatment 

of rings with nitric oxide synthase inhibitor N (G)-nitro-l-arginine methyl ester (L-NAME) 

significantly (P<0.001) attenuated the observed response.

Conclusion: Chronic treatment of diabetic rats with naringenin could prevent some 

abnormal changes in vascular reactivity in diabetic rats through nitric oxide and 

endothelium integrity is necessary for this beneficial effect.
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Introduction

Cardiovascular disorders continue to constitute major 

causes of morbidity and mortality in diabetic patients in spite 

of significant achievements in their diagnosis and treatment.[1] 

Changes in vascular responsiveness to vasoconstrictors and 

vasodilators are mainly responsible for development of some 

vascular complications of diabetics.[2] Most of these complications 

are due to increased serum glucose and augmented generation of 

reactive oxygen species that lead to endothelium dysfunction.[3]

Epidemiological findings show that there exists a 

relationship between health maintenance and the consumption 

of foods rich in phenolic flavonoids.[4] Naringenin is one 

such naturally occurring flavanone that is mainly present 

in citrus fruits. [5] Naringenin treatment could prevent 

inflammation,[6] thrombosis,[4] tumorigenesis,[7] atherosclerosis 

and hypercholesterolemia.[8] Recent studies have also shown 

that naringenin elicits antidiabetic effect by suppressing 

carbohydrate absorption from the intestine, thereby reducing 

the postprandial increase in blood glucose levels.[9] Further, 

naringenin prevents hepatic steatosis and improves insulin 

sensitivity in animals fed a high fat diet.[8] Naringenin also 

induces concentration-dependent relaxation in aortic tissue 

from normal rats.[10] The vasorelaxant, antioxidant and cyclic 

nucleotide phosphodiesterase (PDE) inhibitory effects of 

naringenin have also been reported in aortic tissue.[11] Until 

now, vasorelaxant property of naringenin in an in vivo system 

and its mechanisms for live protective effect on the vascular 
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system in diabetes have not been reported. Therefore, this 

study was designed to assess the beneficial effect of chronic 

naringenin treatment on improvement of aortic reactivity 

dysfunction of STZ-diabetic rats and to investigate some 

underlying mechanisms.

Materials and Methods

Animals

Male albino Wistar rats (Pasteur’s institute, Tehran, Iran) 

weighing 210-280 g were housed in an air-conditioned room 

at 21 ± 2°C, supplied with standard pellet diet and tap water 

ad libitum. Procedures involving animals and their care were 

conducted in conformity with NIH guidelines. The experiment 

protocol was approved by Ethics Committee of Shahed 

University (Tehran, Iran).

Experimental Protocol

Male diabetic rats (n=32) were divided into control, 

naringenin-treated control, diabetic, and naringenin-treated 

diabetic groups. The rats were rendered diabetic by a single 

intraperitoneal dose of 60 mg kg-1 streptozotocin (STZ) freshly 

dissolved in ice-cold 0.1 M citrate buffer (pH 4.5). Age-matched 

normal rats received an equivalent volume of buffer comprised 

a non-diabetic control group. One week after STZ injection, 

overnight fasting blood samples were collected and serum 

glucose concentrations were measured using glucose oxidation 

method (Zistchimie, Tehran). Only those animals with a serum 

glucose level higher than 250 mg/dl were selected as diabetic. 

During the next week, diabetes was reconfirmed by the presence 

of polyphagia, polydipsia, polyuria, and weight loss. Normal and 

diabetic rats were divided into four groups of (eight in each): 

Normal vehicle-treated control, naringenin-treated control, 

diabetic, and naringenin-treated diabetic. Naringenin was 

daily administered i.p. at a dose of 10 mg/kg b.w. dissolved 

in cremophor for five weeks. Dose of naringenin was chosen 

according to our pilot study and earlier reports.[12] Body weight 

were regularly recorded before STZ injection and at 3rd and 6th 

weeks after the study.

After 6 weeks, the rats were anesthetized with diethyl ether, 

decapitated. The abdomen was opened, descending thoracic 

aorta was carefully excised and placed in a Petri dish filled 

with cold Krebs solution. The aorta was cleaned of excess 

connective tissue and fat, and cut into rings of approximately 

4 mm in length. Aortic rings were suspended between the bases 

of two triangular-shaped wires. One wire was attached to a 

fixed tissue support in a 50 ml isolated tissue bath containing 

Krebs solution (pH 7.4) maintained at 37°C and continuously 

aerated with a mixture of 5% CO
2 
and 95% O

2
. The other end 

of each wire attached by a cotton thread to a F60 isometric 

force transducer (Narco Biosystems, USA) connected to a 

computer. Care was taken to avoid damaging the luminal surface 

of endothelium. Aortic rings were allowed to equilibrate at a 

resting tension of 1.5 g for at least 45 min. In some experiments, 

the endothelium was mechanically removed by gently rubbing 

the internal surface with a filter paper. Isometric contractions 

were induced by the addition of phenylephrine (PE, 1 µM) 

and once the contraction was stabilized, acetylcholine (ACh) 

was added to the bath to attain a concentration of 1 µM in 

order to assess the endothelial integrity of the preparations. 

Endothelium was considered to be intact when ACh elicited 

a vasorelaxation ≥50% of the maximal contraction obtained 
in vascular rings precontracted with phenylephrine (PE). The 

absence of acetylcholine relaxant action in the vessels indicated 

the total removal of endothelial cells. After assessing the 

integrity of the endothelium, vascular tissues were allowed to 

recuperate for at least 30 min.

At the end of the equilibration period, dose–response 

curves with KCl (10-50 mM) and PE (10-9-10-5 M) in the 

presence and absence of endothelium were obtained in aortic 

rings in a cumulative manner. To evaluate ACh (10-9-10-4 M)-

induced vasodilatation in rings with endothelium, they were 

preconstricted with a submaximal concentration of PE (10-6 M) 

which produced 70-80% of maximal response. The sensitivity 

to the agonists was evaluated as pD2, which is the negative 

logarithm of the concentration of the drug required to produce 

50% of the maximum response.

To determine the participation of nitric oxide (NO), rings 

were incubated 30 min before the experiment with N (G)-nitro-

l-arginine methyl ester (L-NAME) (100 µM, a non-selective 

NOS inhibitor). To determine the participation of endothelial 

vasodilator factors in response to ACh, segments were 

incubated with indomethacin (INDO) (10 µM, an inhibitor of 

cyclooxygenase-derived prostanoid synthesis) 30min before 

the experiment with ACh.

After each vasoreactivity experiment, aortic rings were 

blotted, weighed, and the cross-sectional area (csa) was 

calculated using the following formula: Cross-sectional area 

(mm2) = weight (mg) × [length (mm) × density (mg mm3-1)]-1. 

The density of the preparation was regarded as 1.05 mg/mm2.

Drugs

Phenylephrine, naringenin, cremophor, STZ, ACh, INDO, 

and L-NAME were purchased from Sigma Chemical (St. Louis, 

MO, USA). All other chemicals were purchased from Merck 

(Germany) and Darupakhsh Co (Iran). Indomethacin solution 

was prepared in ethanol concentration less than 0.001% (v/v).

Data and Statistical Analysis

All values were given as means ± SEM. Contractile response 

to PE was expressed as grams of tension per cross-sectional 

area of tissue. Relaxation response for ACh was expressed as 

a percentage decrease of the maximum contractile response 

induced by PE. Statistical analysis was carried out using 

repeated measure ANOVA and one-way ANOVA followed by 

Tukey post hoc test. P<0.05 was considered statistically 

significant.

Results

Body Weight

Body weight of the diabetic group was significantly lower 

versus control group at sixth week after the study (P<0.05) 

and naringenin-treated diabetic group had a significantly higher 

body weight as compared to diabetic group (P<0.05) [Figure 1].

Serum Glucose Level

Diabetic group had a significantly higher serum glucose 

level relative to control group at 3rd and 6th weeks after the 

study (P<0.0005) and treatment of diabetic group with 

naringenin significantly lowered serum glucose level relative to 

diabetic group at the same weeks (P<0.01) and 6 (P<0.005), 
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respectively. In addition, naringenin treatment of control rats 

did not lead to any significant change in this respect [Figure 1].

Vascular Reactivity

Cumulative addition of KCl (10-50 mM) and PE (10-9-10-5 M) 

resulted in concentration dependent contractions in aortas of 

all groups [Figure 2]. The maximum contractile responses to 

KCl and PE in the aorta from vehicle-treated diabetic rats in the 

presence of endothelium were found to be significantly (P<0.01) 

greater than vehicle-treated control rats and concentration-

response curve of endothelium-intact aortas from naringenin-

treated diabetic rats to KCl and PE was significantly attenuated 

compared to vehicle-treated diabetics (P<0.05). In addition, 

aortic rings with endothelium from naringenin-treated control 

group showed a non-significant reduction in contractile 

response to KCl and a significant reduction in contractile 

response to PE (P<0.05) as compared to vehicle-treated 

controls. There were also no significant differences among the 

groups in terms of the pD2 (data not shown), indicating that 

Figure 3: Cumulative concentration-response curves for ACh in aortic 
rings precontracted with PE. *P<0.05, **P<0.01 (as compared to 
diabetic), $ P<0.05 (as compared to control).

Figure 1: Comparison of body weight and serum glucose level in diabetic rats treated with naringenin (means ± S.E.M) (n=8). *P<0.05, **P<0.01, 
***P<0.005, ****P<0.0005 (as compared to week 0 in the same group) $ P<0.05, $$ P<0.01, $$$ P<0.005 (vs. Diabetic in the same week).

Figure 2: Cumulative concentration-response curves for KCl (a) and phenylephrine (PE) (b) in aortic preparations 6 weeks after experiment 
(means ± S.E.M). *P<0.05, **P<0.01 (As compared to control), # P<0.05 (as compared to diabetic), $ P<0.05 (as compared to control).

(a) (b)
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there has not been any significant change in the sensitivity of 

aortic rings from different groups.

Addition of ACh resulted in concentration-dependent 

relaxations in all aortic rings precontracted with PE [Figure 3]. 

Endothelium-dependent relaxation responses induced by 

ACh was significantly lower in vehicle-treated diabetic rats 

in relation to vehicle-treated controls (P<0.05-0.005). The 

existing difference between naringenin-treated and vehicle-

treated diabetic rats was only significant (P<0.05-0.01) at 

concentrations higher than 10-6 M. Relaxation response of 

naringenin-treated control rats was significantly greater than 

control group at concentrations higher than 10-5 M (P<0.05).

Regarding relaxation response to ACh, pre-incubation of 

aortic rings with L-NAME almost completely abolished the 

vasodilator response to ACh in segments from naringenin-

treated control and diabetic rats, indicating the important role 

of endothelium-derived nitric oxide (NO) in the vascular effect 

of naringenin [Figure 4]. Preincubation of aortic segments from 

naringenin-treated diabetic rats with INDO non-significantly 

diminished the endothelial vasodilator response to ACh 

[Figure 5].

Discussion

In this study, chronic administration of naringenin had 

a moderate and significant hypoglycemic effect, it reduced 

the enhanced contractility of aortic rings to KCl and PE and 

increased ACh-induced relaxation which was partly due to 

involvement of NO pathway since the relaxation was blocked 

in the presence of L-NAME. In the presence of INDO, relaxation 

response to ACh was non-significantly attenuated.

Vascular dysfunction is one of the complicating features 

of diabetes in humans and its experimental model and 

hyperglycemia is the primary cause of micro and macrovascular 

complications in diabetic condition.[13] Compared to the aortic 

rings from control animals, contraction of aortas to KCl and PE 

from diabetic rats significantly increased in our study that was 

consistent with some previous studies.[14] Impaired endothelial 

function,[15] enhanced sensitivity of calcium channels,[16] an 

increase in vasoconstrictor prostanoids due to increased 

superoxide anions and increased sensitivity to adrenergic 

agonists[17] might all be responsible for increased contractile 

responses in diabetic rats, which could have been improved 

following naringenin treatment. In endothelial cells of most 

Figure 4: Maximum relaxation response for ACh in aortic rings precontracted with phenylephrine in the presence and absence of L-NAME. 
*P<0.05, **P<0.01, ***P<0.005 (vs. control), # P<0.05, ## P<0.01 (vs. diabetic), $ P<0.05 (vs. diabetic + L-NAME).

Figure 5: Maximum relaxation response for ACh in aortic rings precontracted with phenylephrine in the presence and absence of indomethacin. 
*P<0.05 (vs. control), # P<0.05 (vs. diabetic).
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vascular beds, ACh could stimulate production and release of 

endothelial-derived relaxing factors including NO, prostacyclin 

and endothelium-derived hyperpolarizing factor and in this way 

leads to relaxation of vascular smooth muscle in an endothelium-

dependent manner.[18-20] The ACh-induced relaxation response is 

endothelium-dependent and NO-mediated.[14]

The present work reveals that the endothelium-dependent 

relaxant response reduced in aorta from STZ-induced diabetic 

rats. Although some researchers asserted that the sensitivity 

to ACH decreases in diabetes,[17] the results of this research, 

in accordance with those of many previous ones[21] reveals that 

diabetes in long-term only decrease the maximum responses 

to ACh but not the sensitivity (pD2). Impaired endothelium-

dependent relaxation in STZ-induced diabetic rat might be due 

to increased blood glucose level and decreased blood insulin 

level. It has been shown that hyperglycemia causes tissue 

damage with several mechanisms, including advanced glycation 

end product (AGE) formation, increased polyol pathway flux, 

apoptosis and reactive oxygen species formation.[22]

Our results showed that naringenin treatment could exert 

a clear and significant hypoglycemic effect in STZ-induced 

diabetic rats. Therefore, its beneficial effect on aortic tissue 

of diabetic rats may be in part due to its hypoglycemic effect. 

In addition, the effect on vascular tissue of diabetic animals is 

believed to be due to enhanced oxidative stress, as shown by 

enhanced malondialdehyde (MDA) and decreased activity of 

defensive enzymes like superoxide dismutase.[23] This could lead 

to diabetes-induced functional changes in vascular endothelial 

cells and the development of altered endothelium-dependent 

vasoreactivity. In the present study, chronic treatment of 

naringenin may have decreased MDA content and enhanced SOD 

activity in aortic tissue from diabetic rats, indicating that the 

improvement in vascular responsiveness from naringenin may 

be partly due to ameliorating lipid peroxidation and oxidative 

injury. The latter mechanism warrants further investigation in 

future studies. In this study, part of vascular beneficial effect 

of naringenin has been through NO-mediated pathway, because 

L-NAME pretreatment blocked its effect. In this respect, 

naringenin could have upregulated the expression of eNOS, 

indicating the ability of this flavonoid to induce NO synthesis. 

In support of these ideas, it has been reported that naringenin 

could reduce oxidative damage and increase NO bioavailability 

in some metabolic disorders.[24]

In conclusion, in vivo chronic treatment of diabetic rats 

with naringenin could prevent the functional changes in 

vascular reactivity in diabetic rats through nitric oxide- and not 

prostaglandin-dependent pathway. Our data may be helpful in 

the development of new natural drugs to improve endothelial 

function and prevent cardiovascular diseases.
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