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Abstract
Optimization of multiple quality characteristics (or response variables) is more complicated than 

optimization of a single one since we face different units, importance and optimality directions. In 
most real situations there are correlated responses that make conclusion more difficult. If correlations 
among quality characteristics are ignored, engineering designer may miss finding design variable 
settings which simultaneously improved the quality of all the responses. In this work optimization 
of multiple correlated responses was studied and a novel mathematical model was proposed based 
on Principal Component Analysis (PCA) to optimize correlated multiresponse problems. The 
proposed method is also demonstrated by two numerical examples from the literature to confirm the 
efficiencies.
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1. INTRODUCTION

Setting of controllable input variables to meet a required specification of quality characteristic 
(or response variable) in a process is one of the common problems in the process quality control. But 
generally there are more than one quality characteristics in the process and the experimenter attempts 
to optimize all of them simultaneously. Since response variables are different in some properties such 
as scale, measurement unit, type of optimality and their preferences, there are different approaches 
in model building and optimization of multiresponse surface problems. Moreover, when correlations 
among the responses are ignored, the determined levels for inputs variables will not improve the 
quality of all of the responses simultaneously. Due to the interrelation among response variables, all 
fitted surfaces and optimization approaches may lead into imprecise results. It is also considerable 
point that when two responses are highly correlated, the problem can be reduced to a problem in 
which only one of them can be considered. On the other hand, if two responses have negligible 
correlation, the problem could be analyzed separately for each response. However, when the 
responses have meaningful (not highly) correlation, analysts must apply some other approach that 
simultaneously meet several output considering their interrelation.

In this work, Multiple Response Surface (MRS) optimization problem with correlation of 
responses are considered to make explicit conclusion and a novel mathematical model was proposed 
based on Principal Component Analysis (PCA) to obtain uncorrelated responses. This paper is 
organized as follows, in the next section we review some earlier works in multiresponse optimization 
(MRO). In Section 3 a summary of PCA method is introduced and in Section 4 the proposed 
approach and related models and methods are described. The representative examples are studied in 
Section 5 and finally, Section 6 gives some conclusions and mention considerable points for future 
researches.

2. LITERATURE REVIEW

MRO problems have been studied in several areas from different aspects. We can categorize all 
viewpoints in the literature into three general categories: (1) Desirability viewpoints: in this category, 
researchers try to aggregate information of each response and get one response. Then optimization is 
performed on single objective called total desirability function. (2) Priority based methods: some cases 
have responses with different importance, in such problem, we must consider most important response 
for optimization and if solutions were not unique, then find the best solution by comparing the status of 
other responses for alternative solutions and foresaid steps is repeated till considering all of the responses 
and finding a unique optimal solution. (3) Loss function: in this category, based on loss function (repre-
sented by Taguchi) all of the response values are aggregated and converted to a single one. Wide range 
of researches, have been studied to develop and generalize Taguchi loss function with respect to special 
trait of its cases. Some earlier works in multiresponse optimization are: Derringer and Suich (1980) ap-
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plied a desirability function to optimize multi-response problems in a static experiment. Del Castillo et�al. 
(1996) demonstrated the use of modified desirability functions for optimizing a multi-response problem. 
Layne (1995) presented a procedure that simultaneously considers three functions -- the weighted loss 
function, the desirability function, and a distance function -- to determine the optimum parameter combi-
nation. Hence, it will lead to the conflict by making the necessary compromise for the results of the three 
methods to determine the optimum parameters’ settings. Logothetis and Haigh (1988) also optimized a 
process with five responses by utilizing the multiple regression technique and the linear programming 
approach. These two methods are also computationally complex and, therefore, are difficult to apply on 
the shop floor. Pignatiello (1993) utilized a variance component and a squared deviation-from-target to 
form an expected loss function to optimize a multiple response problem. This method is difficult to imple-
ment. The first reason is that a cost matrix must be initially obtained, and the second reason is that it needs 
more experimental data. Artiles-León (1996-1997) presented a method, which is based on the notions of a 
standardized loss function with specification limits, to optimize a multi-response problem. However, only 
the nominal-the best (NTB) characteristic is suitable for this approach, which may limit the capability of 
this approach. Ames et�al. (1997) presented a quality loss function approach in response surface models 
to deal with a multi-response problem. The basic strategy is to describe the response surfaces with ex-
perimentally derived polynomials, which can be combined into a single loss function by using known or 
desired targets. Next, minimizing the loss function with respect to process inputs locates the best operat-
ing conditions. Lai and Chang (1994) proposed a fuzzy multi-response optimization procedure to search 
for an appropriate combination of process parameter settings. Bashiri and Hejazi (2009) used Multiple 
Attribute Decision Making (MADM) methods such as VIKOR, PROMETHEE II (Preference Ranking 
Organization Method for Enrichment Evaluation II), ELECTRE III (ELimination Et Choix Traduisant 
la REalité III) and TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) in con-
verting multi-response to single response in order to analyze the robust experimental design. The main 
advantages of their method was to consider standard deviation that contributed to robust experimental 
design and also because of fitting only one response regression function, the proposed method decreased 
statistical error. Hsieh (2006) used neural networks to estimate relation between control variables and 
responses. Tong et�al. (1997) developed a multi-response signal to-noise (MRSN) ratio, which integrates 
the quality loss for all responses to solve the multi-response problem. The conventional Taguchi method 
can be applied based on MSRN and the optimum factor/level combination can be obtained. Su and Tong 
(1997) also proposed a principle component analysis approach to optimize a multi-response problem. 
Initially, the quality loss of each response is standardized; principle component analysis is then applied 
to transform the primary quality responses into fewer quality responses. Finally, the optimum parameter 
combination can be obtained by maximizing the summation standardized quality loss. Su and Tong’s 
(1997) research is based on Taguchi method and proposed approach have no efficiency when the number 
of components is greater than one. Tong and Su (1997) proposed a procedure, which applied fuzzy set 
theory to MADM to optimize a multi-responses problem. Although their method can reduce the uncer-
tainty in determining each response’s weight, it is still too computationally complicated to be practically 



226����A�Mathematical�Model�Based�on�Principal�Component�Analysis�for�Optimization�of�Correlated�Multiresponse�
Surfaces

used. Tong et�al. (2007) use VIKOR methods in converting Taguchi criteria to single response and then 
find regression model and related optimal setting. Chiao and Hamada (2001) considered experiments with 
correlated multiple responses whose means, variances, and correlations depend on experimental factors. 
Analysis of these experiments consists of modeling distributional parameters in terms of the experimen-
tal factors and finding factor settings which maximize the probability of being in a specification region, 
i.e., all responses are simultaneously meeting their respective specifications. Kazemzadeh et�al. (2008) 
proposed a general framework for multiresponse optimization problems based on goal programming and 
studied some existing works and some types of related decision makers and attempts to aggregate all of 
characteristics in to one approach. Shah et�al. (2004) illustrate the seemingly unrelated regressions (SUR) 
method for estimating the regression parameters that it can be useful when response variables in MRS 
problem are correlated and can lead to a more precise estimate of the optimum variable setting. Tong et�al. 
(2005) also consider correlation of responses and use PCA and TOPSIS method to find the best variable 
setting. This method cannot determine the desired direction of components after the linear transforma-
tion. Antony (2000) used PCA in combination of Taguchi’s method. The proposed approach has obvious 
limitations since it is assumed that only those of components whose eigenvalues greater than one can 
be selected to form final response variables so if the problem has more than one components with such 
characteristic then their method could not be applied. Tong�et�al. (2005) and Wang (2007) determined 
the optimization direction of each component on the basis of the corresponding variation mode chart. 
Furthermore, Tong et�al. (2005) and Wang (2007) use TOPSIS to find an overall performance index as 
a criterion for optimizing the multiple quality characteristics. Hejazi et�al. (2011) aggregated multiple 
responses using goal programming method and assumed several correlated response variables with proba-
bilistic important weights. They solved the stochastic model by some deterministic equivalents. A sum-
mary of correlated Multiresponse optimization methods and a comparison between them are represented 
in Table 1.

3. PRINCIPAL COMPONENT ANALYSIS

Hotelling (1933) initially developed PCA to explain the variance-covariance structure of a 
set of variables by linearly combining the original variables. The PCA technique can account for 
most of the variation of the original p variables via k uncorrelated principal components, where k 
≤ p. Restated, let x = x1, x2…, xp be a set of original variables with a variance-covariance matrix ∑. 
Through the PCA, a set of uncorrelated linear combinations can be obtained in the following matrix:

  (1)

Where Y = (Y1, Y2…, Yp)
T�  , Y1 is called the first principal component, Y2 is called the second 

principal component and so on; A = (aij) p×p and A is an orthogonal matrix with ATA = I. Therefore, 
X can also be expressed as follows:
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Table 1. Comparisons of the researches in correlated response optimization

Method
Solution Location

 effect
Dispersion

 effect
Interaction

 effect Description
Continuous Discrete

Kazemzadeh et�al. (2008) ● ● ● ● Considers correlation coefficient as responses.

Shah et�al. (2004) ● ● ● Considers correlation before Regressing the response surfaces.

Su and Tong (1997) ● ● Application of PCA only in Taguchi method (More efficient with 
single Principal Component (PC)), Analyzing by factor plot.

Tong et�al. (2005) ● ● Analyzing by variation mode chart.

Chiao and Hamada (2001) ● ● ● ● Consider correlation coefficient as responses.

Antony (2000) ● ● Use first component and optimize by factor plot.

Wang (2007) ● ● ● Use TOPSIS and relative closeness to the ideal solution index for 
optimization.

Ribeiro et�al. (2010) ● ● Use first PC and optimize the response surfaces.

Proposed method ● ● ● ●

Allowing different weight (importance) of responses, no limitation 
for number of components, no Limitation to use Taguchi design, 
gives Pareto optimum in mathematical model. Considers correlation 
before regressing the response surfaces.
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  (2)

Where Aj = [a1j, a2j,…, apj]
T is the jth eigenvector of ∑.

Consequently, the secondary variables have following characteristics (Timm, 2002):

1.  (3)

2.  (4)

3.  Each secondary variable can be obtain from a linear combination of original variables.
4. The first secondary variable covers maximum deviation existing in original variables.

 would be maximized subject to the constraint that . It was 
shown that the characteristic vector associated with the largest root of the following equation is the 
optimal solution for p1 and the largest root λ1 is the variance of Z1.

  (5)

5. The kth secondary variable covers maximum deviation which is not covered by k-1th one.
If the solution of Equation (5) is expressed as Λ = (λ1, λ2, … , λp) such that λ1 ≥ λ2 ≥ … ≥ λp , the kth 

component would be the characteristic vector associated to λk.
6. Secondary variables are independent.

4. PROPOSED METHOD

In this paper a mathematical model is developed to find the best combination of variables set-
ting in order to optimize response surfaces. To reach this objective, after running the experiments, 
related results are gathered and then by means of PCA, uncorrelated components are calculated. 
These components are new responses and are replaced as experiments responses (observed results). 
Since after calculation of components, the desired direction of optimization is missed (because of 
the linear combination of original variables), it is necessary to find optimization direction for each 
component. For solving this problem the best results of each response, will be calculated by a linear 
programming and it will be used as a goal for modeling the final objective function. The summary of 
proposed method is as following steps:
1. Collecting experiments data (responses vs. control variables).
2. Computing uncorrelated responses by PCA (each component is a response).
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3. Finding relation function between control variables and new responses by RSM.
4. Optimize of the multiple response surfaces in terms of control variable as decision variables and 

find optimum value of each component.
5. Find optimum responses by inverting the PCA relations.

These steps are also drawn as a flowchart in Figure 1.
Note that we could consider standard deviations of each response as separated responses, if robust-

ness was important. The next section contains the mathematical formulations and related parameters.

4.1 Mathematical model
In this section, a mathematical program to analyze correlated multiresponse problem has been 

developed based on PCA. The optimization model has multiple objectives and can be written as 
follows (Appendix A gives a summarized definition of parameters required to express the model):

  (6)

  (7)

Subject to:

  (8)

  (9)

Figure 1. Proposed method in flowchart view
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In order to solve this multi-objective model some vector optimization method could be applied 

to convert multiple objectives to single one. For this purpose Global Criterion method was used to 

convert first objective set in Equation (6) and then by phasing the model, objectives in Equations (6) 

and (7) will be analyzed in two stages.

4.2 Global criterion (Lp-metric method) approach
This method allows one to transform a multi-objective optimization problem into a single-

objective problem. The function traditionally used in this method is distance. 

Through the distance to a referent objective method, the multi-objective method can be written 

as follows:

Optimize�[minimize/maximize]

  (10)

Where Zi is the optimum value of problem objective function when only ith objective was considered 

and wi is a value representing importance of each objective (Donoso and Fabregat, 2007). In this study 

GC method was applied to convert problem into single objective form. Now the constraints and objective 

in the model are explained. First objective function set in Equation (6) represents distance between each 

response surface and its goal. The next objective function in Equation (7) is put to minimize difference 

between original responses and their related goals (best observed value). Constraint set in Equation (8) en-

sures that each response has a minimum difference from its best value. In this set, the normalized distance 

was used and k is an arbitrary constant parameter that helps to have feasible solution region. The less 

values of k result into a better final solution, but with less values of k, if the model did not have a feasible 

solution, the analyst must increase k to find a feasible region. This constraint is used to specify desired 

optimization direction for each real response. The model could be solved in two stages: the first stage 

solves the model with second objective only to find the best value of k that ensure existence of a feasible 

solution, then second stage applies optimal value of k obtained from first stage to optimize the first objec-

tive function (Equation (6)). At the end, constraint set in Equation (9) represents specific region for each 

controllable variable. In the next section, some numerical examples are represented to show efficiency of 

the proposed model.

5. NUMERICAL EXAMPLES

In this section, proposed method is applied to analyze two cases. In addition, the results have 

been compared with other existing methods.
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5.1 Case 1
Tong et�al. (2005) attempted to improve the quality of the chemical-mechanical polishing process 

of copper thin film. Five controllable factors with three levels were considered in an L18 orthogonal array. 
Three response variables for this process are as follows:
1. Removal rate (RR): a larger value is desired.
2. Non-uniformity (NU): a smaller value is desired.
3. TaN/Cu selectivity: a larger value is desired.

Table 2 displays the experimental design and results. Three Signal to Noise (SN) ratios from 
Taguchi formula are considered as responses.

According to the proposed method, initially response values must be made uncorrelated by 
PCA. Table 3 displays statistical results for PCA performed by MINITAB software.

After performing PCA, three uncorrelated responses (components) have been determined. The 
component values (new responses) are shown in Table 4. According to Table 3, converted responses 
are as follows:

f1(Y)�=�PC1=�0.449�RR�+�0.882�NU�+�0.145�TaN�
f2(Y)�=�PC2=�-0.887�RR�+�0.459�NU�-�0.044�TaN�
f3(Y)�=�PC3=�-0.106�RR�-�0.109�NU�+�0.988�TaN
Next step in proposed method will be conducted by forming response surfaces between factors 

and new responses.
After converting responses by PCA, for each component (Principal Component, PC), the 

response surface must be obtained by regression models. Following equations (performed by Design 
Expert 7.1.1 software), represent regression functions between PCs and controllable variables.

g1�=�PC1=�0.242�+�3.464�A�+�1.758�B�-�1.879�D
g2�=�PC2=�-61.457�+�0.207�A�+�0.587�B�+�4.08�C�+�4.178�D�-1.28AD�-�0.713BC�-1.34�CD�
g3�=�PC3=�7.4398�+�0.9254�B�+�0.408 C
Now in the final step, according to parameter definition described in Section 5, we use 

optimization model with following variables:
Y*�=�(65,-8,�25)
d�=�(8.71,�14.62,�4.35)
h1�=�RR�=�0.449�PC1�-�0.887�PC2�-�0.106 PC3

h2�=�NU�=�0.882�PC1�+�0.459�PC2�-�0.109�PC3

h3�=�TAN�=�0.145�PC1 -�0.044�PC2�+�0.988�PC3

PC*�=�(15.28467,�-�57.1427,�11.09801)
By forming mathematical model and solving it (by LINGO software), it is found that optimal 

setting for controllable variables are: X= (3,�3,�3,�2.16,�1). It is considerable point that after solving 
model in first stage, optimal value of k equals to 2.1048. Table 5 displays final results that contains 
the values of objective function (Z), control variables (A: E), prediction of responses (RR, NU, TaN) 
and related components (PCs).
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In Tong�et�al. (2005) it is found that the optimal solution are obtained from variation mode chart 
and also because of highest priority, only one response was considered ; but in the proposed method, 
we find the best solutions by systematic approach and also by considering multiple solution which 
could have different priorities. About TaN response variable, it should be stated in Tong et�al. (2005), 
TaN has positive coefficient in all components so the optimization of multiresponse problem does 
not have undesired effects on this response.

Table 2. Experimental observations and Signal to Noise (SN) ratio

Experiment 
number

Controllable variables (Factors) SN Ratio for each response
A B C D E Removal rate (RR) Non-uniformity (NU) TaN/Cu

1 1 1 1 1 1 49.37 -23.11 12.04
2 1 2 2 2 2 49.22 -23.92 12.67

3 1 3 3 3 3 49.94 -27.31 14.96

.

.

.

.

.

.

.

.

.
17 3 2 1 3 1 55.27 -23.58 13.26
18 3 3 2 1 2 56.27 -13.98 15.27

Max 56.39 -13.98 15.71
Min 47.68 -28.6 11.36

Range 8.71 14.62 4.35

Table 3. Principal Component Analysis: RR, NU, TaN

Variable PC1 PC2 PC3 Eigen analysis of the Covariance Matrix
RR 0.449 -0.887 -0.106 Eigen value 20.939 3.820 1.216

NU 0.882 0.459 -0.109 Proportion 0.806 0.147 0.047
TaN 0.145 -0.044 0.988 Cumulative 0.806 0.953 1.000

Table 4. Component values after PCA

Experiment 
number 1 2 3 … 10 11 12 13 … 16 17 18

PC1 3.55 2.86 0.53 … 2.02 -1.62 6.84 3.21 … 9.57 5.96 15.17

PC2 -54.9 -55.2 -57.5 … -54 -56.7 -54.9 -57.5 … -56.9 -60.4 -57

PC3 9.21 9.94 12.49 … 10.71 10.11 11.20 8.92 … 10.54 9.84 10.68

Table 5. Optimum values from mathematical model -- Case 1

Variable Z PC1 PC2 PC3 A B C D E
Prediction value

RR NU TaN

Value 0.779 11.84 -61.26 11.44 3 3 3 2.16 1 58.44 -18.92 15.72

Tong et�al. (2005) - - - - 3 3 3   1 3 55.925 -16.26 16.02
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5.2 Case 2
Su and Tong (1997), studied a case that involves improving a hard disk drive’s quality, and an 

experiment was performed to determine the effects of design parameters on the responses. The four 
desired responses are:
1. PW: 50% pulse width (STB, Smaller-The-Better);
2. HFA: high- frequency amplitude (LTB, Larger-The-Better);
3. OW: over write (LTB);
4. PS: peak shift (STB).

Optimal settings could, it was hoped, be found such that a low variability for the responses 
could be achieved. Table 6 lists experimental factors and their alternative levels. The standard array 
L18 was selected for the experiment.

According to Equations (3) and (4), the model parameters have been obtained as shown in fol-
lowing equations:

PC1�=�0.565�PW�+�0.514�HFA�-�0.4�OW�+�0.508�PS
PC2�=�0.203�PW�-�0.001�HFA�+�0.866�OW�+�0.457�PS
PC3�=�-0.070�PW�+�0.806�HFA�+�0.288�OW�-�0.512�PS
PC4�=�-0.797�PW�+�0.293�HFA�-�0.088�OW�+�0.521�PS
After computing converted response variables, RSM should conducted on the PCs and factors. 

Following equations shows response surfaces for this case:
g1�=�-0.71�+�0.45�A�-�0.85�B�-�1.78�C�+�1.74�D�+�1.36�E�+�0.081�F�+�0.11�G�+�0.059�H�+�0.38�

AB�+�0.32�AC�-�0.27�AD�-�0.68�AE�+�0.079�AF�-�0.45�CD�+�0.50�CE�-�0.26�CF
g2�=�-2.72�+�2.73A�+�0.26�B�-�0.97�C�+�2.18�D�+�2.14�E�-�0.91�F�-�0.33�G�+�0.4�H�-�0.11�AB�+�0.49�

AC�-�1.18�AD�-�1.03�AE�-�0.31�AF�-�0.33�CD�-�0.30�CE�+�0.50�CF�
g3�=�-3.01�+�3.09�A�-�2.82�B�-�0.93�C�-�1.68�D�+�4.78�E�-�0.25�AB�-�0.41�AC�-�0.31�AE�+�0.29�

BC�+�0.99�BD�-�1.16�BE�+�0.61�CD�+�0.45�CE�-�1.01�DE�+�0.62�B2�-�0.22�C2
g4�=�-1.40�+�1.32�A�-�0.38�B�-�0.10�C�+�0.72�D�+�0.29�E�+�0.32�F�+�0.12�AB�-�0.23�AD�-�0.38�

AE�-�0.22AF�+�0.064�BC�-�0.089�CD�+�0.075�CE�-�0.082�CF

Table 6. Experiment results (normalized data (Case study 2))

Factors Responses (Normalized loss function)

A B C D E F G H
PW 

(50% pulse 
width)

HFA 
(high- frequency 

amplitude)

OW 
(over write)

PS 
(peak shift)

1 1 1 1 1 1 1 1 0.66413 0.4487 0.78924 0.90214

1 1 2 2 2 2 2 2 0.65594 0.73942 0.85558 0.83733

.

.

.

.

.

.

.

.

.

.

.

.
2 3 2 1 3 1 2 3 0.83735 0.85467 0.80169 0.80169

2 3 3 2 1 2 3 1 0.00161 0.33984 0.91838 0
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The same calculations as the previous case must be applied to find model requirements; so we 
cede more discussions and only give parameter values as follows:

Y*�=�(1,�1,�1,�1)
d�=�(1,�1,�1,�1)
h1�=�PW�=�0.565�PC1�+�0.203�PC2�-�0.07�PC3�-�0.797�PC4

h2�=�HFA�=�0.514�PC1�-�0.001�PC2�+�0.806�PC3�+�0.293�PC4

h2�=�OW�=�-0.4�PC1�+�0.866�PC2�+�0.288�PC3�-�0.088�PC4

h2�=�PS�=�0.508�PC1�+�0.457�PC2�-�0.512�PC3�+�0.521�PC4

PC*�=�(1.65,�1.53,�0.72,�-�0.187)
After solving model in first stage, we found k = 2.99.detailed results are shown in Table 7 to 

confirm the model solutions.
Su and Tong (1997) used single principal component to aggregate the multiple response 

problems and consideration of correlation was not clear. Also they explained that use of more 
than single PC entails difficulties on conclusion and analyzing, since the trade off of PCs must 
be considered. In their method, Ω value must be maximized in order to gain the best responses 
values. Consider the first eigenvalue, after computing the Ω equation, if related coefficients do 
not have the same signs, the problem would be more difficult to solve. Assume that there were 
both negative and positive coefficients for responses in Ω equation; in this case, maximization or 
minimization of the Ω gives no assurance for optimization of all of the response values because, 
the maximization of Ω tries to minimize those responses that have negative coefficient  (see into 
OW in case 2 ). Hence using the single PC could disorder the aggregation. The proposed meth-
od, on one hand, used maximum number of PC resulting better representation of original data 
without losing information, and on other hand, there is no limitation in form of eigenvector (any 
sign for each coefficient in eigenvector will be allowed and analyzable). The comparison of the 
proposed method and Su research are summarized as follows:
1. We applied one of the most popular methods for aggregating the multiple responses (desirability 

function, distance function and Taguchi loss function).
2. Usage of the PCA in our method was directly related to uncorrelating the response vectors.
3. Although we applied the PCA and optimized the PC values, similar to Su and Tong’s (1997) re-

search, it was contemplated that the direction of the optimality remains unchanged.
4. Our proposed method, optimize the objective function in continuous space.
5. Consideration of different degree of important for each response was allowed by our aggrega-

tion function but in Su and Tong’s (1997) research, it is possible that the coefficients of the each 
response in omega equation had not compatibility with its importance.
Table 8 shows the final results of proposed method in comparison to other approaches in literature.
The less value of the EDG (Euclidian Distance to Goal values) results into better response vari-

ables. The proposed method has significant differences in comparison to other studies.
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6. CONCLUSION

In this study we proposed a novel mathematical model for optimization of multiple response 
models when responses are correlated. If optimization performed without considering correlation, 

the correlation between responses may be interacting, and thereupon Optimality may be lost in con-
firmation experiments. Because of this confliction, we applied PCA method to calculate uncorrelated 
components from correlated ones. We also studied two cases from literature to illustrate efficiency of 
the proposed method. At the end of the paper some benefits of the proposed method in comparison to 
other related approaches was given and results have been discussed.
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Appendix A: Parameter Definition

The mathematical formulations will be expressed by following parameters:
Yj: Experimental responses (j = 1, …, n).
Yj
*: Best observed value for jth response.

dj : Range of values for jth response.
X�= x1,�x2…,�xm: Vector of experiment controllable variables.
(lj, uj): Lower & upper bound of jth controllable variable, j = 1, …, m.
PCj : Principal Component (j = 1, …, n).
According to Equation (A1), it is known that:

  (A1)

and

  (A2)

And According to Equation (A2), it’s obvious that: h = f - 1.

gj (X): Response surface (regression function) for PCj.



� Journal�of�Quality�Vol.�19,�No.�3�(2012)����239

以主成份分析為基礎的數學模式找出相關性的 

多重反應曲面最佳化
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摘　要

多重品質特性 (或反應變數 )最佳化遠比單一因子的最佳化來得複雜，因為我們面臨不
同單位、重要性與最佳化方向。在大多數真實情形下，反應是相關的，因此下結論變得困難。

若把品質特性的相關性忽略，工程設計人員可能無法發現設計變數的設定可以同時改善所有

反應的品質。本研究以多重相關性反應的最佳化為重點，並且提出一個以主成份分析為基礎

的新的數學模式。並且利用兩個從文獻找來的範例說明所提出的方法有較好的效率。
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