چکیده
گل‌گیاه Carthamus tinctorius L. یک محصول دانه روغنی مهم با اهمیت رو به رشد در بیشتری از کشورها در سراسر جهان است. در این مطالعه خسارت سرخرطومی های گل‌گیاه روی سرم گل‌گیاه، Carthamus tinctorius L. در منطقه تهران بررسی شد. این آزمایش در قالب طرح بلور گاملا تصادفی در مزرعه تحفیضی دانشگاه شهید اجرایی در محل سکونت قرار گرفت. این آزمایش شامل دو گونه Carthamus tinctorius L. و Carthamus morosus بررسی گردید. گونه Carthamus tinctorius L. در متوسط سطح هزار دانه سالم در فاصله آباده و وزن هزار دانه سالم در فاصله آباده اختلاف معنی داری وجود داشت. روى رقم گلدشت (شب شمیران درصد آباده 13.85 درصد) و کمترین درصد آباده گوزه روی رقم پیدیده‌ شد (3.42 درصد) به دست آمد. وزن هزار دانه آباده در فوزه آباده به دست آمد که این نتایج مختلف اختلاف معنی داری می‌باشد. بهترین و کمترین وزن هزار دانه آباده در فوزه آباده روز ارقام پیدا و C4 محاسبه شد. بهترین و کمترین وزن هزار دانه سالم در فوزه آباده روز و رقم بندیده و کمترین مقدار روی رقم گلدشت مشاهده شد.

کلمات کلیدی: خسارت کمی، سرخرطومی گل‌گیاه، ارقام گلدشت، تهران

مقدمه
گیاه خوارها از نظر های زنده محیطی در کاهش عامل‌های محصولات کشاورزی محسوب می‌شوند. حفاظت از محصولات کشاورزی و مواد غذایی در برابر آفات امروز ضروری و مهم به حساب می‌آید. از جمله برنامه‌های مدیریتی IPM (IPM) برای کنترل آفات استفاده از ارقام مقوام می‌باشد. این ارقام موثر در سیستم مدیریت تله‌فیکی که آفتهای بسیار زیادی دارد. ورودی‌های مقاوم خسارتهای را با حذف آفتهای بسیار زیادی کاهش می‌دهد (Reagan et al., 1997). ارقام موثر با توجه به نوع مکانیسم مقاومت آن می‌تواند در زمان کوتاهی و با در طولانی مدت جمعیت آفتهای را تحت تأثیر قرار داده و با اینکه با وجود آفتهای کاهش عملکرد در محصول دیده نشود (Nouri-Ghanblani et al., 1995). در گونه‌های سرخرطومی به‌عنوان گل‌گیاه تهیه جمله می‌کند این گونه های عبارت از "Larinus flavescens" و "Larinus liliputanus" تحت خشائی این دو گونه به صورت حمله به فوزه‌های گل‌گیاه می‌باشند. این آفتهای ضمن حمله به دانه‌ها های گل‌گیاه به‌عنوان از قسمت تحت‌کنش فوزه گل‌گیاه به کاهش محصول می‌گردد.

مواد و روش‌ها
این آزمایش در جنوب تهران واقع در مزرعه پژوهشی تحفیضی بر پایه دانشگاه شهید تهران و در سال 1390 انجام گرفت. گونه Carthamus tinctorius L. و Carthamus morosus بررسی گردید. این آزمایش در قالب 

The 3rd Conference on Agriculture and Food Science
Dec. 06 2012 – Fasa
طرح بلوک کامل تصادفی در شش تکرار مورد بررسی قرار گرفت. هر کرت آزمایش شامل 6 ردیف 8 متری بار هر رقم با فاصله رنگ‌پوش ۵ سانتی‌متر در فاصله رنگ‌پوش ۵ سانتی‌متر در نظر گرفته شد و ۴ میانی برای تغییر صفات مورد نظر و دو ردیف کناری به عنوان حاشیه قرار گرفت. نمونه برداری در آخر فصل زراعی (فته‌های آخر تیرما) انجام گرفت.

نتایج

تجزیه واریانس صفات مختلف روی ارقام مختلف در جدول شماره ۱ آورده شده است. بر اساس این تجزیه درصد آلودگی قوزه در ارقام مختلف اختلاف معنی‌داری را در سطح ۰/۰۱ نشان داد. مقایسه میانگین های صفات مختلف روی ارقام مختلف در جدول شماره ۲ آورده شده است، با توجه جدول شماره ۲ درصد آلودگی قوزه به سرخرطومی گلروغنگ روی رقم گلکل‌یشته بیشتر از دو رقم دیگر بود.

بررسی وزن زهار دانه در ارقام مختلف نشان داد که وجود اختلاف معنی‌داری بوده که به مقایسه میانگین های وزن هزار دانه سالم در قوزه سالم، هر رقم در گروه‌های جداگانه جای گرفته که این امر به‌پیش افتاد. وزن هزار دانه سالم در قوزه سالم در رقم گلکل‌یشته کمتر از دو رقم دیگر و رقم پیدا، بیشترین مقدار را داشت. همچنین وزن هزار دانه سالم در قوزه آلوده در ارقام مختلف در سطح ۰/۰۱ دارای اختلاف معنی‌داری بوده که این صفت در رقم گلکل‌یشته مقدار کمتری را نسبت به دو رقم دیگر به خود اختصاص داد اما اختلاف معنی‌داری را با رقم C44 نداشت در حالیکه در قوزه سالم به طور معنی‌داری وزن هزار دانه رقم C44 بیشتر از رقم گلکل‌یشته بود. بنا براین در قوزه های آلوده در رقم گلکل‌یشته وزن هزار دانه افزایش نشان داد. بنا براین احتمالاً در رقم گلکل‌یشته پدیده جبران اتفاق افتاده است. همچنین بر اساس این نتایج وزن هزار دانه های آلوده به شدت کاهش یافت.

جدول ۱- تجزیه واریانس صفات مختلف

<table>
<thead>
<tr>
<th>Source</th>
<th>Degrees of Freedom</th>
<th>Mean of Square</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of infested boll</td>
<td>Cultivar effect</td>
<td>2</td>
<td>0.03</td>
</tr>
<tr>
<td>Healthy 1000-seed weight in infested boll</td>
<td>Cultivar effect</td>
<td>2</td>
<td>184.32</td>
</tr>
<tr>
<td>Infested 1000-seed weight in infested boll</td>
<td>Cultivar effect</td>
<td>2</td>
<td>42.90</td>
</tr>
<tr>
<td>Healthy 1000-seed weight in healthy boll</td>
<td>Cultivar effect</td>
<td>2</td>
<td>494.93</td>
</tr>
</tbody>
</table>

جدول ۲- مقایسه میانگین تیمار های فرعی (ارقام گلروغنگ) با آزمون دانکن

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Percentage of infested boll</th>
<th>Healthy 1000-seed weight in infested boll</th>
<th>Infested 1000-seed weight in infested boll</th>
<th>Healthy 1000-seed weight in healthy boll</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goldasht</td>
<td>13.85±2.04A</td>
<td>33.69±1.01B</td>
<td>18.99±0.52A</td>
<td>31.99±0.91C</td>
</tr>
<tr>
<td>Padideh</td>
<td>3.43±1.18B</td>
<td>41.31±1.31A</td>
<td>21.04±0.61A</td>
<td>44.77±1.67A</td>
</tr>
<tr>
<td>C44</td>
<td>9.11±1.57A</td>
<td>35.93±1.43B</td>
<td>17.26±2.18A</td>
<td>37.35±1.82B</td>
</tr>
</tbody>
</table>

The 3rd Conference on Agriculture and Food Science
Dec. 06 2012 – یاسا
The 3rd Conference on Agriculture and Food Science
Dec. 06 2012 – Jafa