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Abstract—The measurement or evaluation and clinical sig-
nificance of human sperm morphology has always been and
still is a controversial aspect of the semen analysis for the
determination of a male’s fertility potential. The evaluation of
sperm size, shape and morphological smear characteristics should
be assesed by carefully observing a stained sperm sample under a
microscope. In order to avoid subjectivity, numerous studies that
incorporate image analysis techniques in the assessment of sperm
morphology have been proposed. The primary step of all these
methods is segmentation of sperm’s parts. In this paper, we have
proposed a new method for segmentation of sperm’s Acrosome,
Nucleus and Mid-piece. Sperm’s Acrosome, Nucleus and Mid-
piece are segmented through a method based on a Bayesian
classifier which utilizes the adaptive mixtures method (AMM) and
Markov random field (MRF) model to obtain and upgrade the
class conditional probability density function (CCPDF) and the
𝑎𝑝𝑟𝑖𝑜𝑟𝑖 probability of each class. To compare the performance
of the proposed approach with those of previous approaches
including manual segmentation, the Accuracy, Sensitivity and
Specificity were calculated.

Index Terms—Sperm, Segmentation, Bayesian classification,
Adaptive Mixture Method, Markov Random Field Model.

I. INTRODUCTION

The measurement or evaluation and clinical significance

of human sperm morphology has always been and still is a

controversial aspect of the semen analysis for the determina-

tion of a male’s fertility potential. The evaluation of sperm

morphology was and still is regarded as subjective due to the

fact that it has to be done by the human eye. Even today

most of the modern-day computer-assisted sperm morphology

analysis systems still largely depend on human operator skills

and are suffering from the same technical problems as manual

of sperm morphology evaluation [1]. So, manual procedures

are “inexact, subjective, no repeatable, difficult to teach” [2],

and computerized techniques are essential tools. The majority

of these computer methods have been developed to analyze

human sperm morphology and have afterwards been adapted

for other species [3]. The development of new methodologies

is an ongoing research activity [4], [5]. These researches

have enriched the available knowledge on sperm cells [6] and

furthermore, digital image analysis had allowed to classify

subpopulations [7] or to describe shape abnormalities [5]. Most

of these approaches use CASA systems [8], [9] that deploy

image processing techniques or propose new description and

classification methods [10]–[14]. Some other methods have

been developed to analyze human sperm morphology, the

primary steps of all these methods is sperm segmentation and

discrimination. Sánchez et al. [3], [15] and Nowshiravan et al.

[16] proposed methods based on morphological operators and

thresholding to segment sperm’s head, because the Acrosome

and the Mid-piece have similar characteristics (intensity level,

texture) the segmentation with traditional techniques (thresh-

olding, region growing) does not give good results [16], [17].

To tackle this problem, Carrillo et al. [18], [19] presented

an approach called 𝑛th-𝑓𝑢𝑠𝑖𝑜𝑛 for segmentation of sperm’s

Acrosome, Nucleus and Mid-piece in a computer aided tool for

the objective analysis of human sperm morphology, commonly

known as Automated Sperm Morphology Analyzer (ASMA).

After enclosing individual sperms (head and mid-piece) using

bounding boxes, they used 𝑛th-𝑓𝑢𝑠𝑖𝑜𝑛 method which was

based on 𝑛th-𝑙𝑒𝑣𝑒𝑙 thresholding of an image followed by

intersection with n special masks. In order to obtain the desired

segmentation results, a 𝑝𝑟𝑖𝑜𝑟 objects morphological model,

which was based on the information fusion technique in a

feature level was used. For each segmented sperm in image,

they had to run the algorithm to detect sperm’s parts.

In this paper we have proposed a fully automatic method for

segmentation of sperm’s Acrosome, Nucleus and Mid-piece

that requires no training and atlas. At first, an improved hybrid

method [20] is used to remove noise from the sperm image (R

component of RGB color image). Then, a simple threshold is

applied to build a primary mask containing sperm’s Acrosome,

Nucleus, Mid-piece, and also small objects is seminal plasma.

The small objects have been eliminated and to build the final

localized mask, the minimum area bounding box of each

individual region is computed through the Rotating Calipers

method [21], [22]. The detection rate and speed have been

increased using the bounding boxes. Pixels inside the bounding

boxes are considered as samples. Distribution function of

the samples is estimated by a mixture of a large number

of normal terms through adaptive mixtures method (AMM).

Then, the mixture terms are categorized into three classes,

as the class conditional probability density functions and the

𝑎𝑝𝑟𝑖𝑜𝑟𝑖 probabilities of the classes. In the next steps, 𝑎𝑝𝑟𝑖𝑜𝑟𝑖
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probabilities of the classes as well as mean and variance of

class conditional probability density function for each class are

attained and updated utilizing a Markov random field (MRF)

model and AMM, respectively. In the next sections, details

of the research procedure including segmentation of sperm’s

Acrosome, Nucleus and Mid-piece are explained.

II. MATERIALS AND METHODS

A. Image Acquisition Technique

Sample Images were acquired from modified Papanicolaou

stained sperm smears. Fresh Sperm samples were incubated

for 30 to 60 minute in 37∘ Celsius. The Smear was then

prepared after complete liquefaction and the slides were dried

in the air before staining with modified Papanicolaou method.

The images were captured by means of a 560 TV-line CCD

camera mounted on the third eyepiece of a trinocular direct

microscope (Proway BK5000) with a total magnification of

1000X using Plan Achromatic Infinity objective lenses and a

resolution of 576× 764 pixels in RGB color space. 10 to 25

Images of different fields were captured from each slide. And

totally 100 slides were analyzed (each slide consists of 1 to 5

sperms).

B. Preprocessing

To create a primary mask containing sperm’s Acrosome,

Nucleus and Mid-piece, the Red component of RGB color

image is used. The Red component contains most of the

information associated with the darkest color, which domains

the head. To remove noise, an improved hybrid method [20]

is applied. This method consists of two stages. The first stage

consists of a fourth order partial differential equation (PDE)

and the second stage is a relaxed median filter, which processes

the output of fourth order PDE. This model enjoys the benefit

of both nonlinear fourth order PDE and relaxed median filter.

By using a relaxed median filter we can preserve more image

details than the standard median filter. This method preserves

fine details, sharp corners and thin lines and curved structures

to large extent. Then, a simple threshold is applied to build a

primary mask which contains sperm’s Acrosome, Nucleus and

Mid-piece, and also small objects is seminal plasma (< 𝑡ℎ𝑟).

The threshold value is calculated according to 𝑡ℎ𝑟 = 𝜇 − 𝜎,
in which 𝜇 and 𝜎 are mean and standard deviation of the

noise-removed image, respectively. The small objects have

been eliminated and this mask, containing sperm’s Acrosome,

Nucleus and Mid-piece is used to build the final mask at

the next step. To build the final mask, the minimum area

bounding box of each individual region is computed through

the Rotating Calipers method [21], [22]. This method is

capable of computing the minimum area enclosing rectangle

in linear time. To apply Rotating Calipers method, the two

dimensional convex hull of all visible points (for each region)

is computed using the monotone chain algorithm [23]. This

algorithm is linear with respect to the number of input points

𝑂(𝑛), assuming that input points are sorted by increasing x

and increasing y coordinates.

C. Problem Formulation

A finite mixture model 𝑝(x) is the weighted sum of 𝑀 > 1
components in ℝ

𝑛 for 𝑛 ⩾ 1 :

𝑝(x) =

𝑀
∑

𝑚=1

𝜋𝑚𝑝(x∣𝑚) ∀x ∈ ℝ
𝑛, (1)

where 𝜋𝑚 ∈ (0, 1)(𝑚 = 1, 2, ...,𝑀) corresponds to the weight

of each component which satisfies
∑𝑀

𝑚=1 𝜋𝑚 = 1. For the

Gaussian mixtures model, each component density 𝑝(x∣𝑚) is

a Gaussian probability density given by

𝑝(x∣𝜃𝑚) =
1

(2𝜋)
𝑛
2 𝑑𝑒𝑡(

∑

𝑚)
1

2

× (2)

𝑒𝑥𝑝 {−1/2(x− 𝜇𝑚)𝑇
−1
∑

𝑚

(x− 𝜇𝑚)}

where T denotes the transpose operation, 𝜇𝑚 is the mean

vector and 𝜎𝑚 is the covariance matrix which is assumed

positive definite. Here we encapsulate these parameters into

a parameter vector, writing the parameters of each component

as 𝜃𝑚 = ( 𝜇𝑚,
∑

𝑚 ), to get Θ(𝜋1, 𝜋2, ..., 𝜋𝑀 , 𝜃1, 𝜃2, ..., 𝜃𝑀 ).
Eq. 1 can be rewritten as

𝑝(x∣Θ) =

𝑀
∑

𝑚=1

𝜋𝑚𝑝(x∣𝜃𝑚) (3)

If we knew the component from which x came, then it would

be simple to determine the parameters Θ. Similarly, if we

knew the parameters Θ , we could determine the component

that would be most likely to have produced x. The difficulty

is that we know neither.

D. Estimation of probability density function by AMM

To estimate 𝑝(𝑥∣𝑤𝑗) the AMM [24] is used. The AMM

utilizes all the data, one by one, to determines the distance

of each observation to each component density in the model.

In this method, there is a threshold and if the distance to

component is more than the threshold, a new component is

created. However, if the distance is less than the threshold for

all components, the estimated parameters will be updated on

the basis of the recursive EM equations. According to this

method, an estimation of 𝑝(𝑥∣𝑤𝑗) (i.e., 𝑓𝐴𝑀 (𝑋)) is computed

as below

𝑓𝐴𝑀 (𝑋) =

𝑁
∑

𝑖=1

𝑝𝑖𝜙(𝑋; 𝜇̂𝑖, Σ̂𝑖) (4)

where 𝑝𝑖, 𝜇̂𝑖, Σ̂𝑖 are the estimations of coefficient, mean, and

covariance matrix of 𝑖th multivariate Gaussian density

𝜙(𝑋; 𝜇̂𝑖, Σ̂𝑖), respectively.

The following features can be mentioned as the advantages

of the AMM algorithm in comparison with the EM algorithm

[25]:

1) The AMM does not require an initial knowledge for the

number of terms.



2) It does not require an initial guess for the term param-

eters.

3) As the whole data are not used simultaneously for

updating the estimation of term parameters, the required

calculation is much lower than that of EM especially

while we have a massive data set.

4) In contrast to the EM algorithm, the convergence of

AMM and also number of iterations do not depend

on the tolerance (i.e., a preset threshold for algorithm

termination), initial parameters, and the data load.

E. Computation of the a priori probability by MRF model

An advantage of MRF models [26] is the use of neighbor-

hood information to improve the 𝑎𝑝𝑟𝑖𝑜𝑟𝑖 probabilities [27]

𝑝(𝑤). The intuition behind the MRF model is that most pixels

belong to the same class as their neighbors, and it is a powerful

tool to describe the class assigning or labeling dependence

between adjacent pixels. Suppose a digital image bases on a

𝑀 × 𝑁 lattice, So image describes as 𝑆 = {𝑠 = (𝑥, 𝑦)∣1 ≤
𝑥 ≤ 𝑀, 1 ≤ 𝑦 ≤ 𝑁}. Assuming that the unobserved random

field 𝑤(𝑥, 𝑦) is a Markov random field with the probability

density function of 𝑤(𝑥, 𝑦) of a segmented image depending

on its finite neighboring region 𝑁(𝑥, 𝑦), then

𝑝(𝑤(𝑥, 𝑦)∣𝑤(𝑥𝑖, 𝑦𝑗), ∀(𝑥𝑖, 𝑦𝑗) ∕= (𝑥, 𝑦)) =

𝑝(𝑤(𝑥, 𝑦)∣𝑁(𝑥, 𝑦)) (5)

where 𝑁(𝑥, 𝑦) is a set of all labeled neighbors. So, the

segmentation problem defined as a pixel classification problem

using MAP can be estimated using a Gibbs distribution [28],

which is easier to estimate. The Gibbs distribution can be

expressed as

𝑝(𝑤(𝑥, 𝑦)∣𝑁(𝑥, 𝑦)) =
1

𝑍
exp−

1

𝑇
𝑈(𝑤(𝑥,𝑦)) (6)

where, 𝑍 =
∑

𝑤(𝑥,𝑦) exp
−

1

𝑇
𝑈(𝑥,𝑦) is a normalization constant

which guarantees that 𝑝(𝑤(𝑥, 𝑦)) is always smaller or equal

to one, and 𝑇 is a constant which stands for the temperature

constant which normally supposes to be one. And the energy

function

𝑈(𝑤(𝑥, 𝑦)) =
∑

𝑤(𝑥𝑖,𝑦𝑗)∈𝐶(𝑥,𝑦)

𝑉 (𝑤(𝑥𝑖, 𝑦𝑗)) (7)

where, cliques 𝐶(𝑥, 𝑦) are subsets of 𝑁(𝑥, 𝑦) or 𝑤(𝑥, 𝑦) itself

and 𝑉 (𝑤(𝑥𝑖, 𝑦𝑗)) is an arbitrary function of 𝑤(𝑥, 𝑦). The

equivalence between MRF and Gibbs distribution is expressed

by Hammersley-Clifford theorem, which states that 𝑤(𝑥, 𝑦) is

a MRF with neighborhoods 𝑁(𝑥, 𝑦) if and only if 𝑤(𝑥, 𝑦)
is a Gibbs distribution field with the cliques 𝐶(𝑥, 𝑦) induced

by the neighborhood 𝑁(𝑥, 𝑦) . This theorem provides an easy

way to construct the MRF in an explicit manner, i.e., one can

explicitly estimate the conditional probability distribution of

MRF by choosing specific kinds of cliques 𝐶(𝑥, 𝑦) and an

appropriate energy function 𝑈(𝑤(𝑥, 𝑦)) that is specific for the

practical problem.

In our model we used the simple equation for the 𝑈(𝑤) energy

function proposed by Therrien [29], and utilized by Nett et

Estimate distribution of pixels belong to rectangles as 

a mixture of a large number of normal terms by the AMM

Grouping the normal terms of the estimated distribution

 with the selected thresholds into three classes

Bayesian classification

Extraction of the

 gray level values

 for each class

Estimation of the

 CCPDF for each class,

 through the AMM

Estimation of a priori

 probabilities by

 MRF model

Calculation and evaluation of the new value

 for termination tolerance

Postprocessing

Segmentation of sperm’s Acrosome, Nucleus and Mid-piece

Fig. 1. Block diagram of the proposed approach for fully automatic
segmentation of sperm’s Acrosome, Nucleus and Mid-piece.

al. [30]. This equation is a linear combination of products of

elements in the cliques

𝑈(𝑤(𝑥, 𝑦)) =

𝑤(𝑥, 𝑦)(𝛼+ 𝛽1(𝑤(𝑥− 1, 𝑦) + 𝑤(𝑥+ 1, 𝑦))

+ 𝛽2(𝑤(𝑥, 𝑦 − 1) + 𝑤(𝑥, 𝑦 + 1)) (8)

The parameters 𝛼, 𝛽1, and 𝛽2 are parameters that allow for

adjusting relative weights or contributions of neighborhood

interactions. The parameters of MRF model, i.e., 𝛼, 𝛽1, and

𝛽2 have been experimentally set to 0.1, 0.01, and 0.01 for the

best result. These weightings allow the current classification

at index (𝑥, 𝑦) to take an importance somewhat greater than

the neighborhood classifications, and gives equal weighting to

the neighbors of the feature measured at (𝑥, 𝑦).

F. Algorithm

Based on the explanations mentioned above, the block

diagram of our method for segmentation of sperm’s Acrosome,

Nucleus and Mid-piece is shown in Fig. 1, and is summarized

below

1) Smoothing the R component of RGB color image using

a gaussian filter.

2) Selection of pixels inside the boundding boxes as input

samples.

3) Estimation of input samples distribution as a mixture

of a large number of normal terms by the AMM

(i.e., 𝑝terms = {𝑝1, ..., 𝑝𝑁}, 𝜇̂terms = {𝜇̂1, ..., 𝜇̂𝑁}, and

𝜎̂2
terms = {𝜎̂2

1 , ..., 𝜎̂
2
𝑁}. It is reminded that for univariate

case (one feature), the covariance matrix is replaced by

the variance of each term.
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Fig. 2. Result of applying the proposed algorithm to a typical sperm image: (a) Original RGB color image. (b) Bounding boxes containing sperm’s
Acrosome, Nucleus and Mid-piece. (c) Pixels inside the bounding boxes are considered as samples. (d) The resulted distribution by thresholding (blue)
overlaid on distribution of the samples (red). (e) Distribution of the samples (red), overlaid on it’s final estimation (blue). (f) Result of fully automatic
segmentation. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

4) Selection of thresholds for terms grouping. The thresh-

olds value is calculated according to thr1 = 𝜇in − 2𝜎in

and thr2 = 𝜇in, in which 𝜇in, 𝜎in are mean and standard

deviation of the input image, respectively.

5) Grouping the normal terms of the estimated distribution

with the selected thresholds into three classes as the

CCPDFs of classes. Indeed, initial values for parameters

(i.e., 𝑝init(𝑤𝑗), 𝜇̂init(𝑤𝑗) and 𝜎̂2
init(𝑤𝑗)) are estimated. The

𝜇̂init is calculated according to

𝜇̂init(𝑤𝑗) = (9)

⎧

⎨

⎩

mean{𝜇 ∈ 𝜇̂terms∣𝜇̂terms < thr1} for 𝑗 = 1
mean{𝜇 ∈ 𝜇̂terms∣thr1 ≤ 𝜇̂terms ≤ thr2} for 𝑗 = 2
mean{𝜇 ∈ 𝜇̂terms∣𝜇̂terms < thr3} for 𝑗 = 3

in which, 𝑗 denotes 𝑗th class. Also, the variances

(𝜎̂2
init(𝑤𝑗)) and the coefficients (𝑝init(𝑤𝑗)) of these

classes are equal to mean of the variances and sum of

the coefficients of corresponding terms, respectively.

6) Bayesian classification of the input image (only pixels

inside the bounding boxes) using initial values of pa-

rameters.

7) Extraction of the gray level values for each class resulted

from previous step.

8) Estimation of the CCPDF (i.e., 𝜇̂𝑘(𝑤), 𝜎̂
2
𝑘(𝑤)) for each

class, through the AMM.

9) Estimation of 𝑎𝑝𝑟𝑖𝑜𝑟𝑖 probabilities (i.e., 𝑝𝑘(𝑤)) for

classes, by MRF model stated in Eqs. 6 to 8.

10) Calculation and evaluation of the new value for termina-

tion tolerance. The new value of termination tolerance

is calculated from

𝑡𝑜𝑙 = max

⎛

⎝

max(𝑎𝑏𝑠(𝑝𝑘(𝑤)− 𝑝𝑘−1(𝑤)),
max(𝑎𝑏𝑠(𝜇̂𝑘(𝑤)− 𝜇̂𝑘−1(𝑤)),
max(𝑎𝑏𝑠(𝜎̂𝑘(𝑤)− 𝜎̂𝑘−1(𝑤)),

⎞

⎠ (10)

in which 𝑝𝑘(𝑤), 𝜇̂𝑘(𝑤), and 𝜎̂𝑘(𝑤) are the row vectors

of the 𝑎𝑝𝑟𝑖𝑜𝑟𝑖 probabilities, mean, and variance of the

tissue classes in 𝑘th iteration, respectively.

11) Repetition of steps 6-10 or termination of the computa-

tion.

12) Postprocessing: Acrosome and Mid-piece are classified

into the same class (i.e., two separated areas as one

class). These two areas are grouped into two separated

classes (i.e., Acrosome and Mid-piece) using their posi-

tions respect to the Nucleus and bounding box corners.

At first, the distance between each corner of bounding

box and center of Nucleus is computed. Then, the corner

whose value is less than others is considered as origin.

Acrosome is the region whose distance from origin is

less than Mid-piece (other region).

III. RESULTS

Figure 2 shows the results of the proposed algorithm,

including estimated distribution obtained through the AMM

with maximum 25 Gaussian terms overlaid on distribution

of the samples (inside the bounding boxes) and selection

of the thresholds. Fig. 2(d) shows grouping of the normal
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Fig. 3. Result of applying the proposed method to three sperm images : (a) and (b) The original RGB color images. (c) and (d) Bounding boxes in the original
RGB color images. (e) and (f) Three obtained classes through the proposed method. (g) and (h) Results of fully automatic segmentation. (For interpretation
of the references to color in this figure, the reader is referred to the web version of this article.)

terms obtained by AMM into three classes with the selected

thresholds, as the distribution functions of the classes. The

resulted distribution, overlaid on distribution of the samples

with MSE less than 1× 10−6, have been shown in Fig. 2(e).

In Fig. 3, results of applying the proposed algorithm to other

sperm images have been shown. To evaluate the results of the

Sperm segmentation based on the proposed method with the

entire image database, the following three statistical metrics

were employed for comparison: Accuracy (𝐴𝑐), Sensitivity

(𝑆𝑒) and Specificity (𝑆𝑝).

A𝑐 =
TN+TP

TN+TP+FP+FN

S𝑒 =
TP

TP+FN

S𝑝 =
TN

TN+FP
(11)

where, TP stands for true positive, FP for false positive, TN

for true negative, and FN for false negative. The evaluation

is summarized in Table I. Also the Accuracy of sperm’s

head, Acrosome, Nucleus and Mid-piece are computed 95.1%,

93.3%, 95.7% and 91.4%, respectively.

IV. DISCUSSION

In this paper a new approach, for fully automatic segmen-

tation of sperm’s Acrosome, Nucleus and Mid-piece in mi-

croscopic images of stained human semen smear that requires

no training and atlas, is proposed. At first, to increase the

detection rate and speed, a localized mask containing sperm’s

Acrosome, Nucleus and Mid-piece is built through the mini-

mum area bounding boxes. This procedure is done using an

improved hybrid method and the Rotating Calipers algorithm.

Pixels inside the bounding boxes are considered as samples.

Distribution function of samples is estimated by a mixture of

a large number of normal terms by AMM. Then, the mixture

TABLE I
EVALUATION RESULTS FOR DETECTION AND EXTRACTION OF INDIVIDUAL

SPERMATOZOON

Total Spermatozoa 283

Detected Spermatozoa (TP) 277

Not detected Spermatozoa (FN) 6

Total artifacts 127

True negative or non detected artifacts (TN) 123

Detected artifacts as Spermatozoa (FP) 4

Accuracy (A𝑐) 96.56%

Sensitivity (S𝑒) 97.87%

Specificity (S𝑝) 96.85%

terms are categorized into three classes, as the CCPDFs and

the 𝑎𝑝𝑟𝑖𝑜𝑟𝑖 probabilities of the classes. In the next steps,

𝑎𝑝𝑟𝑖𝑜𝑟𝑖 probabilities of the classes as well as parameters of the

classes (i.e., means and variances) are attained and updated,

utilizing MRF model and AMM, respectively, and without any

need for training samples. Our proposed approach is evaluated

via Accuracy, Sensitivity and Specificity in a data set of

microscopic images of stained human semen smear. These

results were compared with the results, previously, reported

by other researcher such as Carrillo et al. [18], which used

similar methods of evaluation. It is reminded that Carrillo et al.

[18] used manual segmentation for evaluation of their methods.

We, too, used manual segmentation for evaluation. They used

similar methods of evaluation. Therefore comparison of our

method with this method is reasonable. This comparison is

done in Table II. As it is seen in Table II, the proposed method

in this paper improves the accuracy of segmentations.



TABLE II
ACCURACY (𝐴𝑐) VALUES FOR THE PROPOSED METHOD AND CARRILLO et

al. [18]

Segmentation Carrillo et al. [18] Proposed method

Head 89.5% 95.1%

Acrosome 88.9% 93.3%

Nucleus 88.9% 95.7%

Mid-Piece 85.0% 91.4%

V. CONCLUSIONS

In this paper a new approach, based on a Bayesian classifier,

for automatic segmentation of sperm’s Acrosome, Nucleus and

Mid-piece in microscopic images of stained human semen

smear is proposed. The proposed method utilizes the adaptive

mixtures method (AMM) and Markov random field (MRF)

model to obtain and upgrade the class conditional probability

density function (CCPDF) and the 𝑎𝑝𝑟𝑖𝑜𝑟𝑖 probability of each

class (as sperm’s parts). The experimental results show the

promise of our approach. We are currently exploring new

methods for estimation of the morphological characteristics

of the sperm.
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