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Abstract: In this paper, generalized extended state observer is 
implemented to the load-frequency control of a multi-area 
power system. By using this observer, there is no need to have 
an accurate dynamic model of the system and thus, leads to a 
more robust performance against the uncertainties of the system 
parameters and disturbances in comparison with conventional 
load-frequency control methods. Moreover, the higher order 
disturbances rather than just step disturbances can be rejected 
by the proposed method, because of estimating the both 
disturbance and its derivative. A generalized disturbance signal 
is defined for each area. It consists of unmodeled dynamics of 
the system, external disturbances, and the interactions of the 
other areas. In the proposed control strategy, the generalized 
disturbance is estimated using local input and output data by a 
local state observer. Then, the estimation of generalized 
disturbance is used in a local state feedback controller to reject 
it and track the related references. The simulation results show 
the effectiveness of the proposed method. 

 

Keywords: decentralized control, disturbance rejection, 

generalized extended state observer, large-scale systems, 
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1. Introduction 

The both active power balance and reactive power 

balance are very important in a transmission network. 

The active power is related to frequency control and the 

reactive power is related to voltage control, hence, they 

can be separately controlled. The control of active power 

and frequency is referred to as load-frequency control 

(LFC) [1]. 

The large-scale power systems are usually composed 

of several units of generation. Hence, they are also called 

multi-area power systems. The units of a multi-area 

power system are interconnected via tie-lines to improve 

the fault tolerance of the entire system. The flows of 

power on the tie-lines, cause the so-called tie-line power 

exchange error to the control system. Hence, in a multi-

area power system, in addition to the frequency, the 

power interchange on the tie-lines has to be controlled 

and maintained at scheduled value [1]. 

The main objectives of a load-frequency control 

system are: 

(1) to hold the system frequency at the nominal value, 

(2) to maintain the power flows on the tie-lines at 

preset value, and (3) to share the amount of required 

generation among generating units as scheduled [2]. 

Conventional controllers such as PI and PID 

controllers are extensively used in the industry for load-

frequency control. In fact, most of these controllers are 

designed based on nominal values of system parameters. 

But, LFC design based on the nominal system parameters 

does not guarantee the stability and the desired 

performance of the power system under parametric 

uncertainties. This problem leads to using of adaptive and 

robust methods in load-frequency control.   

The adaptive control of multi-area power systems has 

been investigated by many researchers to make the 

controller insensitive to the variation of the plant 

parameters [2-5]. A decentralized adaptive control 

scheme is proposed in [2] for load-frequency control of 

multi-area power systems using the concept of 

overlapping decomposition. It was considered each local 

area network to be overlapped with states representing 

the interconnections with the other local area. Then, the 

decentralized control scheme was developed as a function 

of the local area state variables and those resulting from 

the overlapped states which represent an approximation 

of the interconnection variables. 

An adaptive decentralized load-frequency control of 

multi-area power systems has been presented by Zribi et. 

al. in [3]. They proposed a decentralized adaptive load-

frequency control scheme based on the Lyapunov theory 

to cope with changes in the parameters of power systems. 

However, these methods require either information on 

the system states or an efficient on-line identifier. Model 

reference adaptive techniques are required for satisfying 

the perfect model following conditions and the complete 

system state information. Since the order of the multi-

area power system is large, these approaches may be 

difficult to apply [4,5].  

In the most control strategies, the interactions are 

considered as external disturbances [6,7]. It yields the 

controller to be more conservative. But M.H. Kazemi et. 

al. in [8] proposed a method for reconstruction of the 
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interactions which were used in control design strategies 

to achieve better results and less conservative 

performance. For each local area, a local estimator was 

designed to estimate the interactions of this area using 

only the local output measurements and then it was 

exploited by the local controllers to compensate the effect 

of interactions. 

Many researchers tried to obtain a systematic PID 

controller tuning method for load-frequency control of 

large-scale power systems. In this area of research, [9-11] 

proposed to tune PID load-frequency controller via two-

degree-of-freedom internal model control (IMC) 

technique to remove the oscillation of disturbance 

response of one-degree-of-freedom internal model 

control. It was shown that with two tuning parameters the 

method can achieve good performance for load-frequency 

control of power systems and it have been extended to the 

decentralized case for multi-area power systems. 

Disturbance rejection control methods [12-17] are also 

studied in the literature for the LFC problem of 

interconnected power systems. L. Dong and Y. Zhang in 

[16] used the active disturbance rejection control based 

on extended state observer discussed in [14,15] for load-

frequency control of multi-area power systems. The 

designed controller seems good but the observer can only 

estimate the step load disturbances. R. Miklosovic et al. 

in [17] generalized the extended state observer to 

estimate the higher order disturbances.  

Thus, in this paper, the active disturbance rejection 

control proposed in [16] and the generalized extended 

state observer designed in [17] are used for load-

frequency control of a three-area power system. 

The paper is organized as follows: The dynamic of the 

system under study and the problem statement are 

presented in section 2. The formulation of Active 

Disturbance Rejection Control(ADRC) based on 

Extended state observer (ESO) and generalized extended 

state observer(GESO) are given in Section 3. In section 4, 

a load-frequency controller is designed for the system 

under study to demonstrate the feasibility of the proposed 

approach. The simulation results are presented in section 

5. The effects of model parameter variations is also 

considered in this section. Finally, some conclusions are 

given in section 6. 

2. System Description and Problem Formulation 

A typical multi-area power system is composed of 

several areas or subsystems of generating units those are 

connected via tie-lines. 

For the objective of load-frequency control, each area 

of the system can be represented by the linear model 

obtained by linearizing the plant around the operating 

point [1]. 

The system under study is a three-area power system. 

The block diagram of area 1 is shown in Fig. 1. The other 

areas are the same as area 1.      

 
Fig. 1: block diagram for area 1 of a three-area power system 

As you can see in this figure, the frequency deviations 

of area 2 and 3 enter to area 1 and form the so-called 

interaction term of area 1. 

According to Fig. 1, the following equations stand for 

each area. 
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where, ( )GenG s , ( )TurG s and ( )GovG s represent the 

transfer functions of the generator, turbine and governor 

respectively. These transfer functions are defined as 

1
( )

1

1
( ) 1,2,3

1

( )
1

i

i

i

i

i

i

i

Gov
G

Tur
T

P
Gen

P

G s
T s

G s i
T s

K
G s

T s




 





                 (2) 

And the parameters used in equations (1) and (2) are as 

follows: 

iR : droop characteristic for area #i (Hz/p.u. MW) 

iF : incremental frequency deviation of area #i (Hz) 

ijtieP : incremental change in tie-line power between     

            area #i and other areas (p.u. MW) 

iTT : turbine time constant in area #i (s)  

iLP : load disturbance in area #i (p.u. MW) 

iPK : electric system gain in area #i  

iPT : electric system time constant in area #i (s) 

ijT : synchronizing coefficients between area #i and #j  

       (p.u. MW/Hz) 

 

The load disturbances lead to frequency deviations and 

tie-line exchange error in system areas. The frequency 
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deviation combined with the tie-line power exchange 

deviation, form the so-called area control error(ACE) that 

have to be removed (ACE=0) by the load-frequency 

control system to achieve the objectives discussed in 

section 1. 

( ) ( )
ii i i tieACE F s P s           (3) 

This signal is defined as the output of the load-

frequency control system which has to be controlled. 

( ) ( ) ( )
ii i i tieY s F s P s                  (4) 

As a result, for each area we can write: 
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3. Disturbance Rejection Control 

Estimating the disturbance and using this estimation in 

the control law to reject the disturbance is the main idea 

of disturbance rejection control.  

Suppose that the system equation is given by: 

( )ny bu d        (7) 

Then if we can estimate the disturbance d  by an 

observer, we can reject it approximately by the control 

law given by: 

 0
ˆ /u u d b                      (8) 

where, d̂  is the estimation of disturbance d . 

With the control law (8) , the plant (7) will reduce to a 

pure integral plant given by: 

 ( )
0

ˆ /ny b u d b d                                   (9) 

( )
0

ny u                                 (10) 

Then a state feedback controller is designed as follows 

to track the set-point r [16]. 

( 1)
0 1ˆ ˆ... ( )n

nu k y k r y                 (11) 
3.1    Extended State Observer (ESO) 

An extended state observer estimates an unknown 

disturbance in addition to the states of the system.  

As discussed in [12], each observer is characterized in 

terms of: 

(1) Plant Description  

(2) Inputs → Estimations  

(3) Implementation  

where, (1) provides the mathematical description of a 

process, (2) shows the inputs or the information required 

by the observer and its outputs or what estimations it 

produces, and (3) is implementation equations of the 

observer.  

The ESO is designed to remove the requiremet of a 

precise model of the plant by rejecting unmodeled 

dynamics. This observer uses a simple canonical form 

and the unmodeled dynamics is included in the 

disturbance which has to be estimated [12].  

The extended state observer is characterized as:  
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As you can see in (12), a state called ˆf  is extended to 

n states of the system to estimate disturbance f . 

A comprehensive survey of disturbance observers can 

be found in [12].  

 

3.2 Generalized Extended State Observer (GESO) 

R. Miklosovic et. al. in [17] modified the ESO to 

include derivative estimations of the disturbance and 

called it GESO. With this modification, the observer will 

estimate derivatives of disturbance in addition to the 

states of the system and disturbance. 

The GESO is characterized as follows: 
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        (13) 

This observer estimates the derivatives of disturbance 

up to order h, that is determined in observer equations 

(13). In fact, h is the number of extended states to the 

system states in order to estimate disturbance and its 

derivatives. With h=1, the GESO estimates only the 

disturbance as ESO and with h=2,3 and .... , estimates the 

first, second and higher derivatives of disturbance in 

addition to disturbance and the states of the system. 

With This improvement, the observer has the ability to 

track higher order disturbances. The GESO with h =1,2,3 

can respectively track a square, triangular, or parabolic 

disturbance [17]. 
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4. Designing LFC for a Three-Area Power      

System 

In this section, we design an ADRC using GESO for 

the load-frequency control of the system under study. 

According to equations (5) and (6), for each area we can 

write: 

( ) ( ) ( )
i

i i i Li

i p i i

i tie tie d P

Y S G s U s d

d G P G

 

   
                              (14) 

And the transfer function of each area is of order three 

and in the form  
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             (15) 

First, we must reform the plant model to the form of 

(7). The equation (14) can be written as 

 
3

3 0

2
2 1 0

( ) ( )

( )

. ( )

i i

i

i P

a s Y S b U s

a s a s a Y S

d Den s

 

  



             (16) 

or 

3 ( ) ( )i i is Y S bU s f                            (17) 

where, if  is the generalized disturbance of area #i 

defined as 

 2
2 1 0
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1
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a
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     (18) 

and b is the high frequency gain given by:  

0 3/b b a                (19) 

Now, in order to estimate the generalized disturbance 

f and its derivative f , we design a GESO as discussed 

in section 3. 

According to equation (13), the GESO with 2h  will 

be as follows: 
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where, x̂ and ẑ are the estimations of x and z  

respectively, which are defined in (21). 

[ ]

[ ]

T

T

x y y y

z f f





 


                           (21) 

In equation (20), L is the observer gain vector and is 

given by: 

 1 2 3 4 5
T

L                                (22) 

Hence, as discussed in (20) and (21) the state space 

representation of the observer is as follows: 
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        (24) 

A choice is to locate all the eigenvalues of the ESO 

at 0 . As discussed in [16] , for this purpose, the values 

of the elements of the vector L must be chosen as: 

0 1, 2,...,i
i

n h
i n h

i
 

 
   
 

                  (25) 

See [15], for more details on tuning the observer 

parameters.  

If the observer gains are tuned such that the matrix 

A LC  is Hurwitz, then x̂ and ẑ will track x and z  

respectively, and hence from (20) and (21) we can 

conclude that 

4 5,z f z f                                       (26) 

Now, according to equation (26), 4z and 5z are the 

estimations of the generalized disturbance f and its first 

derivative f , respectively. Then, a state feedback 

controller must be designed as follows to reject the 

generalized disturbance, 4z , and track the set-point r . 

 0 4

0 1 1 2 2 3 3

/

( )

u u z b

u k r z k z k z

 

   
                            (27) 

As described in [16], the gains of the state feedback 

controller is chosen as: 

1 1, 2,...,
1

n i
i c

n
k i n

n i
   

    
            (28) 

where c  represents the bandwidth of the controller. 

5. Simulation Results 

A three-area power system model, which is shown in 

Fig. 1 is chosen to demonstrate the efficiency of the 

designed controller in section 4. The system parameters 

are given in TABLE 1.  

With 20o   and 4c  , from (25) and (28), the 

gains of generalized extended state observer and 

controller are obtained as: 

2 3 4 5
0 0 0 0 0

3 2

5 10 10 5

3 3

T

T

c c c

L

k

    

  

   

   

                 (29) 

In all simulations, the load disturbance is applied to the 

three areas at t = 1, 7, and 14 seconds respectively. 
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TABLE 1 : The Values of System Parameter  

  RPK  PT  TT  GT  ijT   

0.42.4120 20 0.3 0.08 0.5 Area 1 

0.4 2.7112.5 25 0.33 0.072 0.5 Area 1  

0.42.5115 20 0.35 0.07 0.5 Area 1 

 

5.1  Load Disturbance Rejection 

As we mentioned before, the ADRC designed in [16] 

based on ESO, can only reject the step disturbance and 

have not a good performance for higher order 

disturbances. In order to show this, we first apply the 

controller designed in [16] to the three-area system with 

ramp disturbance. The responses of the three different 

areas are shown in the Fig. 2.  
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Fig. 2:  responses of the ADRC with ESO designed in [16] to the system 

with ramp disturbance 
As you can see, the controller cannot reject the 

disturbance and the area control error does not converge 

to zero in any area. 

Now, the controller designed in section 4 is applied to 

the same system to demonstrate the ability of the 

proposed method to reject the high order disturbance. 

the responses are shawn in Fig. 3. 

0 2 4 6 8 10 12 14 16 18 20

-0.04

-0.02

0

A
C

E
 1

 (
p

.u
.)

ADRC with GESO for Area 1

0 2 4 6 8 10 12 14 16 18 20

-0.04

-0.02

0

ADRC with GESO for Area 2

A
C

E
 2

 (
p

.u
.)

0 2 4 6 8 10 12 14 16 18 20

-0.04

-0.02

0

ADRC with GESO for Area 3

A
C

E
 3

 (
p

.u
.)

Time (sec.)  
Fig. 3: responses of the ADRC with GESO designed in this paper to the 

system with ramp disturbance 
 

It can be seen that the load disturbance is rejected by 

the proposed controller and the area control error 

converges also to zero in all areas.  

5.2  Effect of Parameters Deviation 

In order to investigate the robustness of the proposed 

controller against system parameters deviation, some of 

the system parameters are changed and the results are 

compared with the controlled system in [11] by IMC 

based PID. Fig. 4 and Fig. 5 show the results. 

The changes applied to the system parameters are as 

follows: 
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Fig. 4: effect of system parameters changes on the system controlled by 

IMC based PID designed in [7] 
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Fig. 5: effect of system parameters changes on the system controlled by 

ADRC designed in this paper 

Fig. 4 and Fig. 5 show that the proposed controller in 

this paper is more robust to the system parameter 

deviations than the designed controller in [11]. Because, 

ADRC uses only two parameters of the system, one is the 
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order of the plant n, and the other is the high frequency 

gain b defined in equation (19), but in the IMC based PID 

designed in [11], all the parameters of the transfer 

function of the system are needed to be known. 

6. Conclusion 

In this paper, a disturbance rejection control scheme is 

used for the load-frequency control of a multi-area power 

system. In this method, generalized extended state 

observer which is an improvement of the extended state 

observer is designed to estimate high order disturbances. 

The most important advantage of this method is that it 

need a little information about system model, which 

results in better robustness against variations of the 

system parameters.  

Making the use of simulation, it has been 

demonstrated that the method has better performances in 

rejection of high order disturbances comparing simple 

extended observer. On the other hand, better robustness 

has been observed against model parameter changes in 

comparison with the internal model control based PID 

controller.  

In real power systems, load disturbances are 

discontinuous but GESO has been designed linearly. 

Therefore, GESO cannot estimate discontinuous 

disturbances accurately. Consequently, nonlinear parts 

could be added to the observer, which makes this method 

a powerful tool for multi-area power systems.  

On the other hand, the controller gain, which is 

considered as input data for the observer, is achieved 

from system model. If the gain is identified online and 

sent to observer, the observer and control system adapt 

themselves with changes in system parameters.  

In addition, for practical situations power system 

limitations such as governor valve displacement 

limitations could be applied to the system.   
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