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Abstract 
 

In this paper, the solving of a class of the nonlinear Volterra integral equations (NVIE) of the 

first kind is investigated. Here, we convert NVIE of the first kind to a linear equation of the 

second kind. Then we apply the operational Tau method to the problem and prove convergence 

of the presented method. Finally, some numerical examples are given to show the accuracy of 

the method. 
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1.  Introduction 

Consider NVIE of the first kind of the form:  

 

 , ,				 ∈ , ,                                                                       (1.1) 

 

where ,  and  are given smooth functions,  is invertible and nonlinear in .  The solution  

 is determined and under the assumption that 0.  

 

Many problems in mathematical physics and engineering are often reduced to integral equations 

of the first kind, which are inherently ill-posed problems, meaning that the solution is generally 
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unstable, and small changes to the problem can make very large changes to the solutions 

obtained [Babolian and Delves (1979);  Kythe and Puri (2002)]. Equations of the form (1.1) have 

been investigated in some papers. For example, in [Biazar et al. (2003)] the NVIE of the first 

kind has been solved using Adomian method. Babolian and Masouri (2008) proposed a simple 

efficient direct method for solving the Volterra integral equations of the first kind. They applied 

block-pulse functions and their operational matrix of integration to reduce the first kind integral 

equation to a linear lower triangular system. Linz (1969) applied rectangular method, trapezoidal 

and midpoint method for solving linear Volterra integral equations (LVIE) of the first kind. 

 

Maleknejad (2007) solved the VIEs of the first kind by wavelet basis. Biazar (2009) applied He's 

homotopy perturbation method to solve systems of VIEs of the first kind. Masouri (2010) 

produced the approximate solution of the VIEs of the first kind via a recurrence relation. 

Maleknejad (2011) introduced and used a modification of block pulse functions to solve VIEs of 

the first kind. 

 

In this paper, we convert the Equation (1.1) to a LVIE of the second kind and apply the 

operational Tau method to the LVIE. Spectral methods have been studied intensively in recent 

years because of their good approximation properties. The Tau method, through which the 

spectral methods can be described as a special case has found extensive applications in numerical 

solution of many operator equations. There has been considerable interest in solving integral 

equations using Tau methods [Hosseini and Shahmorad (2005); Shahmorad (2005); Hosseini and 

Shahmorad (2003); Pour-Mahmoud et al. (2005)]. Also, the Volterra-Hammerstein integral 

equations have been solved by the Tau method [Ghoreishi and Hadizadeh (2009)]. In recent 

years, the Tau method has been developed for solving the two-dimensional integral and integro-

differential equations too ([Rahimi et al. (2010); Tari et al. (2009)]). The rest of this paper is 

organized as follows: 

 

In Section 2, we briefly describe the Tau method. In Section 3, we formulate the problem. In 

Section 4, we investigate the existence and uniqueness of the solution of the problem and prove 

the convergence of the method. Also, in Section 5, we give some examples to show the accuracy 

and efficiency of the presented method. Finally, section 6 consists of a few conclusions.  

 

2.  Tau Method  
 

In this section, we give some preliminary results about the Tau method. Complete information 

about this method can be found in the references [Ottiz and Samara (1981); Hosseini and 

Shahmorad (2002)] and specialy in [Canuto et al. (2006)]. 

 
The operational approach to the Tau method proposed by Ortiz and Samara (1981) is based on 

the use of three simple matrices 

 

    

0 1 0 0 …0 0 1 0 …0 0 0 1 …⋮ ⋮ ⋮ ⋮ ⋱ ,				 0 0 0 0 …1 0 0 0 …0 2 0 0 …0 0 3 0 …⋮ ⋮ ⋮ ⋮ ⋱ ,  0 1 0 0 …0 0 0 …0 0 0 …⋮ ⋮ ⋮ ⋮ ⋱ , 
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with the following properties: if , where , , … , , 0, … ,0 , 1, , , … , then 

 	 ,                                                                                                                 (2.1) 

 										 ,                                                                                                                  (2.2) 

 

and  

 

 .                                                                                                               (2.3) 

 

In the rest of paper, we assume that ,  and  denote the matrices including the first 1 

rows and columns of the matrices ,  and , respectively. 

 

Lemma 2.1.  

 

Under above assumptions, we have  

 

 	 , 
 

where  is the 1  coordinate unit vector and | .  

  

Proof:  

 

See [Hosseini and Shahmorad (2002)].  

 

Theorem 2.2.  

 

Assume that K x, t ∑  ∑  d x t , then we have  

 

  , Π ,                                                                                              (2.4) 

 

whereΠ ∑  ∑  , 	 , , … , , 	 1, , … ,  and 

is to denote |  corresponding to the term  in the kernel.  

  

Proof:  

 

See [Hosseini and Shahmorad (2002)]. 

  

Remark 2.3.  

 

In the Tau method, f(x) and K(x,t) are polynomials  whenever f(x) and K(x,t) are not polynomials, 
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they should be approximated by suitable polynomials.  

Note that in the Equation (1.1), the functions f(x) and K(x,t) are not required to be polynomials.  

 

3.  Formulation of the Problem 

  
 In this section, we convert the Equation (1.1) to a linear equation of the second kind, then we 

apply the operational Tau method to the latter equation to get an equivalent linear system of 

equations. Without loosing generality, we assume that c = 0.  

 
We set y(t) = G(u(t)), so the integral Equation (1.1) can be written as  

 

 , .                                                                                                (3.1) 

 

Taking the derivative with respect to  in both sides of the above equation, leads to  

 

 , y x  
, ′ .                                                                       (3.2) 

 

With assumption , 0, Equation (3.2) is converted to 

 

 
, / , ′ / , .                                              (3.3) 

 

By setting , , / ,  and ′ / , , Equation (3.3) can be 

written in the following form 

 

 , ,                                                                                      (3.4) 

 

which is a LVIE of the second kind in the unknown y(x). 

 

Now we assume the computed solution of (3.4) has the following form  

 ∑  	 ,                                                                                             (3.5) 

 

which is a truncated Taylor series solution of the exact solution y(x) for Equation (3.4), where 1, , , … ,  is the standard basis of polynomials of degree N. 

 

One can write the right hand side of the Equation (3.4) in the form  

 ≃ ∑  ,                                                                                                 (3.6) 

 

where, , , … , . 

 

Now, by substituting (2.4), (3.5) and (3.6) into (3.4), we obtain  
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 	 Π , 
or  

 						 Π 0, 
 

and since X is a standard basis of polynomials of degree N,  

 					 Π , 
 

or  

 Π ,                                                                                                                  (3.7) 

 

where I is the identity matrix. 

 

By solving the linear system of Equation (3.7), the vector of unknown coefficients and hence 

yN(x) can be found, so that   is obtained, which is an approximate solution 

of the Equation (1.1). 

 

4.  Existence, Uniqueness and Convergence Analysis  

 

In this section, we state some results about the existence and uniqueness of the solution of the 

Equation (3.4) and we prove the convergence of the method. 

 

Theorem 4.1. [(Kress (1999, p.36)]. 

 

For each right-hand side f ∈ C 0, b  the LVIE of the second kind (3.4) with continuous kernel K, 

has a unique solution y ∈ C 0, b .  

  

Theorem 4.2. [(Linz (1985, p. 67)]. 

 

Assume that 

  

(i)  ,  and ∂ , / ∂  are continuous in 0 , ,  

(ii)  ,  does not vanish anywhere in 0 , 

(iii)  0 0, 

(iv)   and ′  are continuous in 0 . 

 

Then, LVIE of the first kind (3.1) has a unique continuous solution. This solution is identical to 

the continuous solution of the LVIE of the second kind (3.4).  

 

To investigate the convergence, we define the error function as: 

 ,                                                                                                      (4.1) 

 

where, y(x) and yN(x) are the exact and the computed solution of the Equation (3.4), respectively. 
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Substituting  yN(x) into Equation (3.4) leads to: 

 

 , ,                                        (4.2) 

 

where, pN(x) is the perturbation term that can be obtained by substituting the computed solution  

yN(x) into Equation (3.4), i.e.,  

 

 , .                                        (4.3) 

 

Now, by subtracting (4.2) from (3.4) and using (4.1), the error function  eN(x) satisfies:  

 

 , ,                                                                             (4.4) 

 

which is similar to Equation (3.4) with a new right hand side. 

 

Theorem 4.3.  

 

Let assumptions of theorem 4.1 hold, i.e., f and K be continuous functions on their domains. 

Suppose that for some positive M, we have  

 | | 	,				∀ ∈ 0, .                                                                                         (4.5) 

 

Then, 					 lim→∞ 0. 
 

Proof: 

 

Suppose that the solution y(x) and the computed solution yN(x) of (3.4) are approximated by their 

Taylor expansions about zero . Then we may write 

 ∑  ∞ ! 0 ,                                                                                              (4.6) 

 

which can be represented as   

 

! ,				 ∈ 0, ,                                                                              (4.7) 

 

for some ∈ 0,  by Taylor's theorem. 

 

Replacing  eN(x) by (4.7) into (4.4) gives  

 

!  , ! .                                          (4.8) 

 

Therefore, we have  

 



220                                                                                                                                                       Leila Saeedi et al.  

                                                                                                                          

 | | | | 1 !  | , || | 1 ! . 
 

Since K(x,t) is continuous on [0, b], then there exists some positive real number R such that | , |  for all , ∈ 0, . Therefore, we have  

 				| | 1 !  1 !  

 																			 1 ! 2 ! 1 1 ! 1 2 				 
 

thus, the proof is complete.  

  

Theorem 4.4.  

 

Under the assumptions of Theorem 4.3, we have lim→∞ 0. 

 

Proof: 

 

Let the integral operator T is given by  

 

  				  , , 
 

then the Equation (4.4) can be rewritten as  

 

   				 . 
 

Under the assumption, lim →∞ 0  and according to theorem 4.1, (I-T) is invertible. 

Hence, lim→∞ 0. 
  

We conclude this section by following Remark [Hosseini and Shahmorad (2002)].  

 

Remark 4.5.  

 

If the solution y(x) of the Equation (3.4) is a polynomial of degree m, then any Tau method 

approximate solution of degree m will detect it exactly. In this case we say that the Tau 

method is exact of degree m.  

 

 5.  Numerical Examples  
 

Here we give some examples to show the simplicity and accuracy of the presented method. In 

the following examples, we approximate nonpolynomial parts of functions f(x) and K(x,t) by 

Taylor polynomials. 
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We made use of the Maple 13 package to perform all computations.   

 

Example 5.1. Consider the following Volterra equation of the first kind [Babolian and Masouri 

(2008)]  

 

 ′′ 2 ,				 ∈ 0,1                                                                       (5.1) 

 

with initial conditions u(0) = 0 and u’(0) = 0, whose exact solution is u(x) = x
2
.  

 

To solve this example, as mentioned before, first we convert Equation (5.1) to LVIE of the 

second kind. To do this, we set ′′  so the integral Equation (5.1) can be written as  

 

 2 ,				 ∈ 0,1 .                                                                       (5.2) 

 

Taking the derivative with respect to x on both sides of the above equation, leads to  

 

 2 ,				 ∈ 0,1 ,                                                       (5.3) 

 

which is a LVIE of the second kind in the unknown y(x).  

 

To solve Equation (5.3), first we expand sin(x - t) and cos(x) in Taylor series on x0 = 0 and t0 = 0. 

By solving LVIE of the second kind (5.3) using the Tau method, the vector of unknown 

coefficients and hence yN(x) can be found. Therefore, using initial conditions and two times 

integration of ′′ , concludes the exact solution. 

 

Comparison of the proposed method and the direct method in [Babolian and Masouri (2008)] 

shows that with assumption /  and  where 0,1, … ,  for 8, the proposed 

method gives the solution ′′ 2 with the computed error 1/ ∑  /0 but the direct method in [Babolian and Masouri (2008)] gives the solution ′′ 2 

with the computed error 1/ ∑  / ≃ 1.7 14. Therefore, the proposed method is 

very powerful in comparison the numerical results of [Babolian and Masouri (2008)]. 

  

Example 5.2. Consider the NVIE of the first kind [Babolian and Salimi (2008)]  

 

 ,				 ∈ 0,1 ,                                                                        (5.4) 

 

whose exact solution is .  

 

Similar to Example 5.1, we convert NVIE of the first kind (5.4) to LVIE of the second kind. For 

this purpose, we set . So the integral Equation (5.4) convert to  

 

 ,				 ∈ 0,1 .                                                                          (5.5) 
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Taking derivative with respect to  on both sides of the above equation, leads to  

 

 2 ,				 ∈ 0,1 ,                                                           (5.6) 

 

which is a LVIE of the second kind in the unknown . 

 

To solve Equation (5.6), first we expand ,  and  in Taylor series on 0  and 0. By solving LVIE of the second kind (5.6) using the Tau method, the vector of unknown 

coefficients and hence  can be found, therefore . 

 

Computational results in Table 1 show that high accuracy is obtained for 16 in comparison 

to the absolute error at the points /  where 0,1, … ,  for 16, in [Babolian and 

Salimi (2008)].  

 

Example 5.3. Consider the third example as  

 

 1,				 ∈ 0,1 ,                                                                 (5.7)  

 

which has the exact solution .  

 

Similar to previous examples, we convert NVIE of the first kind (5.7) to LVIE of the second 

kind. By setting  the integral Equation (5.7) can be written as  

 

 1,				 ∈ 0,1 .                                                                         (5.8) 

 

Taking derivative with respect to  on both sides of the above equation, leads to  

 

 1,				 ∈ 0,1 ,                        (5.9) 

 

which is a LVIE of the second kind in the unknown . 

 

To solve Equation (5.9), applying the proposed method to the problem leads to  which 

is the exact solution of (5.9). Note that this confirms the remark 4.5. Therefore 

 which is the exact solution of Equation (5.7), too.  

  

Example 5.4. Consider the integral equation  

 	 1 ,				 ∈ 0,1                                   (5.10) 

 

with the exact solution .  

 

As mentioned before, we convert NVIE of the first kind (5.10) to LVIE of the second kind. To 

do this, we set  so the integral Equation (5.10) is converted to  
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	 1 ,				 ∈ 0,1 .                                           (5.11) 

 

Taking derivative with respect to  on both sides of the above equation, leads to  

 	 ,				 ∈ 0,1 ,                (5.12) 

 

which is a LVIE of the second kind in the unknown . 

 

We proceed as in previous examples and obtain the results of Table 2 for the absolute error at 

some nodes with 8, 16.  

 

Table 1. Computational results of example 5.2 for different  at some nodes. In [Babolian 

and Salimi (2008)] this problem was solved just for 16. 

  8       

   
 0.00   1.000000   1.000000     0.00 

1/16   1.064494   1.064494   0.97E-14  

3/16   1.206230   1.206230   0.17E-9  

3/8   1.454991   1.454991   0.76E-7 

1/2  1.648721   1.648720   0.92E-6  

5/8   1.868245   1.868239   0.62E-5  

3/4   2.117000   2.116970   0.29E-4  

13/16   2.253534   2.253477   0.57E-4 

15/16   2.553589   2.553400   0.18E-3  

1   2.718281   2.717959   0.32E-3  

 16       error [Babolian 

and Salimi(2008)]  
 0.00   1.000000   1.000000     0.00     ---  

1/16   1.064494   1.064494   0.59E-30   0.0328 

3/16   1.206230   1.206230   0.68E-22   0.0374 

3/8   1.454991   1.454991   0.75E-17   0.0454 

1/2   1.648721   1.648721   0.90E-15  0.0517  

5/8   1.868245   1.868245   0.35E-13  0.0589 

3/4   2.117000   2.117000   0.71E-12  0.0671 

13/16   2.253534   2.253534   0.26E-11  0.0716 

15/16   2.553589   2.553589   0.26E-10   0.0815 

1   2.718281   2.718281   0.76E-10   0.0870 
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Table 2. Computational result of example 5.4 for different  at some nodes 

 

 

 

  

  

 

8    

    

0.00 0.000000 0.000000     0.00 

     0.10 0.100000 0.099999 0.27E-15 

0.20 0.200000 0.199999 0.14E-12 

0.30 0.300000 0.299999 0.55E-11 

0.40 0.400000 0.399999 0.74E-10 

0.50 0.500000 0.499999 0.56E-9 

0.60 0.600000 0.599999 0.29E-8 

0.70 0.700000 0.699999 0.12E-7 

0.80 0.800000 0.799999 0.41 E-7 

0.90 0.900000 0.899999 0.12E-6 

1.00 1.000000 0.999999 0.32E-6 

16 

 

   

    0.00 0.000000 

 

  0.000000 0.00 

 

0.10 0.100000 0.199999 0.15E-32 

0.20 0.200000 0.199999 0.20E-27 

0.30 0.300000 0.299999 0.20E-24 

0.40 0.400000 0.399999 0.27 E-22 

0.50 0.500000 0.499999 0.12E-20 

0.60 0.600000 0.599999 0.28E-19 

0.70 0.700000 0.699999 0.39E-18 

0.80 0.800000 0.799999 0.39E-17 

0.90 0.900000 0.899999 0.29E-16 

1.00 1.000000 0.999999 0.18E-15 
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 6.  Conclusion 
 

In this paper we proposed a simple technique for solving the NVIE of the first kind. In this 

method, we transformed NVIE of the first kind to LVIE of the second kind. Then we converted 

LVIE of the second kind to an equivalent linear system of equations by the operational Tau 

method. Comparison with available literature shows that the proposed method gives results of 

high accuracy.  
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