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SUMMARY In this paper, we present an algorithm to segment the liver

in low-contrast CT images. As the first step of our algorithm, we define

a search range for the liver boundary. Then, the EM algorithm is utilized

to estimate parameters of a ‘Gaussian Mixture’ model that conforms to the

intensity distribution of the liver. Using the statistical parameters of the in-

tensity distribution, we introduce a new thresholding technique to classify

image pixels. We assign a distance feature vectors to each pixel and seg-

ment the liver by a K-means clustering scheme. This initial boundary of

the liver is conditioned by the Fourier transform. Then, a Geodesic Active

Contour algorithm uses the boundaries to find the final surface. The novelty

in our method is the proper selection and combination of sub-algorithms so

as to find the border of an object in a low-contrast image. The number of

parameters in the proposed method is low and the parameters have a low

range of variations. We applied our method to 30 datasets including normal

and abnormal cases of low-contrast/high-contrast images and it was exten-

sively evaluated both quantitatively and qualitatively. Minimum of Dice

similarity measures of the results is 0.89. Assessment of the results proves

the potential of the proposed method for segmentation in low-contrast im-

ages.

key words: liver segmentation, segmentation of low-contrast images,

geodesic active contours, liver intensity distribution modeling

1. Introduction

Detection of hepatic tumors, extraction of vascular struc-

tures, and determination of portal venous segments and sub-

segments are the crucial steps prior to any liver treatment

planning. Due to large number of images in a dataset, we

need to employ Computer Assisted Diagnosis systems to an-

alyze the liver images [1].

Liver segmentation is considered as a challenging task

because of large shape variations, non-homogenous tex-

tures of abnormal livers, and low-contrast CT images [2].

The majority of research on liver segmentation falls into

one of the following categories: Statistical Shape Models

(SSM) [3], [4], probabilistic atlases [5], [6], Active Contour

(AC) methods [7], [8], and histogram-based approaches [9]–
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[11].

Both the SSM-based approaches and probabilistic at-

las methods suffer from large variations of livers shape

and intensity, inaccurate registration and improper detec-

tion of corresponding landmarks. In the case of low-contrast

datasets, the boundaries of the liver which are found by the

SSM methods leak into the nearby organs. Both the Para-

metric and the Geometric Active Contour methods exten-

sively are dependent on image gradient which leads to over-

segmentation in the case of a low-contrast image. For both

methods, locating the initial contour near the final one is an

important requirement. Intensity-based liver segmentation

methods are usually relied on a simplified model for the in-

tensity distribution of the liver. Therefore, they miss vessels

and tumors in abnormal livers. The problem of leakage is

found in these methods too.

We propose a new intensity-based algorithm which

mainly addresses the problem of segmentation of the liver in

low-contrast CT images. It is a revised version of our pre-

viously proposed algorithm [11] so that it may be applied to

more datasets [11]. The core of the method is a novel thresh-

olding technique which we call ‘Narrow-Band Threshold-

ing’ (NBT) in this paper. It consists of an appropriate selec-

tion and combination of conventional techniques to find the

boundary of liver in low-contrast CT datasets. It simulates

the task of a physician to find the border of liver by avail-

able image-processing applications. The segmented liver is

considered as an initial liver boundary which is later refined

by the ‘Geodesic Active Contour’ algorithm. The rest of

this paper is prepared as follows. The proposed method is

explained in Sect. 2. Extensive evaluation of our method is

presented in Sect. 3. Section 4 is devoted to the discussion

of the results and Sect. 5 concludes the paper.

2. The Proposed Method

2.1 Overview

The proposed method is a combination of 2D and 3D al-

gorithms. A novel 2D algorithm is developed to exploit a

priori knowledge about the boundary of liver in the neigh-

bouring slices. Thus, it copes with shape variations in both

normal and abnormal livers. Furthermore, the ‘Geodesic

Active Contour’ (GAC) method, a 3D algorithm, guarantees

smoothness of the final result.

The first step of our method is preprocessing that in-

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers
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(a)

(b)

Fig. 1 Typical intensity profile of a middle row in liver CT images. (a)

Direction of the profile. (b) Intensity variations.

cludes finding the bounding box of the abdominal region,

extraction of the ribs and segmentation of a single slice by a

physician. Next, we model the intensity distribution of the

liver’s tissue by a ‘Dynamic Gaussian Mixture’ using the

initially segmented slice. Then, we apply the NBT method

to segment the liver in the remaining slices. We find the vol-

ume of the liver through defining the borders of the liver in

2D slices. This volume is smoothed by the GAC algorithm

and makes the final liver surface.

2.2 Preprocessing

As the first step of the preprocessing, we browse through

the input CT volume to find a slice in which liver has a large

cross-section. A doctor defines the border of the liver in this

slice and this boundary is used as a priori knowledge in the

next steps of our method.

To increase the speed of the code, we reduce the size

of the input dataset by considering an ROI defined as the

bounding box of the abdomen. We employ thresholding

technique to extract the abdominal region. To define the

proper threshold, we examine the intensity profile of the first

axial slice of the input CT volume in the horizontal direction

(Fig. 1). This slice which may contain heart, lungs, and liver

is smoothed by a Gaussian filter. Then, the average of min-

imum and maximum of intensity in a middle row is chosen

as the desired threshold. After thresholding the image, the

bounding box of the abdomen is found and the input volume

is resized so as to include only the abdomen region. The re-

sult is an average reduction of 30% in the size of a typical

dataset.

We use the manually segmented slice for statistical

analysis too. In this case, due to the existence of a large

number of the liver pixels, estimation of the statistical pa-

rameters may be trustable. Since liver is a concrete volume,

we follow the border of the liver in this slice in order to seg-

(a) (b) (c)

Fig. 2 Extraction of the ribs. (a) Segmented bones in a typical slice.

(b) Fitting a spline to the centroid of the ribs. (c) 3D visualization of the

extracted ribs.

ment the liver in next slices and not to miss any separate part

of the liver.

The next step of the preprocessing is to remove the in-

tercostal muscles that reside between the ribs and have the

same intensity as the liver. They are removed by extraction

of the ribs as explained in [11]. The ribs are extracted by

thresholding technique (Fig. 2 (a)). The appropriate thresh-

old is the average of the liver’s intensity and the maximum

intensity of a slice. After extraction of the ribs, we find the

centroid of the ribs and fit a spline curve into these points

(Fig. 2 (b)). This curve is used as a mask to remove parts of

the muscles that are in contact with the liver (Fig. 2 (b)).

2.3 Dynamic Mixture Model

As explained in Sect. 2.1, the manually segmented slice is

used to estimate the statistical parameters of the liver’s pix-

els. We employ a dynamic Gaussian mixture to model the

intensity distribution of the liver. By dynamic, we mean that

the number of components in the model is not fixed. Es-

timation of the parameters is done using the ‘Expectation

Maximization’ (EM) algorithm. The EM algorithm consists

of two steps: The E-step which estimates the posterior prob-

ability and the M-step which calculates the model parame-

ters [13]. Given the initial parameters µ0
k
, Σ0

k
, π0

k
and the

obtained π0
k
, the tth iteration of E-step and M-step can be

implemented in Eq. (1) and Eq. (2), respectively.

γt(znk) =
πt

k
N(Xn|µt

k
,Σt

k
)

∑K
j=1 π

t
j
N(Xn|µt

j
,Σt

j
)
, N t

k =

N
∑

n=1

γt(znk). (1)

µt+1
k =

1

Nk

N
∑

n=1

γt(znk)Xn, πt+1
k =

N t
k

N
,

Σt+1
k =

1

N t
k

N
∑

n=1

γt(znk)(Xn − µt+1
k )(Xn − µt+1

k )T ,

S .t.

K
∑

k=1

πt+1
k = 1. (2)

In a Gaussian mixture model, K normal random vari-

ables N(X|µt
k
,Σt

k
), 1 ≤ k ≤ K are combined to produce a

Gaussian mixture, where µt
k

and Σt
k

are the mean and the

standard deviation of kth component for the tth iteration.

Each component shares πt
k

(0 ≤ πk ≤ 1, 1 ≤ k ≤ K) in the

whole distribution. In Eq. (1), γt(znk) is the posterior proba-

bility corresponding to the kth component of the tth iteration
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and the sample Xn, Nk is the number of samples correspond-

ing to the kth component, and N is the total number of the

samples. In Eq. (2), the superscript t + 1 means the iteration

step of the parameters and the superscript T is the transpose

operator. If the parameter πk corresponding to a component

is less than 0.05, we do not consider this component in the

model. At the start of the segmentation, the model has one

component. We increase the number of the components one

by one until the similarity measure between the segmented

liver in the previous slice and the current slice is more than

0.95.

2.4 The NBT Method

Thresholding techniques segment objects based on intensity

levels [12]. In the case of low-contrast images, using thresh-

olding techniques lead to either leakage to nearby tissues or

imperfections in segmentation results.

In this paper, we propose a novel thresholding tech-

nique to segment objects in low-contrast images. The main

assumption in this method is to know the approximate posi-

tion of the object’s boundary as a priori knowledge. Since

we employ 2D techniques to segment the liver, we use the

mask of the liver in the previous slice as a priori knowledge

to define a search region for the border of the liver in the

next slice. Assuming the inter-slice resolution of the input

data is high enough, the boundary of the liver in the next

slice does not go far from its border in the previous slice.

The K-means clustering is used to decide on whether a pixel

in the search region belongs to the liver or not.

The main steps of the NBT method are shown in Fig. 3.

Assuming the cross-section of the liver in ith slice is di-

vided into m parts and the boundary of the liver for each

part (Maski, j, 1 ≤ j ≤ m) is known, we define a search

range (S Ri+1, j) corresponding to the part j in the (i + 1)th

slice, defined by Eq. (3).

S Ri+1, j = xor(Maski, j ⊕ S EDilation,Maski, j ⊖ S EErosion) (3)

In Eq. (3), Maski, j is the cross-section of the liver cor-

responding to the jth part in slice i. S EDilation and S EErosion

are the structuring elements used for dilation and erosion,

respectively. These elements were empirically selected to

be disks with a radius of 2 pixels. Furthermore, xor is

exclusive-or operator in Eq. (3). We search for the liver’s

border in the current slice in the region S Ri+1, j. This region

is a narrow band around the boundary of the liver (as shown

in Fig. 6 (a)).

Next, the EM algorithm estimates the statistical param-

eters of the liver’s tissue slice-by-slice so as to follow minor

variations in the parameters.

Then, we threshold the input image to find ‘Candidate

Pixels’. If the intensity model of the liver includes K Gaus-

sian components and the parameters of the kth component

(1 ≤ k ≤ K) are µk and σk, we threshold each component

in the narrow region [ThLk,ThHk] (defined in Eq. (4)) to find

the Candidate Pixels

Fig. 3 The main steps of the NBT method.

(a) (b)

Fig. 4 (a) Due to low-contrast between liver and the nearby tissues,

boundary of the liver where it is shown by the red arrow cannot be de-

fined clearly. (b) Thresolding in the narrow band around the liver’s mean

intensity helps in defining the border of the liver.

ThLk = µk − BWk, ThHk = µk + BWk, BWk < 0.4σk. (4)

BWk is defined as a factor ofσk (BWk = β.σk, β < 0.4).

The output of this step is a large number of isolated pix-

els. The pixels of non-liver objects are scattered while the

liver’s pixels are grouped together (Fig. 4 (b)). We choose

the parameter BWk to be much less than 4σk (BWk < 0.4σk).

Thus, typical pixels of the liver are selected and the bound-

ary of liver where is in contact with neighbouring tissues is

defined. In the case of low-contrast datasets, we have to de-

crease β to prevent leakage into nearby tissues. Typical val-

ues for β are 0.15 and 0.3 corresponding to low-contrast and

high-contrast datasets, respectively. Assuming a simple case

where the intensity distribution of the liver is modeled by a

single component N(X| µk,Σk). The area under the proba-

bility density function (S ) is proportional to the number of

liver pixels. The relationship between β and S is defined by

Eq. (5).

S =
1

√
2πσk

∫ µk+βσk

µk−βσk

exp

(

−
(x − µk)2

2σ2
k

)

.dx. (5)

Numerical methods are used to calculate β for a spe-
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Fig. 5 Employing DGS to remove non-liver parts.

cific value of S . For example, if we want to keep 50% of the

liver pixels by thresholding, β will be 0.711. We empirically

found that the values of β are in the range [0.05 0.3] corre-

sponding to very low-contrast to high-contrast datasets. In

Fig. 4 (a), it is difficult to distinguish between the liver and

the nearby tissues where shown by the red arrow. However,

thresolding in the narrow band around the liver’s mean in-

tensity helps in defining the border of the liver (Fig. 4 (b)).

If a pixel is in the region defined by Maski, j⊖S EErosion,

it is considered as a liver pixel. For a pixel located in the

search region, we use K-means clustering to determine if

it belongs to the liver or not. We divide all pixels in the

search region into far and near groups based on a distance

transform feature. The pixels in the near group are assigned

to the liver. At the end of this stage, the output of our algo-

rithm is isolated liver pixels which we call them Index Pixels

(Fig. 6 (c)).

To convert isolated ‘Index Pixels’ into a solid liver ob-

ject, ‘Anisotropic Diffusion Filter’ is used to smooth the pix-

els and to avoid blurring of the boundary (Fig. 6 (d)) [14].

The smoothed image is normalized and thresholded by 0.5

to obtain a binary object (Fig. 6 (e)).

In the axial direction, if we browse through an abdom-

inal CT dataset from the head towards the feet, the cross-

section of the liver is divided into separated parts. In this

step, we use ‘Directed Graph Search’ (DGS) to remove non-

liver objects. In this technique, the connection of the liv-

ers cross-sections in the current slice and the previous slice

are modeled by a directed graph G(N,E). The liver parts are

modeled as the graph nodes (N) and the intersection of each

part in the current slice and the previous slice are modeled

as the graph edges. In Fig. 5, V1,p is a typical part of the

liver in the previous slice, Vi,c is the ith part of the liver in

the current slice and Ei, j is edge of the graph connecting Vi,c

and V j,p. The edge Ei, j is proportional to the intersection of

Vi,c and V j,p (Eq. (6)).

Ei, j =

∣

∣

∣Vi,c ∩ V j,p

∣

∣

∣

∣

∣

∣V j,p

∣

∣

∣

. (6)

An object with a relative intersection less than 50 is

considered as a non-liver object.

The boundary of the liver found in this step is not

smooth (Fig. 6 (e)). If the coordinates of the boundary points

are analyzed by the Fourier transform, it will contain sig-

nificant high-frequency components. The coordinates (x,y)

are converted from spatial domain into frequency domain by

Eq. (7).

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6 Steps of the NBT method. (a) The search range of the liver’s

boundary, (b) ‘Candidate Pixels’ (c) ‘Index Pixels’ of the liver, (d) smooth-

ing by the AD filter, (e) Thresholding the image of part (d), (f) Smoothing

the boundary by the Fourier transform, (g) Comparison of initial (green),

final (blue) and true liver border (red), (h) Smoothed surface of the liver by

the GAC method.

Fx(k) =

N
∑

j=1

x( j)e( −2πi
N

( j−1)(k−1)), i =
√
−1 (7)

Fy(k) =

N
∑

j=1

y( j)e( −2πi
N

( j−1)(k−1)).

In Eq. (7), N is the number of the boundary points

which is usually greater than 100. If we remove high-

frequency components, the boundary will be smooth. In

the frequency domain, we keep only the first 15th compo-

nents and, then, transfer them to spatial domain (Fig. 6 (f))

(Eq. (8)).

x( j) =
1

N

15
∑

k=1

Fx(k)e( +2πi
N

( j−1)(k−1)), i =
√
−1 (8)

y( j) =
1

N

15
∑

k=1

Fy(k)e( +2πi
N

( j−1)(k−1)).

Visual inspections of the results reveal that smoothing

the liver’s border by this technique is significantly better
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when compared to smoothing by conventional methods.

The initial surface of the liver is formed by integrat-

ing the liver’s borders in 2D slices. The GAC algorithm is

used for the evolution of the final surface (Fig. 6 (h)) [20].

To avoid leakage to nearby tissues, we empirically found it

ideal to run the GAC algorithm for 30 to 40 iterations.

3. Results

We applied the proposed method to three different sets of

the liver CT data including normal/abnormal, single/multi-

phase, and low-contrast/high-contrast datasets. The first set

belonged to Shiga University of Medical Science. We call

it Group-I in this paper. It contained 10 normal datasets

of low-contrast data with a resolution of 0.6836 × 0.6836 ×
1 mm3 and a size of 512×512× (185−263). The second set

included 10 datasets of the second phase of abnormal livers.

We call it Group-II in this paper. It was acquired by two GE

scanners at Osaka University Hospital. The scanners were

as follows: (1) LightSpeed QX/I, 4-channel MDCT (GE)

with four detectors and (2) LightSpeed Ultra, 8-channel

MDCT (GE) with eight detectors. Resolution of the im-

ages was 2.5× 2.5× 2.5 mm3 and 1.25× 1.25× 2.5 mm3 for

LightSpeed QX/I and LightSpeed Ultra, respectively. The

size of the datasets was 512 × 512 × 159. Group-I and II

contained 12-bit DICOM images. The third set was a pub-

lic dataset belonged to the MICCAI 2007 Grand Challenge

workshop [15]. Its specifications are given in [17]. In or-

der to keep intensity information, we allocated 16-bit short

integer variables to store pixel values. They were manu-

ally segmented by a physician and the segmentation results

were used as ground truth. In the case of the MICCAI

2007 datasets, they were in Meta format with a pixel type

of signed short integer. The evaluation was done by the au-

thorities of the website and published there [17].

The proposed algorithm was mainly implemented in

the MATLAB environment. However, we used the ITK

toolkit for the GAC implementation and the VTK toolkit

for 3D visualization of the results [18], [19]. The platform

on which we ran the algorithm was an Intel R©CoreT M 2 Duo

with 3 GBytes of RAM.

We extensively evaluated our method. In Table 1, quan-

titative evaluations by the metrics of the MICCAI 2007

Grand Challenge are shown [15]. The metrics are defined

by mathematical expressions in Table 2.

In Table 2, d(x,y) is the Euclidean distance between

the point x and y where x and y are the boundary points

of the segmented volume by the proposed method and the

manually segmented volume, respectively.

In Fig. 7, Dice similarity measure of the segmentation

results corresponding to the Group-I and II are shown. Dice

measure is introduced mathematically in Eq. (9).

S Dice =
2
∣

∣

∣Mre f ∩ Mauto

∣

∣

∣

∣

∣

∣Mre f

∣

∣

∣ +
∣

∣

∣Mauto

∣

∣

∣

(9)

In Eq. (9), Mre f and Mauto refer to manually segmented

Table 1 Quantitative evaluation of the Group-I and II datasets.

Signed Rel Avg Sym Avg Sym Max Vol

Dataset Vol Diff Surf Dist RMS Surf Surf Dist Overlap

[%] [mm] Dist [mm] [mm] Err [%]

Group-I 1.55 2.22 3.95 37.46 13.23

Group-II 4.06 1.88 3.04 22.27 12.51

Table 2 Mathematical expressions of the metrics used in Table 1.

Metric Definition

S ignedRelVolDi f f
Volre f −Volauto

Volre f
× 100

AvgS ymS ur f Dist

∑

x∈Mauto
in fy∈Mre f

d(x,y)+
∑

y∈Mre f
in fx∈Mauto d(x,y)

2

AvgS ymS ur f Dist

√

∑

x∈Mauto
in fy∈Mre f

d2(x,y)+
∑

y∈Mre f
in fx∈Mauto d2(x,y)

2

Max S ur f Dist max

(

maxx∈Mauto

(

in fy∈Mre f
d(x, y)

)

+

maxy∈Mre f

(

in fx∈Mauto d(x, y)
)

)

VolOverlapErr

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 − |Mauto∩Mre f |
|Mauto∪Mre f | × 100

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(a)

(b)

Fig. 7 Dice similarity measure for the (a) Group–I and (b) Group–II

Datasets. X–axis is dataset number.

volume and the segmented volume by the proposed method,

respectively.

In order to compare our method with other researches,

we registered the team RITS UT (Ritsumeikan University

- University of Tehran) in the MICCAI–2007 Grand Chal-

lenge and got the final score of 68.46 [17]. In Fig. 8, the

results of the MICCAI-2007 Grand Challenge for three dif-

ferent cases are shown.

In Fig. 9, comparison of the segmentation results by the

manual and the proposed method for four different slices are

shown. The significance of the results of Fig. 9 is that the

datasets of Fig. 9 (a) and (b) are low-contrast and those of
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Fig. 8 From left to right, a sagital, coronal and transversal slice from a

relatively easy case (1, top), an average case (4, middle), and a relatively

difficult case (3, bottom). The outline of the reference and the proposed

method segmentation results are in red and blue, respectively. Slices are

displayed with a window of 400 and a level of 70.

(a) (b)

(c) (d)

Fig. 9 Comparison of the manual segmentation (red) with the results of

our method (green). Slices are displayed in an intensity range of [0 200].

(a), (b) Group–I, ID 1– no. 125 and ID 2–no. 111, respectively. (c), (d)

Group–II, ID 4, no. 59. (d) ID 8, no. 132, respectively.

Fig. 9 (c) and (d) are abnormal livers.

In Fig. 10, surface rendering visualizations of three

manually segmented datasets are compared with the results

of our method.

In order to evaluate the effectiveness of the NBT

method, we compared the results of our method with the re-

sults of both parametric and geometric Active Contours. In

order to use several different metrics in the evaluation pro-

cess, the comparison with region-based parametric Active

Contours is performed by Dice similarity measure (Fig. 11)

and the comparison with the Geometric Active Contours is

(a) (b) (c)

(d) (e) (f)

Fig. 10 Visualization of the segmented livers by our method (1st and 3rd

row) and manual method (2nd and 4th row). Group-I: (a), (d) ID 1, (b), (e)

ID 2, Group-II: (c), (f) ID 8.

Fig. 11 Comparison of ‘Region–Based Parametric Active Contours’

with our method by Dice measure for Group–I datasets. X-axis is dataset

number and Y–axis is Dice similarity measure.

Fig. 12 ROC curve compares the results of the liver segmentation by our

method and the ‘Geodesic Active Contours’. Source: Group–I, ID 1.

Table 3 Quantitative evaluation of the Group–I and II datasets.

textbfMeasure textbfDefinition

Sensitivity True Positive / (True Positive + False Negative)

Specificity True Negative / (True Negative + False Positive)

done by ROC curve (Fig. 12). In Fig. 12, the ROC curve cor-

responding to the GAC method was prepared by increasing

number of iterations of the algorithm. The ROC curve corre-

sponding to our method was prepared by increasing the size

of the beta parameter in the narrow-band range to include

more pixels in the segmentation results.

‘Sensitivity’ and ‘Specificity’ are defined in Table 3.

Sensitivity analysis of our method is performed by

plotting the variations of Sensitivity and Specificity mea-

sures for different values of the BW (Fig. 13).
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Fig. 13 Variations of Sensitivity and Specificity of the results for differ-

ent values of BW (Bandwidth) parameter. Source: Group–II, ID 10.

Fig. 14 The result of the liver segmentation for region-based snake

leaked into the IVC (Note the yellow arrow). Source: Group–I, ID 04.

4. Discussion

In this paper, we introduced a new thresholding tech-

nique for the liver segmentation in low–contrast CT images.

Thresholding was performed in a narrow range around the

statistical mean of the intensity model. Our method is a con-

catenation of standard sub–algorithms. However, the proper

selections and the order of the combinations of these sub–

algorithms are so skillfully performed that our method had

the potential to be applied to a diverse set of liver CT data

including normal/abnormal and different phases of datasets.

Several diversities existed in the datasets which we

used for evaluation: 1) The volumes included both normal

and abnormal livers; 2) Some volumes were enhanced by

contrast agent while some not; 3) The volume dimensions

and the liver positions in the datasets substantially varied; 4)

The inter–slice resolutions changed from 0.6 mm to 2.5 mm.

As can be seen in Fig. 9 (a) and (b), the intensity of the

liver, colons, and ribs muscles are very similar. Thus, any

conventional liver segmentation method will lead to exten-

sive leakage to non-liver tissues. Minimum of Dice simi-

larity measure for region–based snakes was as low as 0.75

(Fig. 11). However, the same measure for our method was

more than 0.89. In Fig. 9 (c) and (d), while the result of the

liver segmentation for region-based snake leaked into the

IVC, our method excluded it from the segmentation result

(Fig. 14).

Based on our previous experience [11], since the type

and the number of the tissues neighbouring the liver vary

significantly in the upper and lower slices, we used two dif-

ferent sets of parameters for the bandwidth (BW). In the up-

per slices, the liver is usually in contact with the ribs’ mus-

cles, stomach, and heart. However, the in lower slices; it

Fig. 15 Variations of Sensitivity and Specificity of the results for differ-

ent values of BW (Bandwidth) parameter. Source: Group–II, ID 10.

Fig. 16 The vessels are missed in some cases in the segmentation results

of our method. Source: Group–II, ID 08, no. 89

may touch the colon, kidney, gallbladder, and ribs’ muscles.

Smoothing the initial boundary by the Fourier transform is

another feature of our method which prevents leakage into

nearby tissues, especially for small cross–sections of liver

(Fig. 9 (b)).

An improvement in the proposed method is the de-

tection and segmentation of small sections of the liver

(Fig. 9 (b)). Our method typically segments five more slices

in the lower slices and one to three more ones in the upper

slices [20].

Even though the proposed method starts segmentation

with a slice in which liver has a large cross-section, there is

no need to exactly find the largest cross-section of the liver

as the sensitivity analysis in Fig. 15 shows. Analysis of the

plot of Fig. 15 reveals that the selection of the largest slice

does not have great impact on the final result. As the future

work of our research, we will try to segment the initial slice

automatically.

A distinguished feature of our method is segmentation

of abnormal liver datasets. The second phase of Group–

II datasets together with several datasets of MICCAI-2007

datasets belong to abnormal cases which contain tumors

(Fig. 8). The tumors are either of higher or lower intensi-

ties with respect to the intensity of the liver. For these cases,

we selected a different set of parameters in our algorithm.

The switching mechanism between the two sets of the pa-

rameters is done by user interaction. We intend to use an

automatic mechanism to select the appropriate set of the pa-

rameters. The results of the segmentation of the MICCAI–

2007 datasets (Fig. 8) clearly showed the capability of the

proposed method for the segmentation of the liver in any

deliberate dataset.

Regarding some high-contrast images of Group–II
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Fig. 17 The major contribution of the GAC algorithm to our method was

towards segmentation of the upper–most and lower-most slices. Source:

Group–II, ID 01

datasets, leakage occurred only in a single slice. In these

cases, we did not consider the intensity range of vessels

so as to prevent leakage to the IVC. However, the vessels

were included in the segmentation results when the images

were smoothed by the AD filters and the Fourier transform.

In some cases, our method sometimes missed the vessels

(Fig. 16).

The major contribution of the GAC algorithm to our

method was towards segmentation of the upper–most and

lower-most slices (i.e. the first and last slices in a volume)

(Fig. 17). For the slices that were located in the middle of

a dataset, the GAC did not change the results so much as

the initial boundary was located near the final border. For

some datasets, the results of the GAC algorithm led to over–

segmentation since the image map for the evolution of active

contour had no clear boundary for the liver.

The results in Fig. 10 revealed that the segmented livers

by the proposed method considerably resembled the results

of the manual segmentation. 3D visualization of segmented

livers could potentially be used in the preoperative evalua-

tion of the liver, too.

Another achievement of our method was the segmen-

tation of the liver where there was Partial Volume Effect

(PVE). The PVE is a source of ambiguity in defining bor-

ders of the tissues. However by using the proposed NBT

technique, over-segmentation was prevented where there is

the PVE (Fig. 9 (c), (d)).

The proposed method was a combination of 2D and 3D

approaches. It exploited a priori information of the previ-

ously segmented slices, which was inherent in 2D segmen-

tation methods, to tune the liver boundary for a variety of the

liver shapes. It also took advantage of the smoothness of 3D

approaches introduced by the 3D Active Contour algorithm.

Comparison of our method with the ‘Geodesic Active

Contour’ performed by the ROC curve (Fig. 12) revealed

that our method was superior to Active Contour method and

Fig. 18 Variations of Dice measure with respect to number of iterations

of ‘Geodesic Active Contour’ for three sample datasets. Source: Group–II:

blue, pink and green curves correspond to ID 1, ID 11 and ID 14, respec-

tively.

led to higher true positive rates with lower false positive

rates.

In order to improve our method and get better results,

we have to exploit a priori information of the previously seg-

mented slice more significantly and design a new image map

for the Active Contour algorithm that resists leakage.

Segmentation of a dataset including 185–263 slices

took 18–22 minutes. We plan to thoroughly implement our

method in C++ environment and reduce the run-time to ac-

ceptable rates.

We analyzed the effect of the number of iterations of

the GAC algorithm on the segmentation results for three

sample datasets using Dice similarity measure (Fig. 18). As

can be seen in Fig. 18, choosing a low or high number of it-

erations for the GAC algorithm results in reducing the Dice

measure. Thus, it can be concluded that the optimum result

is found if the number of iterations of the GAC algorithm is

between 30 to 40. In Fig. 18, it can be concluded that the

Active Contour algorithm needs acceptable initial surfaces

as the input. This method also leaks to nearby tissues in the

case of low–contrast images.

5. Conclusion and Future Works

In this paper, we presented an intensity–based algorithm to

segment normal/abnormal livers in low/high–contrast and

single/multi–phase CT datasets. The results of liver segmen-

tation in MICCAI datasets gained a high score. In case of

low–contrast images, our method outperformed the known

techniques for object segmentation.

As the works for future, we plan to find and segment

the initial slice automatically, find the boundary between the

heart and the liver and design a surface mask for ribs.
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